
remote sensing

Article

Structure-Aware Convolution for 3D Point Cloud
Classification and Segmentation

Lei Wang 1 , Yuxuan Liu 2 , Shenman Zhang 2 , Jixing Yan 3 and Pengjie Tao 2,*
1 State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing,

Wuhan University, Wuhan 430079, China; wlei@whu.edu.cn
2 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;

liuyx@whu.edu.cn (Y.L.); smzhang@whu.edu.cn (S.Z.)
3 School of Highway, Chang’an University, Xi’an 710064, China; yanjx@chd.edu.cn
* Correspondence: pjtao@whu.edu.cn

Received: 8 January 2020; Accepted: 12 February 2020; Published: 14 February 2020
����������
�������

Abstract: Semantic feature learning on 3D point clouds is quite challenging because of their irregular
and unordered data structure. In this paper, we propose a novel structure-aware convolution
(SAC) to generalize deep learning on regular grids to irregular 3D point clouds. Similar to the
template-matching process of convolution on 2D images, the key of our SAC is to match the point
clouds’ neighborhoods with a series of 3D kernels, where each kernel can be regarded as a “geometric
template” formed by a set of learnable 3D points. Thus, the interested geometric structures of the
input point clouds can be activated by the corresponding kernels. To verify the effectiveness of the
proposed SAC, we embedded it into three recently developed point cloud deep learning networks
(PointNet, PointNet++, and KCNet) as a lightweight module, and evaluated its performance on both
classification and segmentation tasks. Experimental results show that, benefiting from the geometric
structure learning capability of our SAC, all these back-end networks achieved better classification
and segmentation performance (e.g., +2.77% mean accuracy for classification and +4.99% mean
intersection over union (IoU) for segmentation) with few additional parameters. Furthermore, results
also demonstrate that the proposed SAC is helpful in improving the robustness of networks with the
constraints of geometric structures.

Keywords: structure-aware convolution; 3D point cloud; classification; segmentation

1. Introduction

With the development of laser scanning and image stereo matching, 3D point clouds have emerged
in large numbers and become an important type of geometric data structure [1]. Efficient and effective
semantic feature learning for 3D point clouds has been an urgent problem for further analysis tasks such
as classification and segmentation, which have enormous real-world applications such as autonomous
driving, 3D reconstruction, and digital cities [2,3].

Recently, benefiting from the powerful feature learning capability of deep learning networks [4–6],
researchers have attempted to generalize deep learning from regular grid domains (e.g., images,
speeches) to irregular 3D point clouds [7–10]. However, because of the irregular data structure of 3D
point clouds, standard convolutional neural networks (CNNs) cannot be directly applied to them.
To address this problem, the most intuitive way is to divide the 3D point cloud space into regular
3D voxels [11–14] or project the 3D point cloud onto 2D images from multiple views [15–18], so that
the CNNs can be applied directly. However, since the 3D point clouds only record the surface points
of 3D objects, the 3D volumetric representation inevitably leads to computation consumption and
resolution limitation, while the multi-view projection is sensitive to the mutual occlusion among

Remote Sens. 2020, 12, 634; doi:10.3390/rs12040634 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-6477-6172
https://orcid.org/0000-0003-4394-1989
https://orcid.org/0000-0002-8589-5637
https://orcid.org/0000-0001-5011-9446
http://dx.doi.org/10.3390/rs12040634
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/4/634?type=check_update&version=2

Remote Sens. 2020, 12, 634 2 of 18

objects [7]. More recently, PointNet [1] introduced a set-based point cloud deep learning network,
which allows researchers to directly extract the discriminative features of point clouds by using simple
multilayer perceptron (MLP) and a global aggregation function (e.g., the max function). However, the
set-based method neglects the spatial neighboring relation between points, which contains fine-grained
geometric structures for 3D point cloud analysis.

In fact, the convolution, which is the core of CNNs, can be seen as a template-matching process
between the input signal and the convolution kernels. Each convolution kernel has its specific function
and is activated when it meets the corresponding structure (e.g., the edge of the image). Inspired
by this, the key of our structure-aware convolution (SAC) is to extract the local geometric structure
of point clouds by matching each point’s neighborhoods with a series of 3D kernels with specific
structures (as shown in Figure 1). Similarly, the interested geometric structures in 3D point clouds
is activated when they are matched with our kernels. To adapt to the complex real situations, the
geometric structure of the 3D kernels is adaptively learned from the training dataset.

Remote Sens. 2020, 12, x FOR PEER REVIEW 2 of 18

which allows researchers to directly extract the discriminative features of point clouds by using
simple multilayer perceptron (MLP) and a global aggregation function (e.g., the max function).
However, the set-based method neglects the spatial neighboring relation between points, which
contains fine-grained geometric structures for 3D point cloud analysis.

In fact, the convolution, which is the core of CNNs, can be seen as a template-matching process
between the input signal and the convolution kernels. Each convolution kernel has its specific
function and is activated when it meets the corresponding structure (e.g., the edge of the image).
Inspired by this, the key of our structure-aware convolution (SAC) is to extract the local geometric
structure of point clouds by matching each point’s neighborhoods with a series of 3D kernels with
specific structures (as shown in Figure 1). Similarly, the interested geometric structures in 3D point
clouds is activated when they are matched with our kernels. To adapt to the complex real situations,
the geometric structure of the 3D kernels is adaptively learned from the training dataset.

Specifically, for each point in the point cloud, we first find its neighborhoods as a point set and
then match it with the kernel which also consists of a set of learnable 3D points. During the training
phase, the kernels are guided to approximate the geometric structures that exist in the training data.
However, different from regular 2D images, in which the coordinates of each neighboring pixel are
fixed and the geometric structures are reflected by changing gray values, our kernels for 3D point
clouds need to be matched with the coordinates of the neighboring points. When the kernels are well
trained, they form a series of 3D geometric structures that can be used to capture the corresponding
structures in the point clouds.

Our SAC focuses on capturing the local geometric structures of 3D point clouds; it is a simple
yet efficient module that can be embedded into other existing point cloud deep learning networks
such as PointNet [1], PointNet++ [19], and KCNet [20]. To verify the effectiveness of our proposed
SAC, we experimentally applied it to various point cloud analysis tasks, including object
classification and semantic segmentation, on three public datasets. Experimental results show that
the proposed SAC is efficient to capture the geometric structures of the 3D point clouds and efficiently
improves the performance of the recently developed point cloud deep learning networks.

Overall, the main contributions of this paper can be summarized as follows:
• We propose a novel structure-aware convolution (SAC) to explicitly capture the geometric

structure of point clouds by matching each point’s neighborhoods with a series of learnable 3D
point kernels (which can be regarded as 3D geometric “templates”);

• We show how to integrate our SAC into existing point cloud deep learning networks, and train
end-to-end point cloud classification and segmentation networks;

• We experimentally demonstrate the effectiveness of our SAC by improving the performance of
the recently developed point cloud deep learning networks (PointNet [1], PointNet++ [19], and
KCNet [20]) on both classification and segmentation tasks.

Input point cloud

Kernels

Activated points

Figure 1. Illustration of kernels and their matching results on the input point cloud. For each point of
the input point cloud, we first find its three neighbors and then match them with different kernels.
When the local geometric structure is similar to the kernel, the current point is activated
correspondingly (darker red means larger activated value).

Figure 1. Illustration of kernels and their matching results on the input point cloud. For each point
of the input point cloud, we first find its three neighbors and then match them with different kernels.
When the local geometric structure is similar to the kernel, the current point is activated correspondingly
(darker red means larger activated value).

Specifically, for each point in the point cloud, we first find its neighborhoods as a point set and
then match it with the kernel which also consists of a set of learnable 3D points. During the training
phase, the kernels are guided to approximate the geometric structures that exist in the training data.
However, different from regular 2D images, in which the coordinates of each neighboring pixel are
fixed and the geometric structures are reflected by changing gray values, our kernels for 3D point
clouds need to be matched with the coordinates of the neighboring points. When the kernels are well
trained, they form a series of 3D geometric structures that can be used to capture the corresponding
structures in the point clouds.

Our SAC focuses on capturing the local geometric structures of 3D point clouds; it is a simple
yet efficient module that can be embedded into other existing point cloud deep learning networks
such as PointNet [1], PointNet++ [19], and KCNet [20]. To verify the effectiveness of our proposed
SAC, we experimentally applied it to various point cloud analysis tasks, including object classification
and semantic segmentation, on three public datasets. Experimental results show that the proposed
SAC is efficient to capture the geometric structures of the 3D point clouds and efficiently improves the
performance of the recently developed point cloud deep learning networks.

Overall, the main contributions of this paper can be summarized as follows:

• We propose a novel structure-aware convolution (SAC) to explicitly capture the geometric structure
of point clouds by matching each point’s neighborhoods with a series of learnable 3D point kernels
(which can be regarded as 3D geometric “templates”);

Remote Sens. 2020, 12, 634 3 of 18

• We show how to integrate our SAC into existing point cloud deep learning networks, and train
end-to-end point cloud classification and segmentation networks;

• We experimentally demonstrate the effectiveness of our SAC by improving the performance of
the recently developed point cloud deep learning networks (PointNet [1], PointNet++ [19], and
KCNet [20]) on both classification and segmentation tasks.

