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Abstract: Globally, urbanization is increasing at an unprecedented rate at the cost of agricultural and
forested lands in peri-urban areas fringing larger cities. Such land-cover change generally entails
negative implications for societal and environmental sustainability, particularly in South Asia, where
high demographic growth and poor land-use planning combine. Analyzing historical land-use
change and predicting the future trends concerning urban expansion may support more effective
land-use planning and sustainable outcomes. For Nepal’s Tarai region—a populous area experiencing
land-use change due to urbanization and other factors—we draw on Landsat satellite imagery to
analyze historical land-use change focusing on urban expansion during 1989-2016 and predict urban
expansion by 2026 and 2036 using artificial neural network (ANN) and Markov chain (MC) spatial
models based on historical trends. Urban cover quadrupled since 1989, expanding by 256 km?
(460%), largely as small scattered settlements. This expansion was almost entirely at the expense of
agricultural conversion (249 km?). After 2016, urban expansion is predicted to increase linearly by a
further 199 km? by 2026 and by another 165 km? by 2036, almost all at the expense of agricultural
cover. Such unplanned loss of prime agricultural lands in Nepal's fertile Tarai region is of serious
concern for food-insecure countries like Nepal.

Keywords: urban expansion; cropland loss; machine learning models; Markov chain

1. Introduction

Land-use and land-cover (LULC) change driven by human activities is a major factor of almost
global environmental change, such as modifications of ecosystems, biodiversity loss, and climate
change [1,2]. Agricultural expansion and urbanization are particularly potent forms of LULC change in
this respect [3,4]. Globally, urban cover is expanding rapidly, increasing from 0.6 million km? to 0.7-0.9
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million km? between 2000 and 2010, with projections of 1.2 million km? by 2050 [5]. The urban cover is
expanding at twice the rate of population growth globally due to rapid urbanization [6]. The global
urban population increased 6.6-fold since 1950, such that 55% of the global population now resides
in urban areas, with projections of a 68% urban population globally by 2050 [7]. The rates of urban
expansion and urban-population growth are greater still in low-income and lower-middle-income
countries, which are least able to manage their negative implications, such as agricultural conversion [8].
Understanding the dynamics of urban expansion in such countries, including Nepal, is crucial to
support sustainable land-use planning.

Population growth and rural - to- urban migration are the principal drivers of urbanization [9,10].
Historically, urban population growth was largely accommodated by urban expansion over prime
arable lands, where most cities were originally founded [11]. This mode of urban expansion exacerbates
biodiversity loss, increase greenhouse gas emission, ecosystem degradation, water scarcity, and
environmental pollution, thus also negatively impacting human well-being [6,12-14]. Such outcomes
of urbanization are more severe in developing countries, where urbanization is often unplanned,
improvised, or even chaotic [15,16].

Like other parts of the world, Nepal experienced rapid urban expansion over recent decades [17].
Its urban centers increased in number from only 10 to 292 during the last 50 years, while its urban
residents grew from 2.9% to over half of the national population [18,19]. Much of this urbanization
is concentrated in the Tarai region alongside the major highway [20] Nepal's relatively rare fertile
lowlands along its southern border with India. After the eradication of malaria in the late 1950s [21], and
the implementation of resettlement program [22], the population in Tarai increased due to migration
from surrounding hilly regions [23,24]. During 1961-1981, Tarai population of increased by 250% as
net immigration increased by 640% [24]. Population growth continues to date, driving rapid urban
expansion with corresponding losses of arable lands [25]. Tarai accounts for one-third of Nepalese
arable land, which in turn accounts for less than 30% of the national territorial extent [26]. Without
adequate land-use planning and regulation, the chaotic expansion of Tarai’s urban settlements threatens
national food security and urban sustainability [25].

Geographic information system (GIS) and remote sensing (RS) are commonly used to support
spatiotemporal LULC planning [27,28], albeit less so in poor countries like Nepal [29,30]. Remote
sensing imagery efficiently capture up-to-date spatiotemporal LULC distributions [31], through which
trends in LULC change may can be extracted, analyzed, and predicted [32]. Land-cover change
models in particular may estimate the future location, amount, and frequency of LULC change [33].
Accordingly, such models naturally support sustainable land-use planning, as for conservation [34],
urbanization [35], and resource management [36].