2. Related Works

In this section, we discuss the related prior works in three main aspects: feature extraction for 3D
point clouds, classification with extracted features, and deep learning on point clouds.

2.1. Feature Extraction for 3D Point Clouds

Traditional point cloud feature extraction methods can be mainly divided into four categories as
follows. (1) Local features which describe the properties of 3D point clouds within a local neighbor
range. Typical local features include surface normal, fast point feature histogram (FPFH) [21], signature
of histogram of orientations (SHOT) [22], and covariance matrix and its derivations such as surface
curvatures, eigenvalues, linearity, planarity, and scattering [23]. However, these local features only
reflect the statistic properties of point clouds and cannot accurately describe the complex geometric
structures of 3D objects in real situations. (2) Regional features tend to describe point clouds by
combining their neighboring contextual information, including texture [24], structure [25], topology [26],
and contexture [27]. (3) Global features describe the properties of the entire 3D objects with statistic
methods and are mainly used in object retrieval and classification. (4) Multi-scale features [28–30] aim
to describe 3D point clouds across multiple scales since the objects often show different properties at
different scales or resolutions. However, these hand-crafted features are designed according to prior
knowledge and the differences between objects, which are difficult to adapt to complex real situations.

2.2. Classification with Extracted Features

After feature extraction, we need to construct corresponding models for further classification or
segmentation tasks. The most direct way is to build a set of rules for each kind of object according to its
unique characters. However, because of the variety of 3D objects and the complexity of real situations,
human-designed rules for specific scenes are often hard to apply to other situations. For this reason,
machine-learning methods such as support vector machine (SVM) [31,32], cascaded AdaBoost [33],
and random forest [34,35] are usually applied. They aim to learn a mapping between the extracted
feature of each point and the corresponding class label. However, since they predict the label of each
point individually, these point-wise classification methods are inevitably sensitive to noise. To consider
the spatial relation between neighborhoods, Markov random field (MRF) [36] and conditional random
field (CRF) [37,38] further regard the point cloud as a graph [39] where each point corresponds to a
vertex. The weights of the graph can be determined by the neighboring points’ Euclidean distances,
normal differences, or other local features’ differences. Although the neighboring relations can be used
to reduce the influence of noise, the performance of these machine-learning methods mainly relies on
the quality of the extracted features.

2.3. Deep Learning on Point Clouds

Deep learning methods, especially CNNs, have produced great achievements in image and speech
processing tasks because of their powerful feature learning capability [4–6]. Recently, researchers have
also attempted to generalize deep convolutional networks in regular grid domains to irregular 3D
point clouds, which can be mainly summarized as voxelization-based [40,41], multi-view-based [16,18],
graph-based [7,42–44], and set-based [1,19] methods.

Voxelizations and multi-view images are the most direct representation of 3D point clouds for
deep learning. The voxelization-based method [12,13] discretizes the point cloud space into regular

Remote Sens. 2020, 12, 634 4 of 18

3D voxels, so that the standard CNNs can be easily extended. However, since the point clouds only
record the surface points of the 3D objects, the voxelization-based method inevitably leads to resolution
limitation, information loss, and computation consumption. The multi-view-based method [16–18]
projects the 3D point clouds onto a series of 2D images from multiple views, so that the standard
2D CNNs can be applied directly. However, the multi-view-based method is occlusion sensitive,
and it is still unclear how to determine the number, order, and distribution of the views to cover
the entire 3D object while avoiding mutual occlusions. The graph-based method [42,43,45] aims at
extending the CNNs on regular images to irregular graphs and can be directly used on organized 3D
data like mesh. However, for 3D point clouds, we first need to organize them as a graph according to
their spatial neighborhoods. Because of their uncertain number, the effective aggregating function
for these neighboring points is still under exploration. The set-based method [1,19,46–48] is a recent
breakthrough for 3D point clouds. It allows researchers to construct a simple deep learning architecture
directly on point clouds by first applying MLP to each point and then aggregating them as a global
feature. Although the set-based method is efficient and robust to rigid transformation and points’
ordering, it neglects the spatial neighboring relation that contains fine-grained geometric structures for
better semantic feature learning. To address these problems, researchers also attempt to directly apply
convolution on point clouds by considering the spatial relation between neighborhoods [49,50] or 3D
point kernels [51,52]. Most of the studies are focused on implicitly guiding the convolution weights
while lacking explicit feature representation of the geometric structures.

3. Methods

We propose a novel structure-aware convolution for geometric structure learning on point clouds
with a series of learnable 3D kernels (Section 3.1), and show its relation with standard convolution on a
regular 2D grid (Section 3.2). Afterward, we show how to integrate the proposed SAC into recently
developed deep learning networks for both point cloud classification and segmentation (Section 3.3).

3.1. Structure-Aware Convolution

We denote the given point cloud as P =
{
p1, p2, . . . , pn

}
∈ R3, where pi ∈ R3 represents the

coordinates of the i-th point. N(i) represents the set of neighboring points of pi (including itself), and
our goal is to recognize the geometric structure that is formed by the neighboring points. For example,
is it a plane, a spherical surface, a corner, or another geometric structure?

To this end, our SAC is designed to describe these geometric structures with a series of 3D kernels,
where each kernel consists of a set of learnable 3D points. When the geometric structure formed by the
kernel is well matched with the one formed by the neighboring points (e.g., a plane), then the current
point is correspondingly activated.

Specifically, we denote each 3D kernel as κl (l = 1, 2, . . . , L), which is a set of 3D points with
learnable coordinates, and L is the number of kernels. The corresponding output of the SAC can be
formulated as follows:

sl = max
φ:Ni→κl

1
|Ni|

∑
p∈Ni

exp
(
−
||p−φ (p) ||2

2σ2

)
(1)

where |Ni| is the number of neighboring points and σ is a constant parameter. φ : Ni → κl is the
one-to-one mapping function between sets of neighboring points and kernel points, so that the distance
between the two sets is minimized, which corresponds to the maximum output of sl.

Consequently, the extracted geometric structure can be expressed as an L-dimensional feature
vector S = [s1, s2, . . . , sL]. Each kernel represents a specific geometric structure and an attempt is made
to match the neighboring points. If they can be perfectly matched, the corresponding channel is
activated as a value close to 1, and the other channel is close to 0.

At the beginning of the training phase, the initial kernel points are uniformly scattered in a sphere,
which means no meaningful geometric structures are formed by the convolution kernels and they

Remote Sens. 2020, 12, 634 5 of 18

cannot be used to match any geometric structures. During the training process, each convolution kernel
is guided to approximate a specific geometric structure contained in the training data (an illustration
of the training process of our SAC kernel is shown in Figure 2). Thus, our learned SAC kernels can be
matched with and represent kinds of complex geometric structures that exist in real situations during
the testing phase.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 18

Neighboring points Initial kernel points First iteration

Second iterationThird iterationN-th iteration

…

Figure 2. Illustration of the training process of our structure-aware convolution (SAC). The kernel
points’ coordinates are randomly initialized using a uniform distribution. With training iteration, the
kernel points’ coordinates are gradually adjusted so that they can be well matched with one kind of
geometric structure formed by the neighboring points in real situations. The learned kernels can then
be used to capture the interested structures in 3D point clouds during the test phase.

3.2. Relationship to Standard Convolution

3.2.1. Reformulation of Standard Convolution

We first revisit the standard convolution on regular 2D images (Figure 3). For each pixel of the
regular image, we first need to find its neighboring pixels in a convolution window as a matrix I (here
the image with a single channel is considered for convenience). We denote the convolution kernel as
W, which is also a 2D matrix. Then, the convolution on the regular 2D image can be expressed as
follows: ݕ = ෍ ௜ܹ,௝ ܫ௜,௝௜,௝ + ܾ (2)

where ݕ represents the output of the convolution, ݅, ݆ represents the index of the pixel in the
neighbor patch or convolution kernel, and ܾ is the corresponding bias.

More generally, if we flatten the matrix I and convolution kernel W to a one-dimensional vector
with the same order, the above convolution on the regular image can reformulated as follows: ݕ = ෍ ௞ܹܫ௞௞ + ܾ = ෍)ܥ ௞ܹ, ௞)௞ܫ + ܾ (3)

where ܥ(௞ܹ, ௞) is a function about the convolution kernel and the neighboring pixels. We can seeܫ
that the convolution on the 2D image is actually a process of weighted summation of the neighboring
pixels, where the values of the convolution kernel are the corresponding weights.

3.2.2. Reformulation of SAC

Similar to 2D images, our SAC also aims to aggregate the information in its neighboring region
for each point, as shown in Equation 1. Suppose ߶∗ is the optimization mapping function between
the sets of neighboring points and kernel points in Equation 1. In practice, since ‖݌ − ‖(݌)∗߶ ≪ ,ߪ
the first-order Taylor expansion of the right side of Equation 1 is already a good approximation to ݏ௟.
Therefore, we have the following: ݏ௟ = 1| ௜ࣨ| ෍ exp ቆ− ݌‖ − ଶߪଶ2‖(݌)∗߶ ቇ௣∈ࣨ೔

≈ ܣ ෍ ݌‖ − ଶ௣∈ࣨ೔‖(݌)∗߶ + (4) ܤ

Figure 2. Illustration of the training process of our structure-aware convolution (SAC). The kernel
points’ coordinates are randomly initialized using a uniform distribution. With training iteration, the
kernel points’ coordinates are gradually adjusted so that they can be well matched with one kind of
geometric structure formed by the neighboring points in real situations. The learned kernels can then
be used to capture the interested structures in 3D point clouds during the test phase.