There are multiple modeling approaches allowing for LULC simulation and projection, including
Dinamica [34,37], SLEUTH [38], SERGoM [39], Conversion of Land Use and its Effect (CLUE) [40],
GEOMOD [41], Land Use and Carbon Scenario Simulator LUCAS [42], and Artificial Neural
Network—Cellular Automata (ANN—-CA) [43]. The SLEUTH model, for instance, predicts future LULC
change on the basis of the behavioral change of land use [44], whereas CLUE simulates land-cover
change over space and time as the outcome of human and biophysical drivers [45]. Markov chain (MC)
algorithms complement such spatial models of LULC change in a way that they stochastically qualify
land-change transition probabilities without estimating the location of such transitions. Hence, as
spatial models such as cellular automata (CA) focus nearly exclusively on the location of land-change
transitions, typically on the basis of historical trends, a hybrid model incorporating MC may estimate
the location of transitions based on but not solely reflective of historical LULC trends [46].

The artificial neural network (ANN)-Markov chain (MC) model is amongst the best for estimating
future land change transitions [47]. Multi-layer perceptron models (MLPs) are an increasingly common
application of ANN [48] and the MLP-MC hybrid method [49] proved adept at accurately simulating
LULC transitions [50]. This latter model has the rare advantage of performing well given “missing
cases” in historical time series training data or given a large number of training datasets [51,52]. Further
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advantages are evident when compared to other models like cellular automata (CA), which needs
LULC transition maps basic, prior knowledge to handle change procedures [53], or the SLEUTH model,
which needs coefficient values to be specified a priori [54]. The MLP-MC model has been used to
predict LULC changes in Samsun, Turkey [50], Patna District, India, [49], and Bogor City, Indonesia [55].
Results from these MLP-MC studies indicate that is the model is capable of producing highly accurate
LULC simulations.

Here, we used a MLP-MC model to simulate and project the LULC in Nepal’s Tarai region,
allowing for non-linear and complex LULC trends [43]. Our simulation model was employed previously
to simulate urbanization patterns and related LULC in Nepal [56-58] and elsewhere [46,59-64]. We
tracked LULC in western Tarai since 1989 and projected future LULC to 2026 and 2036, with emphasis
on urban expansion and related agricultural conversion, to appraise the agricultural implications of
continued urban expansion. This study builds upon local studies of losses of agricultural lands in
Nepal [58,65-67] and attempts to synthesize relevant land-conversion dynamics [25,56,68-72] with
reference to projected LULC change reflecting historical dynamics. We also quantify spatially explicit
changes in historical land-cover change amidst urban growth and agricultural conversion with reference
to the satellite-image classifications informing our projections. To predict future urban expansion, we
employ widely applied spatial models within the regional planning literature [59,63,73,74], namely,
multi-layer perceptron (MLP) and Markov chain analyses based on artificial neural networks.

2. Methods and Materials

2.1. Study Area

The study area is the western Tarai region of Nepal, covering around 19,200 km? (Figure 1).
The area comprises nine districts (Chitwan, Nawalparasi, Rupandehi, Kapilbastu, Dang, Banke, Bardiya,
Kaliali, and Kanchanpur) out of 77 districts nationally. Tarai is relatively flat land and is situated in the
low-lying southern region of Nepal, adjoining India. Agriculture and forests are the major land covers
of this region, which is the center of national agricultural production. The study area experienced rapid
population growth, historically and recently, from 3.2 million residents in 1991 (17% of the national
population) to 5.3 million (20%) in 2011 [75]. The study region has a subtropical monsoon climate with
temperatures of 32 °C-35 °C during the summer and 8 °C-15 °C during the winter.
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Figure 1. The study area of the western Tarai region, Nepal.
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2.2. Data

In this study, we observed historical land-cover data derived from surface reflectance (SR) Landsat
imagery sourced from various sensors (Landsat 5, Thematic Mapper (TM); Landsat 7, Enhanced
Thematic Mapper Plus (ETM+); and Landsat 8, Operational Land Image (OLI)).Land use/cover was
classified for the years 1989, 1996, 2001, 2006, 2011, and 2016 [25] and inform our model of historical
and future LULC change. Our historical observation period of 19892016 are coincident with major
LULC trends, particularly migration-led urbanization, the adoption of multiparty democracy in 1990,
internal political upheaval of 1996-2006 [23], and the promulgation of a new constitution in 2015
followed by administrative classification.