3.2. Relationship to Standard Convolution

3.2.1. Reformulation of Standard Convolution

We first revisit the standard convolution on regular 2D images (Figure 3). For each pixel of the
regular image, we first need to find its neighboring pixels in a convolution window as a matrix I (here
the image with a single channel is considered for convenience). We denote the convolution kernel as W,
which is also a 2D matrix. Then, the convolution on the regular 2D image can be expressed as follows:

y =
∑
i, j

Wi, j Ii, j + b (2)

where y represents the output of the convolution, i, j represents the index of the pixel in the neighbor
patch or convolution kernel, and b is the corresponding bias.

More generally, if we flatten the matrix I and convolution kernel W to a one-dimensional vector
with the same order, the above convolution on the regular image can reformulated as follows:

y =
∑

k

WkIk + b =
∑

k

C(Wk, Ik) + b (3)

where C(Wk, Ik) is a function about the convolution kernel and the neighboring pixels. We can see
that the convolution on the 2D image is actually a process of weighted summation of the neighboring
pixels, where the values of the convolution kernel are the corresponding weights.

3.2.2. Reformulation of SAC

Similar to 2D images, our SAC also aims to aggregate the information in its neighboring region
for each point, as shown in Equation (1). Suppose φ∗ is the optimization mapping function between

Remote Sens. 2020, 12, 634 6 of 18

the sets of neighboring points and kernel points in Equation (1). In practice, since ||p−φ∗(p)|| � σ ,
the first-order Taylor expansion of the right side of Equation (1) is already a good approximation to sl.
Therefore, we have the following:

sl =
1
|Ni |

∑
p∈Ni

exp
(
−
||p−φ∗ (p) ||2

2σ2

)
≈ A

∑
p∈Ni

||p−φ∗ (p) ||2 + B

=
∑

p∈Ni

K(p,φ∗(p)) + B

(4)

where A and B are the parameters related to σ. Compared to the standard convolution in Equation (3),
our SAC can actually be simplified as a similar formulation (Equation (4)) but with a modified
convolution kernel function K(p,φ∗(p)).

However, unlike 2D images with regular data structure and their neighbors leveraging the natural
fixed relative positions, the neighboring points of 3D point clouds can appear in any position of the 3D
space and have no certain order. To handle this problem, a mapping function φ∗ : Ni → κl that matches
each neighboring point to its corresponding kernel point is needed, so that the kernel points can be
applied to their corresponding neighboring points. Specifically, for each neighboring point pk ∈ Ni, we
should first find its corresponding kernel point φ∗(pk) ∈ κl, and the distance is then calculated between
the corresponding point pair in the kernel and neighbor sets (as shown in Figure 3).

Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 18

= ෍ ,݌)ܭ ௣∈ࣨ೔((݌)∗߶ + ܤ
where ܣ and ܤ are the parameters related to ߪ . Compared to the standard convolution in
Equation 3, our SAC can actually be simplified as a similar formulation (Equation 4) but with a
modified convolution kernel function ݌)ܭ, .((݌)∗߶

However, unlike 2D images with regular data structure and their neighbors leveraging the
natural fixed relative positions, the neighboring points of 3D point clouds can appear in any position
of the 3D space and have no certain order. To handle this problem, a mapping function ߶∗: ௜ࣨ → ௟ߢ
that matches each neighboring point to its corresponding kernel point is needed, so that the kernel
points can be applied to their corresponding neighboring points. Specifically, for each neighboring
point ݌௞ ∈ ௜ࣨ, we should first find its corresponding kernel point ߶∗(݌௞) ∈ ௟, and the distance isߢ
then calculated between the corresponding point pair in the kernel and neighbor sets (as shown in
Figure 3).

Feature map Convolution kernel Output

Output = ∑ ௜ଽ௜ୀଵݓ ௜ݔ + ܾ
(a) (b)

Point cloud Kernel points Output

Output ≈ ∑ ܭ ,݌ ߶∗ ௣∈ࣨ೔݌ + ܤ

Figure 3. Illustration of 2D convolution and SAC. (a) Illustration of the convolution on the 2D image, which can
be represented as a weighted combination of the neighboring pixels’ features (The standard convolution should first
transpose the convolution kernels and then multiply them with the corresponding pixels. We omit the transposition process
here for denotation convenience.); (b) Illustration of the proposed SAC on the 3D point cloud. Kernel points are
matched with neighbors of each point; the point with a local geometric structure similar to the kernel is activated.
Both the 2D convolution and our SAC aim at detecting specific patterns in images or point clouds. However, the
patterns are reflected by changing gray values in images, but are shown by spatial coordinates in point clouds.

3.3. Deep Learning Networks with the Proposed SAC

According to the above analysis, our SAC actually provides a flexible geometric structure
extractor which can be easily embedded into existing point cloud deep learning networks. In this
section, we show how to construct the corresponding deep learning networks with our proposed
SAC.

Specifically, the architecture of the classification and segmentation networks with our SAC is
illustrated in Figure 4. For each point ݌௜, we first find its neighboring points ௜ࣨ according to their
spatial distance, and then match them with a series of 3D kernels ߢ௟, ݈ = 1,2, … , Therefore, the .ܮ
output of our SAC is an ܮ -dimensional feature vector ܵ = ,ଵݏ] ,ଶݏ … , [௅ݏ , where each ݏ௟ can be
regarded as the matching degree between neighboring points and the ݈-th convolution kernel ߢ௟.
The geometric feature ܵ is then used as the initial feature of each point for the subsequent
classification or segmentation networks, which can be achieved with other state-of-the-art point
cloud deep learning networks such as PointNet [1], PointNet++ [19], and KCNet [20].

Figure 3. Illustration of 2D convolution and SAC. (a) Illustration of the convolution on the 2D
image, which can be represented as a weighted combination of the neighboring pixels’ features
(The standard convolution should first transpose the convolution kernels and then multiply them
with the corresponding pixels. We omit the transposition process here for denotation convenience.);
(b) Illustration of the proposed SAC on the 3D point cloud. Kernel points are matched with neighbors
of each point; the point with a local geometric structure similar to the kernel is activated. Both the
2D convolution and our SAC aim at detecting specific patterns in images or point clouds. However,
the patterns are reflected by changing gray values in images, but are shown by spatial coordinates in
point clouds.

3.3. Deep Learning Networks with the Proposed SAC

According to the above analysis, our SAC actually provides a flexible geometric structure extractor
which can be easily embedded into existing point cloud deep learning networks. In this section, we
show how to construct the corresponding deep learning networks with our proposed SAC.

Specifically, the architecture of the classification and segmentation networks with our SAC is
illustrated in Figure 4. For each point pi, we first find its neighboring pointsNi according to their spatial
distance, and then match them with a series of 3D kernels κl, l = 1, 2, . . . , L. Therefore, the output of
our SAC is an L-dimensional feature vector S = [s1, s2, . . . , sL], where each sl can be regarded as the
matching degree between neighboring points and the l-th convolution kernel κl. The geometric feature
S is then used as the initial feature of each point for the subsequent classification or segmentation

Remote Sens. 2020, 12, 634 7 of 18

networks, which can be achieved with other state-of-the-art point cloud deep learning networks such
as PointNet [1], PointNet++ [19], and KCNet [20].Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 18

SAC
N

×
3

N
×

L

N
×

(3
+L

)

Point cloud

Geometric structures

Coordinate values

N
×

1×

…

…

Classification Network

Segmentation Network

Skip connection

: Concatenation

Output scores

Output scores

: Convolution and pooling

: Interpolation and convolution

Fully connected layer

Figure 4. Architecture of the proposed point cloud deep learning networks. The output of our SAC is
an L-dimensional geometric feature vector for each point, which can be easily combined with other
point cloud deep learning networks. In this work, both classification and segmentation networks are
constructed with our SAC. The output of the classification network is a category label for the entire
point cloud, while the segmentation network aims to assign each point a reasonable category label.
The classification and segmentation networks can be implemented using other existing point cloud
deep learning networks (e.g., PointNet, PointNet++, and KCNet), and their detailed architectures and
parameters are then subsequently determined.

4. Materials and Experiments

4.1. Tasks and Evaluation Metrics

To verify the effectiveness of our proposed SAC, we experimentally evaluated it on the following
two tasks:
• Object classification. The input of the classification task is the point cloud of the 3D object and

our goal is to recognize which category it belongs to (e.g., airplane, car, or table);
• Semantic segmentation. The input of the semantic segmentation task is the point cloud of the 3D

scene, and it aims to assign each point a meaningful category label.
Note that our proposed SAC aims at capturing the geometric features directly from the

coordinates of the neighboring points; it actually acts as a simple and efficient geometric feature
extractor which can be embedded into other state-of-the-art point cloud deep learning networks. In
this paper, three recently developed deep learning networks, PointNet [1], PointNet++ [19], and
KCNet [20], were considered as the back-end networks, and our SAC was correspondingly
embedded into them for performance evaluation. In addition, it is worth mentioning that all three
deep learning networks can be applied for both classification and segmentation tasks. According to
the difference of tasks, our SAC can be embedded into their corresponding versions for classification
or semantic segmentation.

To quantitatively evaluate the performance of our SAC, two metrics including the overall
accuracy (OA) and the intersection over union (IoU) were used in this work. Suppose there are ܥ
categories, ݌௜௝ is the number of objects or points which belong to the ݅-th category but are predicted
as the ݆-th category. Then, the OA can be formulated as follows: ܱܣ = ∑ ∑௜௜஼௜ୀଵ݌ ∑ ௜௝஼௝ୀଵ஼௜ୀଵ݌ (5)

the IoU for the ݅-th category is expressed as follows: ݋ܫ ௜ܷ = ∑௜௜݌ ௜௝஼௝ୀଵ݌ + ∑ ௝௜஼௝ୀଵ݌ − ௜௜ (6)݌

and the corresponding mean IoU (mIoU) over all categories is ܷ݉݋ܫ = ଵ஼ ∑ ݋ܫ ௜ܷ஼௜ୀଵ .

4.2. Object Classification Results

Figure 4. Architecture of the proposed point cloud deep learning networks. The output of our SAC is
an L-dimensional geometric feature vector for each point, which can be easily combined with other
point cloud deep learning networks. In this work, both classification and segmentation networks are
constructed with our SAC. The output of the classification network is a category label for the entire
point cloud, while the segmentation network aims to assign each point a reasonable category label.
The classification and segmentation networks can be implemented using other existing point cloud
deep learning networks (e.g., PointNet, PointNet++, and KCNet), and their detailed architectures and
parameters are then subsequently determined.

4. Materials and Experiments

4.1. Tasks and Evaluation Metrics

To verify the effectiveness of our proposed SAC, we experimentally evaluated it on the following
two tasks:

• Object classification. The input of the classification task is the point cloud of the 3D object and our
goal is to recognize which category it belongs to (e.g., airplane, car, or table);

• Semantic segmentation. The input of the semantic segmentation task is the point cloud of the 3D
scene, and it aims to assign each point a meaningful category label.

Note that our proposed SAC aims at capturing the geometric features directly from the coordinates
of the neighboring points; it actually acts as a simple and efficient geometric feature extractor which
can be embedded into other state-of-the-art point cloud deep learning networks. In this paper, three
recently developed deep learning networks, PointNet [1], PointNet++ [19], and KCNet [20], were
considered as the back-end networks, and our SAC was correspondingly embedded into them for
performance evaluation. In addition, it is worth mentioning that all three deep learning networks can
be applied for both classification and segmentation tasks. According to the difference of tasks, our
SAC can be embedded into their corresponding versions for classification or semantic segmentation.

To quantitatively evaluate the performance of our SAC, two metrics including the overall accuracy
(OA) and the intersection over union (IoU) were used in this work. Suppose there are C categories,
pi j is the number of objects or points which belong to the i-th category but are predicted as the j-th
category. Then, the OA can be formulated as follows:

OA =

∑C
i=1 pii∑C

i=1
∑C

j=1 pi j
(5)

Remote Sens. 2020, 12, 634 8 of 18

the IoU for the i-th category is expressed as follows:

IoUi =
pii∑C

j=1 pi j +
∑C

j=1 p ji − pii
(6)

and the corresponding mean IoU (mIoU) over all categories is mIoU = 1
C

C∑
i=1

IoUi.

4.2. Object Classification Results

We first conducted our object classification experiments on the ModelNet40 dataset [13]. It consisted
of 12,311 3D object models from 40 categories. Of these, 9843 were used as the training dataset, and
the other 2468 objects were used as the testing dataset. In this experiment, we uniformly sampled
1024 points on each object model to convert it into a corresponding point cloud, as shown in Figure 5.

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 18

We first conducted our object classification experiments on the ModelNet40 dataset [13]. It
consisted of 12,311 3D object models from 40 categories. Of these, 9843 were used as the training
dataset, and the other 2468 objects were used as the testing dataset. In this experiment, we uniformly
sampled 1024 points on each object model to convert it into a corresponding point cloud, as shown
in Figure 5.

Figure 5. Point clouds sampled from 3D objects in the ModelNet40 dataset. All point clouds are
normalized into a unit sphere for convenience.

The input of the classification task is a point cloud of the corresponding 3D object, and the output
is a category label for the object. To comprehensively evaluate the performance of our SAC, we
constructed three classification networks by equipping the SAC with the classification networks of
PointNet [1], PointNet++ [19], and KCNet [20], respectively, and named them SAPointNet,
SAPointNet++, and SAKCNet for convenience.

The output dimension of our SAC was set as 32, and the number of kernel points was 17. For
each point in the point cloud, we first found its 17 nearest neighbors (including itself) and matched
them with 32 convolution kernels. Each kernel was also a point set containing 17 3D points, which
corresponded to a specific geometric structure. When the geometric structure formed by the
neighboring points was similar to the kernel, the corresponding point was activated. In addition, the
remaining configurations were kept consistent with the original classification networks of PointNet,
PointNet++, and KCNet for a fair comparison. All networks were trained with 250 epochs with a
batch size of 32 on the training split of the ModelNet40 dataset [13], and their comparison results are
provided in Table 1.

From Table 1, we can see that our classification networks integrated with SAC have consistently
achieved higher accuracy compared to their original networks. Specifically, our SAPointNet achieved
+4.92% accuracy over the original PointNet (vanilla) [1], whereas PointNet++ [19] and KCNet [20]
were improved by +1.98% and +1.40%, respectively. Notably, by integrating local geometric
structures of SAC with simple PointNet, our SAPointNet achieved better classification performance
even than PointNet++ and KCNet, which shows the importance of accurate geometric structure
representation for object classification.

Table 1. Object classification results on the ModelNet40 dataset with different methods. For
comparison, results of another method KPConv [51] using a similar conception of 3D kernels are also
listed. The batch size for network inference is set as 16 for all experiments.

Method Accuracy # points # params Inference speed Device
PointNet [1] 87.10% 1024 0.8 M 50.5 batch/s GTX 1060

SAPointNet (ours) 92.02% 1024 0.8 M 9.8 batch/s GTX 1060
PointNet++ [19] 90.07% 1024 1.5 M 6.1 batch/s GTX 1060

SAPointNet++ (ours) 92.05% 1024 1.5 M 5.6 batch/s GTX 1060
KCNet [20] 91.00% 1024 0.9 M 8.8 batch/s GTX 1060

SAKCNet (ours) 92.40% 1024 0.9 M 8.6 batch/s GTX 1060

Figure 5. Point clouds sampled from 3D objects in the ModelNet40 dataset. All point clouds are
normalized into a unit sphere for convenience.

The input of the classification task is a point cloud of the corresponding 3D object, and the output is
a category label for the object. To comprehensively evaluate the performance of our SAC, we constructed
three classification networks by equipping the SAC with the classification networks of PointNet [1],
PointNet++ [19], and KCNet [20], respectively, and named them SAPointNet, SAPointNet++, and
SAKCNet for convenience.

The output dimension of our SAC was set as 32, and the number of kernel points was 17. For each
point in the point cloud, we first found its 17 nearest neighbors (including itself) and matched them with
32 convolution kernels. Each kernel was also a point set containing 17 3D points, which corresponded
to a specific geometric structure. When the geometric structure formed by the neighboring points was
similar to the kernel, the corresponding point was activated. In addition, the remaining configurations
were kept consistent with the original classification networks of PointNet, PointNet++, and KCNet for
a fair comparison. All networks were trained with 250 epochs with a batch size of 32 on the training
split of the ModelNet40 dataset [13], and their comparison results are provided in Table 1.

From Table 1, we can see that our classification networks integrated with SAC have consistently
achieved higher accuracy compared to their original networks. Specifically, our SAPointNet achieved
+4.92% accuracy over the original PointNet (vanilla) [1], whereas PointNet++ [19] and KCNet [20]
were improved by +1.98% and +1.40%, respectively. Notably, by integrating local geometric structures
of SAC with simple PointNet, our SAPointNet achieved better classification performance even than
PointNet++ and KCNet, which shows the importance of accurate geometric structure representation
for object classification.

Remote Sens. 2020, 12, 634 9 of 18

Table 1. Object classification results on the ModelNet40 dataset with different methods. For comparison,
results of another method KPConv [51] using a similar conception of 3D kernels are also listed. The batch
size for network inference is set as 16 for all experiments.

Method Accuracy Points Params Inference Speed Device

PointNet [1] 87.10% 1024 0.8 M 50.5 batch/s GTX 1060
SAPointNet (ours) 92.02% 1024 0.8 M 9.8 batch/s GTX 1060
PointNet++ [19] 90.07% 1024 1.5 M 6.1 batch/s GTX 1060

SAPointNet++ (ours) 92.05% 1024 1.5 M 5.6 batch/s GTX 1060
KCNet [20] 91.00% 1024 0.9 M 8.8 batch/s GTX 1060

SAKCNet (ours) 92.40% 1024 0.9 M 8.6 batch/s GTX 1060
KPConv (deform)‡ [51] 90.08% ~1700 15.2 M 3.5 batch/s GTX 1060

KPConv (rigid) [51] 92.7% ~6800 14.3 M 8.7 batch/s RTX 2080Ti
KPConv (deform) [51] 92.9% ~6800 15.2 M 8.0 batch/s RTX 2080Ti

‡ This experiment is conducted using the open-source code provided in KPConv.