Landsat provides time-series global imagery since 1972 [76] to cost-effectively describe land-cover
change. LULC data were developed using a total 24 surface reflectance (SR) Landsat scenes entailing
geometric and atmospheric corrections (for details http://landsat.usgs.gov/CDR_LSR.php). SR data
included quality assessment (QA) bands where TM and ETM data were employed [77] and the Landsat
8 OLI-SR data were generated using SR Code (LaSRC) [78]. Before classification all scenes were
stacked and subset by district then classified into six different classes: urban/built-up, cultivated land,
vegetation cover, barren land, sand cover, and water body. Among various computer-based parametric
classification algorithms available, such as parallelepiped, minimum distance (MD) function, maximum
likelihood (ML), fuzzy classification (FC) [79], and layer classification (LC) [80], we employed an ML
algorithm [25] due to its general familiarity and reliability [81,82].

To assess classification accuracy, we randomly sampled reference points by land-use/cover class.
At least 35 sample points were selected for per LULC class per district. The overall accuracy of the
annual classifications ranged between 81% and 87% [25], which is generally acceptable upper-level
accuracy for such a land-cover classification. The details of the classification accuracies are provided in
the Supplementary Materials (Table S1).

Additionally, district-level population data were gathered for the years 1991, 2001, and 2011 from
the official census [75]. The data on road networks used to train our model of LULC change were
collected from the Nepal Road Network (https://data.humandata.org/dataset/nepal-road-network) and
further land cover change data were evaluated using a 1:25,000 topographical map of the Nepalese
Survey Department [83] and high-resolution imagery in Google Earth.

2.3. Urban Expansion Orientation

For each district, the cardinal geographic orientation of urban expansion was observed relative to
the primary urban settlement of the district. Here, the “center-point” or origin of urban-expansion
orientation is, therefore, the location of this primary urban settlement within a given district, without
presupposing that this primary urban settlement is necessarily the commercial or administrative
capital of a district [84]. This approach is supported by our field experience and the fact that classified
Landsat images of 1989 showed that urban expansion occurred mainly around district headquarters
(administrative center) and city centers (commercial centers), which tend to be the primary urban
settlements. For the analysis of urban-expansion orientation at the district level, azimuths were drawn
at 45° angles from the origin (location of this primary urban settlement) so that a given district was
divided into eight quadrants: north to northeast (N-NE), northeast to east (NE-E), east to southeast
(E-SE), southeast to south (SE-S), south to southwest (5-SW), southwest to west (SW-W), west to
northwest (W-NW), and northwest to north (NW-N).

2.4. Projecting Future Land-Cover Change

Projections of LULC change to 2026 and 2036 were realized using the Land Change Modeler (LCM)
within the TerrSet IDRISI software (Clarke Labs 2019, https://clarklabs.org). LCM is an integrated
software capable of the LULC change simulation, projection, and validation [85]. The LCM offers
three parametric or non-parametric algorithms [48] to evaluate spatial relationships between observed
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LULC change and predictor variables to effect LULC projection: the multi-layer perceptron (MLP)
algorithm artificial neural network, logistic regression, and a similarity-weighted instance-based
modeling learning tool [86]. In the present study, we employed the MLP algorithm combined with a
Markov chain (MLP-MC) [49] because of its demonstrated accuracy when modeling complex LULC
transitions [49,50,55] and relative lack of user-specified coefficients or input maps (as with SLEUTH [54]
or CA [53].