4.3. Semantic Segmentation Results

4.3.1. Semantic Segmentation for Indoor Scene

In addition to object classification, we also applied our SAC to a semantic segmentation task to
further evaluate its performance. In this section, we start from the semantic segmentation experiments
on the Stanford Large-Scale 3D Indoor Spaces (S3DIS) dataset [53]. It is a large-scale indoor 3D
point cloud dataset, which is collected in six large-scale indoor areas originating from three different
buildings. Each point contains the x, y, and z coordinates and the corresponding RGB information, and
is annotated as one of 13 object categories.

For a principled evaluation, Area 5 of the S3DIS dataset was chosen as the testing dataset and the
remaining areas were used for network training in this experiment. Since Area 5 is not in the same
buildings as the other areas and contains some different objects, this across-building experimental
setup is more reasonable to measure the networks’ generalizability, while also bringing challenges to
the semantic segmentation task.

To handle the enormous points in the 3D scenes, we first split the dataset room by room and then
sliced them into 1 m by 1 m blocks. For each block, 4096 points were uniformly sampled for training
convenience. During the testing phase, we first predicted the label for each sampled point, then the
category label for the original points were assigned according to their nearest labeled point.

Similar to the object classification experiments, our SAC was further equipped with the
segmentation version of PointNet [1], PointNet++ [19], and KCNet [20] to construct our corresponding
segmentation networks. The output dimension of our SAC was also set as 32, and the number
of kernel points was 17. However, instead of finding the 17 nearest neighbors for each point, we
randomly sampled 17 points in a ball with 0.1 m radius, to reduce the influence of non-uniform point
density. The remaining configurations were the same as PointNet, PointNet++, and KCNet. Following
PointNet [1], all networks were trained with 50 epochs with a batch size of 24 on the training dataset.

The quantitative and qualitative segmentation results on Area 5 of the S3DIS dataset are provided
in Table 2 and Figure 6, respectively. We can see that our SAC shows consistent performance as
compared to the above object classification task. Specifically, our proposed SAPointNet, SAPointNet++,
and SAKCNet achieved +4.53%, +2.33%, and +2.07% mIoU over their corresponding back-end
networks. In addition, we can also note that our SAC efficiently improved the segmentation accuracy
on objects with rich geometric structures, such as chair, table, bookcase, and sofa. This further verifies
the geometric feature representation capability of the proposed SAC.

Remote Sens. 2020, 12, 634 10 of 18

Table 2. Intersection over union (IoU) (%) of the segmentation results on Area 5 of the S3DIS dataset.

Method mIoU Ceiling Floor Wall Beam Column Window Door Chair Table Bookcase Sofa Board Clutter

PointNet 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22
SAPointNet 45.62 90.06 97.56 72.56 0.00 3.19 42.44 5.42 68.03 70.51 48.47 22.22 30.54 42.09
PointNet++ 50.79 91.40 97.08 75.59 0.02 0.74 52.07 24.44 72.77 68.43 55.59 32.77 42.94 46.47
SAPointNet++53.12 92.01 97.69 75.62 0.00 2.77 52.85 29.48 77.39 72.56 56.55 36.87 46.55 50.20

KCNet 46.20 91.79 97.50 73.79 0.00 5.29 45.09 6.43 67.48 67.20 50.40 21.90 28.53 45.20
SAKCNet 48.27 91.44 97.97 72.35 0.00 6.22 47.43 4.73 68.20 67.25 55.11 32.61 38.12 46.08

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 18

Input point cloud Ground truth PointNet++ SAPointNet++

floor wall column beam window door table chair sofa bookcase board clutter

Figure 6. Semantic segmentation results on the S3DIS dataset. Two conference rooms and their
segmentation results with PointNet++ [19] and our SAPointNet++ are provided since their multi-scale
feature learning mechanism is more suitable for the semantic segmentation task. For visual
convenience, the ceiling of each room and parts of wall are not shown.

4.3.2. Semantic Segmentation for Outdoor Scene

For this section, we further applied our SAC to the point cloud semantic segmentation task for
an outdoor scene. To this end, the mobile laser scanning (MLS) point cloud from the campus of
Wuhan University (WHU) [14] was used, as shown in Figure 7. This WHU MLS point cloud dataset
contained two areas of the campus, and each area was split into training and testing datasets. Each
point was labeled as one of seven categories: vegetation (e.g., tree and grass), building, car,
pedestrian, lamp, fence, and others. In addition, compared to the S3DIS dataset, the point density of
the WHU MLS point clouds varied greatly with the different distances between objects and scanners.
Moreover, point clouds of many objects were incomplete due to mutual occlusion, which brings more
challenges to the semantic segmentation task.

P1

P2
P1

P2

Vegetation Building Car Pedestrian Lamp Fence Others

Figure 7. Illustration of the mobile laser scanning (MLS) point clouds from Wuhan University (WHU).
P1 and P2 are the training and testing datasets, respectively.

Figure 6. Semantic segmentation results on the S3DIS dataset. Two conference rooms and their
segmentation results with PointNet++ [19] and our SAPointNet++ are provided since their multi-scale
feature learning mechanism is more suitable for the semantic segmentation task. For visual convenience,
the ceiling of each room and parts of wall are not shown.

4.3.2. Semantic Segmentation for Outdoor Scene

For this section, we further applied our SAC to the point cloud semantic segmentation task for an
outdoor scene. To this end, the mobile laser scanning (MLS) point cloud from the campus of Wuhan
University (WHU) [14] was used, as shown in Figure 7. This WHU MLS point cloud dataset contained
two areas of the campus, and each area was split into training and testing datasets. Each point was
labeled as one of seven categories: vegetation (e.g., tree and grass), building, car, pedestrian, lamp,
fence, and others. In addition, compared to the S3DIS dataset, the point density of the WHU MLS
point clouds varied greatly with the different distances between objects and scanners. Moreover, point
clouds of many objects were incomplete due to mutual occlusion, which brings more challenges to the
semantic segmentation task.

To adapt to the larger size of objects in the outdoor scene, we sliced the point clouds into 4 m
by 4 m blocks while maintaining the same maximum number of 4096 points. In addition, the radius
for neighborhood searching was set as 0.2 m. The other parts of the segmentation networks were
kept consistent as the experiments for indoor scene segmentation. All networks were trained with
50 epochs with a batch size of 24 on the training dataset.

Remote Sens. 2020, 12, 634 11 of 18

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 18

Input point cloud Ground truth PointNet++ SAPointNet++

floor wall column beam window door table chair sofa bookcase board clutter

Figure 6. Semantic segmentation results on the S3DIS dataset. Two conference rooms and their
segmentation results with PointNet++ [19] and our SAPointNet++ are provided since their multi-scale
feature learning mechanism is more suitable for the semantic segmentation task. For visual
convenience, the ceiling of each room and parts of wall are not shown.

4.3.2. Semantic Segmentation for Outdoor Scene

For this section, we further applied our SAC to the point cloud semantic segmentation task for
an outdoor scene. To this end, the mobile laser scanning (MLS) point cloud from the campus of
Wuhan University (WHU) [14] was used, as shown in Figure 7. This WHU MLS point cloud dataset
contained two areas of the campus, and each area was split into training and testing datasets. Each
point was labeled as one of seven categories: vegetation (e.g., tree and grass), building, car,
pedestrian, lamp, fence, and others. In addition, compared to the S3DIS dataset, the point density of
the WHU MLS point clouds varied greatly with the different distances between objects and scanners.
Moreover, point clouds of many objects were incomplete due to mutual occlusion, which brings more
challenges to the semantic segmentation task.

P1

P2
P1

P2

Vegetation Building Car Pedestrian Lamp Fence Others

Figure 7. Illustration of the mobile laser scanning (MLS) point clouds from Wuhan University (WHU).
P1 and P2 are the training and testing datasets, respectively.
Figure 7. Illustration of the mobile laser scanning (MLS) point clouds from Wuhan University (WHU).
P1 and P2 are the training and testing datasets, respectively.

The quantitative testing results are provided in Table 3, and Figure 8 presents their segmentation
results. We can see that our SAC achieved consistent performances as compared to the above
experiments. The proposed SAPointNet, SAPointNet++, and SAKCNet achieved +15.01%, +3.66%,
and +2.36% mIoU, respectively, over their corresponding back-end networks. Specifically, the accuracies
on objects with rich geometric structures (e.g., car, pedestrian, lamp, fence) were efficiently improved
with the proposed SAC, which further verifies its geometric feature learning capability.

Table 3. Semantic segmentation IoU (%) on the WHU MLS point cloud.

Method mIoU Vegetation Building Car Pedestrian Lamp Fence Others

PointNet 27.81 65.44 49.52 43.89 3.92 0.26 29.39 2.24
SAPointNet 42.82 72..25 55.99 57.24 25.35 26.82 58.71 3.35
PointNet++ 52.52 82.28 75.78 73.63 28.62 26.85 72.10 8.38

SAPointNet++ 56.18 85.71 76.48 74.40 32.27 35.85 79.14 9.44
KCNet 44.07 71.65 58.25 66.02 23.24 28.02 57.61 3.72

SAKCNet 46.43 71.81 57.27 70.91 26.52 33.32 60.66 4.56

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 18

To adapt to the larger size of objects in the outdoor scene, we sliced the point clouds into 4 m by
4 m blocks while maintaining the same maximum number of 4096 points. In addition, the radius for
neighborhood searching was set as 0.2 m. The other parts of the segmentation networks were kept
consistent as the experiments for indoor scene segmentation. All networks were trained with 50
epochs with a batch size of 24 on the training dataset.

The quantitative testing results are provided in Table 3, and Figure 8 presents their segmentation
results. We can see that our SAC achieved consistent performances as compared to the above
experiments. The proposed SAPointNet, SAPointNet++, and SAKCNet achieved +15.01%, +3.66%,
and +2.36% mIoU, respectively, over their corresponding back-end networks. Specifically, the
accuracies on objects with rich geometric structures (e.g., car, pedestrian, lamp, fence) were efficiently
improved with the proposed SAC, which further verifies its geometric feature learning capability.

Table 3. Semantic segmentation IoU (%) on the WHU MLS point cloud.

Method mIoU Vegetation Building Car Pedestrian Lamp Fence Others

PointNet 27.81 65.44 49.52 43.89 3.92 0.26 29.39 2.24

SAPointNet 42.82 72..25 55.99 57.24 25.35 26.82 58.71 3.35

PointNet++ 52.52 82.28 75.78 73.63 28.62 26.85 72.10 8.38

SAPointNet++ 56.18 85.71 76.48 74.40 32.27 35.85 79.14 9.44

KCNet 44.07 71.65 58.25 66.02 23.24 28.02 57.61 3.72

SAKCNet 46.43 71.81 57.27 70.91 26.52 33.32 60.66 4.56

Ground truth PointNet++ SAPointNet++

Vegetation Building Car Pedestrian Lamp Fence Others

Figure 8. Semantic segmentation results on the WHU MLS point clouds.

5. Discussion

For this section, we conducted more experiments to further explore and discuss the
performances and properties of the proposed SAC.

5.1. Parametric Sensitivity Analysis

We started by analyzing the sensitivity of the parameters in our proposed SAC. According to
the above description, the three parameters were the number of convolution kernels, the number of
points contained in each convolution kernel, and the constant parameter ߪ (Section 3.1). The number
of convolution kernels corresponded to the output channel of our SAC, whereas the number of kernel

Figure 8. Semantic segmentation results on the WHU MLS point clouds.

Remote Sens. 2020, 12, 634 12 of 18

5. Discussion

For this section, we conducted more experiments to further explore and discuss the performances
and properties of the proposed SAC.

5.1. Parametric Sensitivity Analysis

We started by analyzing the sensitivity of the parameters in our proposed SAC. According to
the above description, the three parameters were the number of convolution kernels, the number of
points contained in each convolution kernel, and the constant parameter σ (Section 3.1). The number
of convolution kernels corresponded to the output channel of our SAC, whereas the number of kernel
points determined the size of the convolution kernel. According to the commonly used convolution
parameters for 2D images, we similarly considered several choices for these parameters to analyze
their influences.

In Table 4, we provide detailed classification accuracy of the ModelNet40 dataset [13] using
the proposed SAPointNet. We can see that with an increased number of convolution kernels, more
geometric structures can be represented by our SAC for accurate object classification, and the number
of kernel points shows a consistent pattern. However, considering the balance between performance
and efficiency, the number of convolution kernels and kernel points were set to 32 and 17, respectively,
in this paper. In addition, according to the shape of the Gaussian function, smaller or larger σ makes
the outputs tend toward 0 or 1 and the difference between the output values tends toward 0, which
is harmful for geometric feature representation. Thus, the parameter σ = 0.05 was finally used in
our experiments.

Table 4. Classification accuracy (%) of SAPointNet on the ModelNet40 dataset with different parameters.

Convolution Kernels 16 32 48
Kernel Points 5 11 17 5 11 17 5 11 17

σ
0.01 89.79 90.03 90.07 89.81 90.08 90.19 89.83 90.32 90.68
0.05 90.92 91.61 91.82 91.21 91.97 92.02 91.45 92.01 92.05
0.1 90.68 91.33 91.45 91.01 91.75 91.71 91.31 91.69 91.85

5.2. KNN vs. Ball Query

The two alternative local neighborhood searching methods are k-nearest neighbors (KNN) and
radius-based ball query. For our object classification task on the ModelNet40 dataset [13], the 17 nearest
points were selected as the neighbor set for each point, whereas the 17 neighboring points within a
local ball were selected for semantic segmentation experiments for both indoor and outdoor 3D scenes.
For this section, we conducted more experiments to discuss the performance differences between KNN
and ball query.

In Tables 5 and 6, we provide the classification and segmentation results, respectively, using KNN
and ball query. Interestingly, we note that KNN is better than ball query for the object classification
task, but it is the opposite for the semantic segmentation task. Because of the non-uniform point
density of the indoor and outdoor 3D scenes, neighborhood searching in a local ball can reduce the
influence of varied point density and noise. However, for point clouds that are uniformly sampled
from ModelNet40 3D objects, the searching window of KNN can be adaptively changed and shows
better performance.

Table 5. Accuracies (%) of object classification results on the ModelNet40 dataset with different local
neighborhood searching methods.

Method KNN Ball Query

SAPointNet 92.02 91.04
SAPointNet++ 92.05 91.33

SAKCNet 92.40 91.23

Remote Sens. 2020, 12, 634 13 of 18

Table 6. Mean IoUs (%) of semantic segmentation results with different local neighborhood
searching methods.

Method
S3DIS Dataset WHU Dataset

KNN Ball Query KNN Ball Query

SAPointNet 45.03 45.62 36.87 42.82
SAPointNet++ 52.51 53.12 55.19 56.18

SAKCNet 47.09 48.27 38.53 46.43

5.3. Latent Visualization

Good features should be discriminative, which means that features of the same object category
should be close to each other, whereas the features from different object categories should be far away
from each other. The deep learning network can be regarded as two phases, namely feature extraction
and classification. The network first maps the input point clouds into a latent feature space, where the
point clouds can be easily distinguished and classified.

To further verify the effectiveness of the proposed SAC, we provided more visualization of the
extracted features on the ModelNet40 dataset [13]. Specifically, the features in the last fully connected
layer of PointNet and our SAPointNet were visualized in this experiment. However, since the extracted
features always had high dimensions (e.g., the feature dimension of our classification network was set
as 256), t-SNE [54] was applied here to project the features onto a 2D plane. In addition, for visual
convenience, only the first 15 object categories of the ModelNet40 dataset were selected, and their
feature visualizations are provided in Figure 9. Compared to PointNet, the features learned by our
SAPointNet show better distinguishability for different categories, which is important for the further
classification tasks.

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 18

KNN ball query KNN ball query
SAPointNet 45.03 45.62 36.87 42.82

SAPointNet++ 52.51 53.12 55.19 56.18
SAKCNet 47.09 48.27 38.53 46.43

5.3. Latent Visualization

Good features should be discriminative, which means that features of the same object category
should be close to each other, whereas the features from different object categories should be far away
from each other. The deep learning network can be regarded as two phases, namely feature extraction
and classification. The network first maps the input point clouds into a latent feature space, where
the point clouds can be easily distinguished and classified.

To further verify the effectiveness of the proposed SAC, we provided more visualization of the
extracted features on the ModelNet40 dataset [13]. Specifically, the features in the last fully connected
layer of PointNet and our SAPointNet were visualized in this experiment. However, since the
extracted features always had high dimensions (e.g., the feature dimension of our classification
network was set as 256), t-SNE [54] was applied here to project the features onto a 2D plane. In
addition, for visual convenience, only the first 15 object categories of the ModelNet40 dataset were
selected, and their feature visualizations are provided in Figure 9. Compared to PointNet, the features
learned by our SAPointNet show better distinguishability for different categories, which is important
for the further classification tasks.

airplane
bathtub
bed
bench
bookshelf
bottle
bowl
car
chair
cone
cup
curtain
desk
door
dresser

(a) (b)

Figure 9. Visualization of the learned features on the ModelNet40 dataset using PointNet (a) and
SAPointNet (b). Red circles show a typical case where two similar categories are hard to split by
PointNet but show a clear difference in the feature space of our SAPointNet.

5.4. Visualization of the Learned Kernels

In this section, we provide more visualizations of the learned kernels. Our SAC was designed to
capture geometric features with a series of learnable kernels. The geometric structures formed by the
kernels can be adaptively adjusted to match the similar structures in the point clouds. To give an
intuitive visualization, the learned kernels (consisting of a set of 3D points) are rendered in Figure 10,
as well as their corresponding activations on the input point clouds.

However, why are the structures formed by the learned kernels not the regular common
geometric structures (e.g., line, plane, or corner)? Actually, since the directions of geometric
structures in real situations are arbitrary and complex, simple geometric structures (e.g., line, plane)
with specific directions are difficult to adapt to structures with arbitrary directions. Therefore, the

Figure 9. Visualization of the learned features on the ModelNet40 dataset using PointNet (a) and
SAPointNet (b). Red circles show a typical case where two similar categories are hard to split by
PointNet but show a clear difference in the feature space of our SAPointNet.