The MLP-MC model has a unique advantage when prior knowledge is unavailable, and it can also
manage a large number of datasets [51,52]. Its superiority is compared with other models like cellular
automata (CA), which need potential transition maps as basic and prior knowledge to handle change
procedures [53] or the SLEUTH model, which needs coefficient values to be present [54]. The MLP-MC
model was utilized to predict LULC changes in Samsun, Turkey [50], Patna District, India, [49], and
Bogor City, Indonesia [55]. All the studies’ results showed that the MLP-MC model was capable of
producing the best results in the respective study areas. Therefore, this approach could be a good
simulator for identifying the patterns of LULC change in Nepal.

The LULC projection model for western Tarai was developed in three stages corresponding to
three temporal periods: calibration (1996-2006), simulation and validation (2006-2016), and projection
(2016-2026/2036). Since the MLP-MC model simulates LULC change more accurately for the calibration
period than other, later periods (as with any model) [59], LULC in 2016 was projected with the opposite
trend of LULC change during 1996-2006. Accordingly, calibration intervals of 10 years (2006-2016)
and 20 years (1996-2016) were chosen for the projections of LULC to 2026 and 2036, respectively.

In the first step, the model was calibrated for pixels that transitioned from each land-cover class
to other classes between 1996 and 2006. The “transition potentials” for each land-cover transitions
(modeled) were defined using a Markov chain, while a sub-model describing transition potentials
to urban cover was defined using the multi-layer perceptron (MLP) neural network. Based on other
studies on land-change modeling and urban expansion [41,58,87], as well as available data, we used
six bio-physical drivers to calibrate our model of the location of LULC during 1996-2006: (i) distance to
built-up areas, (ii) distance to cultivated land, (iii) distance to natural vegetation (forests), (iv) distance to
roads, (v) distance to water bodies, (vi) elevation and slope. All “distance-based variables” were created
based on the Euclidean distance method. Also, natural log and evidence likelihood transformation
methods were performed to transform distance-based and categorical factors, respectively. Built-up
areas, cultivated lands, and natural vegetation were according to our Landsat classification. Elevation
and slope were derived from the digital elevation model (DEM) of the Shuttle Rader Topography
Mission (SRTM) 30-m dataset (https://lta.cr.usgs.gov).

The driver data used for model calibration were selected from a larger pool of potential drivers
given their relatively strong associations with LULC in the Tarai region (Table 1). Relationships between
these drivers and all LULC transitions during the calibration period were examined using Cramer’s
coefficient (Table 1). Cramer’s coefficient measures the strength of association between a continuously
scaled driver and the probability of a given LULC transition, accounting for both the relationship
between each factor and a given LULC class and the relationship between each factor and the total set
of LULC classes [88]. This coefficient ranges between 0 and 1, where 1 indicates a maximal association
between LULC and the driver, 0 indicates the converse, and > 0.1 indicates an appreciable influence of
a driver on LULC processes [89]. Only drivers with strong associations (> 0.1) were retained for the
calibration of LULC change, subsequent LULC simulation for validation, and future LULC projections.

In the second step, to validate the model once calibrated, we simulated LULC change between 2006
and 2016, based on trends observed during the calibration period, and then compared the simulated
2016, land-cover map against the 2016 Landsat land-cover classification. The LULC simulation reflects
spatial relationships modeled amongst LULC and the “drivers” during the calibration period, but
actual observed rates of land-cover change were specified for the simulation over the validation period.
Accordingly, measures of error for simulated LULC change pertain exclusively to the location of LULC
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change, not its quantity. Driver data derived from the Landsat classifications were updated from year
one to year two before running the simulation.