5.4. Visualization of the Learned Kernels

In this section, we provide more visualizations of the learned kernels. Our SAC was designed
to capture geometric features with a series of learnable kernels. The geometric structures formed by
the kernels can be adaptively adjusted to match the similar structures in the point clouds. To give an
intuitive visualization, the learned kernels (consisting of a set of 3D points) are rendered in Figure 10,
as well as their corresponding activations on the input point clouds.

However, why are the structures formed by the learned kernels not the regular common geometric
structures (e.g., line, plane, or corner)? Actually, since the directions of geometric structures in real
situations are arbitrary and complex, simple geometric structures (e.g., line, plane) with specific

Remote Sens. 2020, 12, 634 14 of 18

directions are difficult to adapt to structures with arbitrary directions. Therefore, the geometric
structures of our learned kernels are correspondingly distorted in the 3D space, in order to be matched
with as many geometric structures in real situations as possible.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 18

geometric structures of our learned kernels are correspondingly distorted in the 3D space, in order
to be matched with as many geometric structures in real situations as possible.

Figure 10. Visualization of the learned kernels and their corresponding activations on different
objects. First column shows the learned kernels, and the rest are the activated parts on different objects
(darker red means larger activated value).

5.5. Robustness Test

To fully understand the performance of our SAC under the disturbance of noise, we further
conducted several robustness tests for this section. Note that the additional noise changes the class
attributes of the points in the segmentation task and that our robustness tests are only conducted on
the classification task with the ModelNet40 dataset [13].

Specifically, for each object in the testing dataset, some of the points are randomly replaced by
the uniform noises lying in [−1,1]ଷ. All the networks are trained on the ModelNet40 training dataset
without the disturbance of noise. In addition, to avoid random deviations during the experiments,
all results were tested five times, and their averages are reported. Results of robustness tests are
presented in Figure 11. We can see that PointNet is most sensitive to noises, followed by PointNet++.
At the same time, benefiting from the structure representation capability of our SAC, the robustness
of these back-end networks is efficiently improved.

0

10

20

30

40

50

60

70

80

90

100

0 1 10 50 100

A
cc

ur
ac

y
(%

)

Number of points replaced by noise

PointNet PointNet++ KCNet
SAPointNet SAPointNet++ SAKCNet

Figure 10. Visualization of the learned kernels and their corresponding activations on different objects.
First column shows the learned kernels, and the rest are the activated parts on different objects (darker
red means larger activated value).

5.5. Robustness Test

To fully understand the performance of our SAC under the disturbance of noise, we further
conducted several robustness tests for this section. Note that the additional noise changes the class
attributes of the points in the segmentation task and that our robustness tests are only conducted on
the classification task with the ModelNet40 dataset [13].

Specifically, for each object in the testing dataset, some of the points are randomly replaced by
the uniform noises lying in [−1, 1]3. All the networks are trained on the ModelNet40 training dataset
without the disturbance of noise. In addition, to avoid random deviations during the experiments, all
results were tested five times, and their averages are reported. Results of robustness tests are presented
in Figure 11. We can see that PointNet is most sensitive to noises, followed by PointNet++. At the
same time, benefiting from the structure representation capability of our SAC, the robustness of these
back-end networks is efficiently improved.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 18

geometric structures of our learned kernels are correspondingly distorted in the 3D space, in order
to be matched with as many geometric structures in real situations as possible.

Figure 10. Visualization of the learned kernels and their corresponding activations on different
objects. First column shows the learned kernels, and the rest are the activated parts on different objects
(darker red means larger activated value).

5.5. Robustness Test

To fully understand the performance of our SAC under the disturbance of noise, we further
conducted several robustness tests for this section. Note that the additional noise changes the class
attributes of the points in the segmentation task and that our robustness tests are only conducted on
the classification task with the ModelNet40 dataset [13].

Specifically, for each object in the testing dataset, some of the points are randomly replaced by
the uniform noises lying in [−1,1]ଷ. All the networks are trained on the ModelNet40 training dataset
without the disturbance of noise. In addition, to avoid random deviations during the experiments,
all results were tested five times, and their averages are reported. Results of robustness tests are
presented in Figure 11. We can see that PointNet is most sensitive to noises, followed by PointNet++.
At the same time, benefiting from the structure representation capability of our SAC, the robustness
of these back-end networks is efficiently improved.

0

10

20

30

40

50

60

70

80

90

100

0 1 10 50 100

A
cc

ur
ac

y
(%

)

Number of points replaced by noise

PointNet PointNet++ KCNet
SAPointNet SAPointNet++ SAKCNet

Figure 11. Robustness test of our proposed SAC under the disturbance of random noise.

Remote Sens. 2020, 12, 634 15 of 18

6. Conclusions and Future Works

We propose a novel structure-aware convolution (SAC) to learn the geometric structures of 3D
point clouds. The key of our SAC is to match the input 3D point clouds with a series of learnable
3D kernels, which can be seen as the “templates” with specific geometric structures learned from the
training dataset.

Our SAC is a lightweight yet efficient module that can be easily integrated with existing
state-of-the-art point cloud deep learning networks. To verify the performance of the proposed SAC,
we integrated it with three recently developed networks, PointNet [1], PointNet++ [19], and KCNet [20],
for both object classification and semantic segmentation tasks of 3D point clouds. Experimental results
show that, benefiting from the geometric structure learning capability of our SAC, the performance
of PointNet, PointNet++, and KCNet can be efficiently improved with few additional parameters
(e.g., +2.77% mean classification accuracy and +4.99% mean segmentation IoU). Moreover, with the
integration of SAC, these back-end networks have also shown better robustness to noise.

In the future, two main aspects can be considered to improve or extend our proposed SAC.
(1) Adding rotation freedom for the kernels. Since the kernels in our SAC are directly matched with the
input point clouds, geometric structures with arbitrary directions are difficult to represent with finite
kernels. Thus, preadjusting the direction of the kernels to align them with the real point clouds would
be helpful to improve the performance of SAC. (2) Extending SAC to the feature space. The proposed
SAC aims at capturing the local geometric structures directly from 3D point clouds. However, the
“structure” also exists in high-dimensional feature space, and our SAC can also be extended to explore
such relations between features.

Author Contributions: L.W. designed the framework of this research and performed the experiments; L.W., Y.L.,
and S.Z. wrote the paper; P.T. and J.Y. offered advice on this research and edited the paper. All authors read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Nos. 41801390 and
41801387) and the National Key R&D Program of China (No. 2017YFB0503004).

Acknowledgments: We are thankful to anonymous reviewers for their helpful comments and suggestions, and
other researchers for their open-source projects.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 77–85.

2. Liu, Y.; Fan, B.; Xiang, S.; Pan, C. Relation-Shape Convolutional Neural Network for Point Cloud Analysis.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 8895–8904.

3. Zheng, M.; Wu, H.; Li, Y. An adaptive end-to-end classification approach for mobile laser scanning point
clouds based on knowledge in urban scenes. Remote Sens. 2019, 11, 186. [CrossRef]

4. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks.
Available online: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-
networ (accessed on 14 February 2020).

5. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

6. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation
with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal.
Mach. Intell. 2018, 40, 834–848. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/rs11020186
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networ
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networ
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186

Remote Sens. 2020, 12, 634 16 of 18

7. Wang, L.; Huang, Y.; Hou, Y.; Zhang, S.; Shan, J. Graph Attention Convolution for Point Cloud Semantic
Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, 16–20 June 2019; pp. 10296–10305.

8. Graham, B.; Engelcke, M.; van der Maaten, L. 3D Semantic Segmentation with Submanifold Sparse
Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 9224–9232.

9. Tchapmi, L.P.; Choy, C.B.; Armeni, I.; Gwak, J.; Savarese, S. SEGCloud: Semantic Segmentation of 3D Point
Clouds. In Proceedings of the 2017 International Conference on 3D Vision, Qingdao, China, 10–12 October
2017; pp. 537–547.

10. Yang, Z.; Jiang, W.; Xu, B.; Zhu, Q.; Jiang, S.; Huang, W. A convolutional neural network-based 3D semantic
labeling method for ALS point clouds. Remote Sens. 2017, 9, 936. [CrossRef]

11. Gadelha, M.; Wang, R.; Maji, S. Multiresolution Tree Networks for 3D Point Cloud Processing. In Proceedings
of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 103–118.

12. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition.
In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany,
28 September–2 October 2015; pp. 922–928.

13. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A Deep Representation for
Volumetric Shapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Boston, MA, USA, 7–12 June 2015; pp. 1912–1920.

14. Wang, L.; Huang, Y.; Shan, J.; He, L. MSNet: Multi-scale convolutional network for point cloud classification.
Remote Sens. 2018, 10, 612. [CrossRef]

15. Feng, Y.; Zhang, Z.; Zhao, X.; Ji, R.; Gao, Y. GVCNN: Group-View Convolutional Neural Networks for 3D
Shape Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 264–272.

16. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view Convolutional Neural Networks for 3D Shape
Recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
11–18 December 2015; pp. 945–953.

17. Kalogerakis, E.; Averkiou, M.; Maji, S.; Chaudhuri, S. 3D Shape Segmentation with Projective Convolutional
Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 6630–6639.

18. Le, T.; Bui, G.; Duan, Y. A multi-view recurrent neural network for 3D mesh segmentation. Comput. Graph.
2017, 66, 103–112. [CrossRef]

19. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric
Space. Available online: http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-
point-se (accessed on 14 February 2020).