Several measures of agreement between the simulated and actual land-cover maps of 2016 were
employed, such as kappa variations (Kno, Kstandard, and Klocation) and the figure of merit (FOM).
The “Kstandard” index is a measure of the simulated map’s ability to attain perfect classification. The
“Klocation” coefficient describes the locational accuracy of pixels in the simulation. The “Kno” index is
a modified version of Kstandard and expresses the proportion of correctly classified pixels relative to
the expected proportion correctly classified without regard to quantity or location error [90]. The FOM
describes the skill of a model to simulate LULC change correctly. It is expressed as the ratio of the area
of correctly simulated change against the total area of correctly and incorrectly simulated LULC change
or persistence [91]. The FOM is composed of four components, i.e., false alarms (LULC persistence
simulated as change), hits (change simulated correctly), misses (change simulated as persistence), and
wrong hits (change simulated as change to wrong land-cover class) given by Pontius et al. (2011).
Incidentally, the estimation of these components also allow for the disaggregation of total simulation
error by LULC quantity and LULC allocation/distribution [92]. The FOM ranges from 0% to 100%,
with lower and higher values signifying little agreement and appreciable agreement between actual
and simulated change, respectively. Details on the FOM are given by Pontius et al. (2011).

Finally, following model calibration and validation, LULC change was projected forward from
2016 to 2026 and then to 2036 using the Markov chain. The land-cover transition probabilities were
again according to the calibration period, while projected rates of LULC were extrapolated from year
one and two. Landsat-derived driver data were again updated to 2016 before running the projection.

Table 1. Cramer’s coefficient for potential factors of land-cover change for model calibration (Bold
numbers show the drivers with strong associations used for the LULC modelling).

Driving Factor Cramer’s Value
Distance to built-up areas 0.261
Distance to cultivated lands 0.309
Distance to vegetated areas (forest) 0.184
Distance to roads 0.199
Distance to water bodies 0.078
Elevation 0.277
Slope 0.168
Distance to barren lands 0.081
Distance to sand areas 0.114

3. Results

3.1. Historical Land-Cover Change Transitions (1986-2016)

Major trends amongst land-use classes within the study areas between 1989 and 2036 are presented
in Table 2 and Figure 2. Urban areas experienced a notable increase historically in terms of both the
number of small urban settlements and their total extent. The total urban area expanded by 255.90 km?
between 1989 (71.36 km?) and 2016 (327.26 km?) (Figure 2). The greatest rate of increase in urban
expansion over this period (119.45 km?) occurred during 2006-2011, while some (12 km?) occurred
during 1989-1996. For all historical periods between 1989 and 2016, urban expansion was characterized
by the multiplication and consolidation of smaller “satellite” settlements at the peripheries of major
urban centers and along with major road networks (Figure 3), particularly along the East-West highway
and North-South highway.
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Table 2. Land-use and land-cover (LULC) change over different periods between 1989 and 2016 (in km?).

LULC Classes 1989-1996  1996-2001  2001-2006  2006-2011  2011-2016 1989-2016
Urban/built-up 11.64 32.89 44.29 119.45 47.63 255.9
Cultivated land 67.01 -53.64 —-97.45 -115.22 -50.17 —249.47
Vegetation cover —44.54 -11.5 24.84 20.09 23.88 12.77
Barren land -14.07 7.05 1.26 3.17 —27.42 -30.01
Sand cover -5.53 53.18 14.42 -31.31 18.56 49.32
Water body -14.51 —-27.98 12.64 3.82 -12.48 -38.51

Source: Rimal et al. 2018 [25].
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Figure 2. LULC transition in different classes from 1989 to 2036. The LULC transitions from 2016 and
2036 were predicted.

Urban expansion drove a corresponding decrease in cultivated lands. Historically, cultivated
lands exhibited a steady decline of 249.47 km? between 1989 (7411.56 km?) and 2016 (7162.09 km?)—an
area of loss almost equal to the coincident increase in urban extent over the same period. This loss of
cultivated land tracked contemporary increases in urban cover (Figure 2) as existing urban areas were
in-filled and newer settlements expanded outwards over surrounding fertile croplands. The greatest
rate of decrease in cultivated lands similarly occurred during 2006-2011 (decrease of 115.22 km?) and
2001-2006 (decrease of 97.45 km?). The Landsat time series also exhibited a non-linear decline for the
vegetation cover, sandy areas, and water body classes, but observed no significant contribution of
urban expansion to these declines. Figure 3 shows the peripheral expansion of urban/built-up areas
from the major city centers of each district of the study area during 1989-2036.
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Figure 3. Urban extend by year, historically (1989, 1996, 2006, 2016) and in 2036 (projected (P)), in
selected urban centers in the Tarai region: (a) Bhimdatta municipality, (b) Dhangadhi sub-metropolitan
city, (c¢) Gulariya municipality, (d) Nepalgunj sub-metropolitan city, (e) Ghorahi sub-metropolitan city,
(f) Kapilbastu municipality, (g) Butwal sub-metropolitan city, (h) Ramgram municipality, (i) Bharatpur
metropolitan city. Statistics of LULC over time are provided as Supplementary Materials (Table S2).

On a broader scale, the transition from cultivated lands to urban cover between 1989 and 1996
was relatively widespread due to the dispersed and patchy pattern of urban expansion (Figures 3
and 4). Extensive areas of agricultural lands were converted to urban areas in the districts of Kailali,
Banke, Dang, Rupandehi, and Chitwan (Figure 3b,d,e,g,i). Not only in the urbanizing south, but also
in the fertile upland river valleys, transitions from agricultural lands to urban lands predominated
and were complemented by lesser extents of transitions from forested lands to urban cover. However,
in the northern uplands, cultivated land areas also transitioned to natural vegetation, largely as
fallows, planted woodlands, and natural forest regeneration. Notably, such reforestation of historically
cultivated areas occurred at the fringes of protected areas, including Chitwan National Park, Parsa
Wildlife Reserve, Shuklaphanta National Park, Banke National Park, and Bardiya National Park. It is
unknown whether the recovery of forests reflected trends in the management of protected areas or a
larger trend in the extensification and/or abandonment of peripheral agricultural production due to
rural-urban migration and agricultural intensification.
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Figure 4. Observed land-use/cover transitions for the western Tarai study area, 1989-2016.
Note: Transitions are as observed according to the Landsat time series classification, not LULC
simulations/projections.

3.2. Urban-Expansion Orientation

The primary urban centers of all districts except for Dang, Kanchanpur, Chitwan, and Bara were
located in the southern part of their respective districts. Hence, urban expansion in the earlier decades
generally expanded to north, northeast, and northwest of these primary urban centers. Conversely,
in Kanchanpur district, urban expansion was mainly toward the southeast and eastern peripheries.
The highest urban expansion of Dang was toward the western and southeastern directions from the
district headquarter, while the eastern parts followed by southwest and southeast directions of Chitwan
district were highly urbanized. An urban expansion orientation of individual districts is presented in
Figure 5.

Urbanization took place mainly at the periphery of the East-West highway, Postal highway, and
the connecting road networks to the mid-hills. Additionally, the areas which were easily accessible
from the mid-hill districts were rapidly expanded. For example, some of the major urban centers
in the East-West highway (Figure 4) were Ratnanagar, Bharatpur, Gaidakot, Kawasoti, Bardaghat,
Sunaul, Devdaha, Lamahi, Attariya, Kohalpur, and Mahendranagar. Additionally, Taulihawa, Butwal,
Krishnanagar, Nepalgunj, Dhangadhi, Gaur, Ghorahi, and Tulsipur were the other centers. In those
areas, settlements were scattered, and agricultural lands were plotted for residential purposes and,
thus, were fragmented.
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Figure 5. Urban-expansion orientation graphs, by district, for six historical periods between 1989
and 2016.

Spatially, the existing urban agglomerations were in-filled or expanded along the peripheries of
major highways and cities. Population density was increasingly high and unequally distributed within
the districts as expanding urban extents hosted an increasing majority of district populations (Figure 6).
For instance, the population density of Nepalgunj Municipality (NM) of Banke was 3824 persons/km?
in 1991 and increased to 4601 and 5798 persons/km? in 2001 and 2011, respectively. Similar trends
were seen in Bharatpur, Butwal, Siddarthanagar, Dhangadi, and Tikapur municipalities of Chitwan,
Rupandehi, Banke, and Kailaili districts (Figure 6).
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Figure 6. Demographic statistics by district. (A) Total urban area, (B) population density of urban
centers, and (C) population density of entire districts, western Tarai region, 1991-2011.