20. Shen, Y.; Feng, C.; Yang, Y.; Tian, D. Mining Point Cloud Local Structures by Kernel Correlation and Graph
Pooling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–23 June 2018; pp. 4548–4557.

21. Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D registration. In Proceedings of
the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217.

22. Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description.
Comput. Vis. Image Underst. 2014, 125, 251–264. [CrossRef]

23. Xu, Y.; Ye, Z.; Yao, W.; Huang, R.; Tong, X.; Hoegner, L.; Stilla, U. Classification of LiDAR Point Clouds Using
Supervoxel-Based Detrended Feature and Perception-Weighted Graphical Model. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2019, 13, 72–88. [CrossRef]

24. Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of lidar data and building object detection
in urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 87, 152–165. [CrossRef]

25. Weinmann, M.; Schmidt, A.; Mallet, C.; Hinz, S.; Rottensteiner, F.; Jutzi, B. Contextual classification of point
cloud data by exploiting individual 3D neigbourhoods. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
2015, 2, 271–278. [CrossRef]

26. Richter, R.; Behrens, M.; Döllner, J. Object class segmentation of massive 3D point clouds of urban areas
using point cloud topology. Int. J. Remote Sens. 2013, 34, 8408–8424. [CrossRef]

http://dx.doi.org/10.3390/rs9090936
http://dx.doi.org/10.3390/rs10040612
http://dx.doi.org/10.1016/j.cag.2017.05.011
http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-se
http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-se
http://dx.doi.org/10.1016/j.cviu.2014.04.011
http://dx.doi.org/10.1109/JSTARS.2019.2951293
http://dx.doi.org/10.1016/j.isprsjprs.2013.11.001
http://dx.doi.org/10.5194/isprsannals-II-3-W4-271-2015
http://dx.doi.org/10.1080/01431161.2013.838710

Remote Sens. 2020, 12, 634 17 of 18

27. Anand, A.; Koppula, H.S.; Joachims, T.; Saxena, A. Contextually guided semantic labeling and search for
three-dimensional point clouds. Int. J. Robot. Res. 2013, 32, 19–34. [CrossRef]

28. Chen, G.; Maggioni, M. Multiscale Geometric Dictionaries for Point-Cloud Data. In Proceedings of the
International Conference on Sampling Theory and Applications (SampTA), Singapore, 2–6 May 2011;
Volume 4.

29. Zhang, Z.; Zhang, L.; Tong, X.; Mathiopoulos, P.T.; Guo, B.; Huang, X.; Wang, Z.; Wang, Y. A Multilevel
Point-Cluster-Based Discriminative Feature for ALS Point Cloud Classification. IEEE Trans. Geosci. Remote
Sens. 2016, 54, 3309–3321. [CrossRef]

30. Hackel, T.; Wegner, J.D.; Schindler, K. Fast semantic segmentation of 3D point clouds with strongly varying
density. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 177–184. [CrossRef]

31. Zhang, J.; Lin, X.; Ning, X. SVM-Based classification of segmented airborne LiDAR point clouds in urban
areas. Remote Sens. 2013, 5, 3749–3775. [CrossRef]

32. Ghamisi, P.; Höfle, B. LiDAR Data Classification Using Extinction Profiles and a Composite Kernel Support
Vector Machine. IEEE Geosci. Remote Sens. Lett. 2017, 14, 659–663. [CrossRef]

33. Lodha, S.K.; Fitzpatrick, D.M.; Helmbold, D.P. Aerial Lidar Data Classification Using AdaBoost.
In Proceedings of the 6th International Conference on 3-D Digital Imaging and Modeling, Montreal,
QC, Canada, 21–23 August 2007; pp. 435–442.

34. Niemeyer, J.; Rottensteiner, F.; Soergel, U. Classification of Urban LiDAR Data Using Conditional Random
Field and Random Forests. In Proceedings of the Joint Urban Remote Sensing Event, Sao Paulo, Brazil,
21–23 April 2013; Volume 856, pp. 139–142.

35. Ni, H.; Lin, X.; Zhang, J. Classification of ALS point cloud with improved point cloud segmentation and
random forests. Remote Sens. 2017, 9, 288. [CrossRef]

36. Najafi, M.; Namin, S.T.; Salzmann, M.; Petersson, L. Non-Associative Higher-Order Markov Networks
for Point Cloud Classification. In Proceedings of the European Conference on Computer Vision, Zurich,
Switzerland, 6–12 September 2014; pp. 500–515.

37. Niemeyer, J.; Rottensteiner, F.; Soergel, U. Conditional random fields for LiDAR point cloud classification in
complex urban areas. ISPRS Ann. Photogramm. Remote Sens. Spatioal Inf. Sci. 2012, 3, 263–268. [CrossRef]

38. Niemeyer, J.; Rottensteiner, F.; Soergel, U.; Heipke, C. Hierarchical higher order crf for the classification of
airborne lidar point clouds in urban areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41,
655–662. [CrossRef]

39. Yan, J.; Shan, J.; Jiang, W. A global optimization approach to roof segmentation from airborne lidar point
clouds. ISPRS J. Photogramm. Remote Sens. 2014, 94, 183–193. [CrossRef]

40. Le, T.; Duan, Y. PointGrid: A Deep Network for 3D Shape Understanding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 9204–9214.

41. Wang, P.-S.; Liu, Y.; Guo, Y.-X.; Sun, C.-Y.; Tong, X. O-CNN: Octree-based Convolutional Neural Networks
for 3D Shape Analysis. ACM Trans. Graph. 2017, 36, 1–11. [CrossRef]

42. Bronstein, M.M.; Bruna, J.; Lecun, Y.; Szlam, A.; Vandergheynst, P. Geometric Deep Learning: Going beyond
Euclidean data. IEEE Signal Process. Mag. 2017, 34, 18–42. [CrossRef]

43. Simonovsky, M.; Komodakis, N. Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on
Graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI,
USA, 21–26 July 2017; pp. 29–38.

44. Yi, L.; Su, H.; Guo, X.; Guibas, L.J. SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 6584–6592.

45. Landrieu, L.; Simonovsky, M. Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–23 June 2018.

46. Engelmann, F.; Kontogianni, T.; Hermans, A.; Leibe, B. Exploring Spatial Context for 3D Semantic
Segmentation of Point Clouds. In Proceedings of the IEEE International Conference on Computer Vision
Workshop, Venice, Italy, 22–29 October 2017; pp. 716–724.

47. Ravanbakhsh, S.; Schneider, J.; Poczos, B. Deep Learning with Sets and Point Clouds. arXiv Prepr. 2016,
arXiv:1611.04500.

http://dx.doi.org/10.1177/0278364912461538
http://dx.doi.org/10.1109/TGRS.2016.2514508
http://dx.doi.org/10.5194/isprsannals-III-3-177-2016
http://dx.doi.org/10.3390/rs5083749
http://dx.doi.org/10.1109/LGRS.2017.2669304
http://dx.doi.org/10.3390/rs9030288
http://dx.doi.org/10.5194/isprsannals-I-3-263-2012
http://dx.doi.org/10.5194/isprsarchives-XLI-B3-655-2016
http://dx.doi.org/10.1016/j.isprsjprs.2014.04.022
http://dx.doi.org/10.1145/3072959.3073608
http://dx.doi.org/10.1109/MSP.2017.2693418

Remote Sens. 2020, 12, 634 18 of 18

48. Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.; Salakhutdinov, R.; Smola, A. Deep Sets. Available online:
http://papers.nips.cc/paper/6931-deep-sets (accessed on 14 February 2020).

49. Xu, Y.; Fan, T.; Xu, M.; Zeng, L.; Qiao, Y. Spidercnn: Deep Learning on Point Sets with Parameterized
Convolutional Filters. In Proceedings of the European Conference on Computer Vision, Munich, Germany,
8–14 September 2018; pp. 87–102.

50. Komarichev, A.; Zhong, Z.; Hua, J. A-CNN: Annularly Convolutional Neural Networks on Point Clouds.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 7421–7430.

51. Thomas, H.; Qi, C.R.; Deschaud, J.-E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. KPConv: Flexible and
Deformable Convolution for Point Clouds. In Proceedings of the IEEE International Conference on Computer
Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6411–6420.

52. Atzmon, M.; Maron, H.; Lipman, Y. Point convolutional neural networks by extension operators. ACM Trans.
Graph. 2018, 37, 1–12. [CrossRef]

53. Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3D Semantic Parsing
of Large-Scale Indoor Spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1534–1543.

54. Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://papers.nips.cc/paper/6931-deep-sets
http://dx.doi.org/10.1145/3197517.3201301
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Feature Extraction for 3D Point Clouds
	Classification with Extracted Features
	Deep Learning on Point Clouds

	Methods
	Structure-Aware Convolution
	Relationship to Standard Convolution
	Reformulation of Standard Convolution
	Reformulation of SAC

	Deep Learning Networks with the Proposed SAC

	Materials and Experiments
	Tasks and Evaluation Metrics
	Object Classification Results
	Semantic Segmentation Results
	Semantic Segmentation for Indoor Scene
	Semantic Segmentation for Outdoor Scene

	Discussion
	Parametric Sensitivity Analysis
	KNN vs. Ball Query
	Latent Visualization
	Visualization of the Learned Kernels
	Robustness Test

	Conclusions and Future Works
	References