3.3. Land-Cover Change Simulation and Projections to 2026 and 2036

Based on historical LULC trends between 1989 and 2016, LULC of 2026 and 2036 was projected
using artificial neural network land-cover transition probabilities adjusted using an MLP-MC spatial
model. The resultant projections indicated a continued decline in cultivated lands due to urban
expansion, as well as lesser fluctuations amongst the other LULC classes. Urban/built-up area is
projected to expand by over 110% of its 2016 extent by 2036, entailing an average annual growth
rate of 3.8% if compounded annually and of 5.5% if not, with both rates being greater than national
annual demographic growth rates of 1-2.7% since 1970. Such urban growth would entail an additional
increase of urban cover of 199 km? by 2026 (total to 526.05 km?) and an additional 364.15 km? by 2036
(total 691.20 km?), up from 327.05 km? in 2016 (Table 3 and Figure 7).
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Table 3. Area of changes during 2016, 2026, and 2036.

Area (km?) Percentage Increase *
LULC Classes
2016 2026 2036 2016-2026 2026-2036 2016-2036
Urban/built-up 327.05 526.05 691.20 60.85 31.39 111.34
Cultivated land 7163.65 6786.45 6508.96 -5.26 —4.1 -9.14
Vegetation cover 10,472.18 10,657.89 10,720.12 1.77 0.58 2.37
Barren land 58.28 47.95 53.92 -17.72 12.45 -7.48
Sand cover 898.55 888.67 961.13 -1.1 8.15 6.96
Water body 270.07 282.59 254.27 4.64 -10.0 —-5.85

* For a given period, the percentage increase/decrease of a given land cover is expressed in terms of the area of that
cover at the beginning of the period in question.

Correspondingly, cultivated lands in the future are expected to decline due to permanent losses
from urbanization, notwithstanding minor dynamic exchanges between agriculture and natural
vegetation. Of the 199 km? of additional urban cover projected from 2016 to 2026, 99% (187.39 km?)
is expected to derive from cultivated land and the remainder (11.97 km?) is expected to derive from
vegetation cover. Over the same period, an additional and comparable 165.61 km? of cultivated lands
would be brought into production by converting natural vegetation cover. In this way, trends in
the urban expansion are observed to drive losses not only of agriculture directly but also of natural
vegetation indirectly, as agricultural losses due to urban conversion may spur agricultural expansion
elsewhere at the cost of natural vegetation. Despite this projected addition of new cultivated lands, the
total net agricultural area would still decline by 377.19 km? (Table 4) over 2016-2026 due to urbanization.
While nominal losses of cultivated lands due to urbanization over 20162026 are lesser than losses of
agricultural land due to recovered natural vegetation over the same period (310 km?), some of these
later projected losses are likely temporary due to agricultural fallowing.

Table 4. LULC transitions during 2016-2026 (in km?).

Year 2026
LULC U/B CL VC BL SC WB Total
U/B 314.93 3.06 5.97 0 224 0.84 327.04
CL 197.39 6591.02 310.27 0 44.15 20.82 7163.65
2016 vC 11.97 165.61 10,240.43 8.63 40.05 5.48 10472.17
BL 0.03 0 17.7 38.58 1.64 0.26 58.21
SC 1.66 26.75 72.49 0.39 707.11 90.14 898.54
WB 0.06 0.02 11.02 0.34 93.48 165.05 269.97
Total 526.04 6786.46 10,657.88 47.94 888.67 282.59 19,189.58
Note: U/B (urban /built-up), CL (cultivated land), VC (vegetation cover), BL (barren land), SC (sand cover), WB
(water body).

Trends of urban expansion and agriculture land loss during 20262036 were largely similar to
those for 2016-2026, if slightly more moderate with respect to rates of urban expansion. Urban/built-up
areas would expand further by 165.16 km?, with a more moderate average annual growth rate of 2.7%
(annually compounded) or 3.1% (not compounded). Of this additional urban increase, 95% would
be sourced from cultivated land. Despite the establishment of 162 km? new cultivated lands due to
natural vegetation conversion, total cultivated area would still decline by 277 km? due to transitions to
urban cover (156 km?), as well as to vegetation cover (234 km?) and sand (attributable to flooding and
erosion of cultivated riverine valleys) (83.53 km?) (Table 5).



Remote Sens. 2020, 12, 628 13 of 22

Table 5. LULC transitions during 2026-2036 (in km?).

Year 2036
LULC U/B CL vC BL SC WB Total
U/B 518.92 2.72 1.65 0 2.66 0.09 526.04
CL 156.76 6307.74 234 244 83.53 1.96 6786.43
2026 vC 12.24 162 10,424.59 11.72 39.11 7.8 10,657.46
BL 0 0.01 9.86 37.74 0.08 0.23 47.92
SC 1.86 19.13 35.31 1.71 743.25 87.38 888.64
WB 1.42 16.92 14.68 0.28 92.47 156.78 282.55
Total 691.2 6508.52 10,720.09 53.89 961.1 254.24 19,189.58
Note: U/B (urban /built-up), CL (cultivated land), VC (vegetation cover), BL (barren land), SC (sand cover), WB
(water body).

The projection models signal a declining yet still high rate of urban expansion and corresponding
losses of cultivated lands. The historical Landsat observations describe average annual rates of urban
expansion of 9-10% during 1996-2006 and 2006-2016 (rates here are not compounded). In contrast,
lesser rates of 6.08% and 3.13% were projected for 20162026 and 20262036, respectively. Perhaps as a
result of declining future urbanization rates, the proportion of newly established urban areas derived
from the cultivated land area during 2026-2036 is slightly lower (94.91%) than during 2016-2026 (99%).

The results of our accuracy assessment showed that the standard accuracy of the model was more
than 80%, which means that the model was effective in prediction [59,93,94]. The evaluation implied
that the value of Kno was 0.88, which verified the accuracy of the model. The overall ability of the
model to simulate the LULC map of 2016 was highly assessed in general (Kstandard = 0.83), and the
Klocation value of 0.90 detected that the model prepared a logical representation of the location. The
analysis of modeling shows that the FOM was 0.08%. According to Figure 8, hits accounted for 0.48%
of the spatial extent. The components of misses and false alarms were 1.72% and 4.10%, respectively.
Furthermore, the values for the reference change simulated as a change to the wrong category (wrong
hits) were zero. Accordingly, the quantity error was 2.38%, while the allocation error was 3.43% of the
spatial extent.
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Figure 7. Land-cover maps from 1989 to 2036, western Tarai region. The sizes of the color-coded boxes
at the right are indicative of the relative areas of each land-cover class.
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Figure 8. The figure of merit’s non-nil components (hits, misses, and false alarms) as a percentage of
the spatial extent of western Tarai.

4. Discussion

The spatiotemporal changes in land use in western Tarai of Nepal during 1989-2016 highlight the
rapid growth of urban areas and corresponding losses of cultivated areas. Projections of urban expansion
to 2026 and 2036 indicate the continuation of such trends. Notwithstanding the projected decline in
urban-expansion rates, rapid urban growth and agricultural loss will continue largely unabated.

Our LULC simulation indicates two major land-change transformations characterizing western
Nepal, namely, rapid urban expansion and the loss of agricultural land. The spatial patterns of
scattered, small-scale “satellite” urban expansion and linear “in-fill” urbanization along the side of
highways suggests that urban growth is not pre-emptively zoned and managed at the local level.
The commonly observed weakness of local government in formulating and enforcing land-use zones
and plans [17,56] doubtlessly facilitated the haphazard pattern of urban expansion regionally and is
anticipated to persist in the future.

According to the historical LULC trend analysis, the extent of urban expansion relative to other
land-cover changes varied markedly by the period. Such variation is associated with several underlying
socioeconomic factors, political events, and changing access to public services [25,66]. Our analysis
shows that urban expansion accelerated after 2001, which may reflect increased rural-urban migration
caused by the domestic political conflict that occurred between 1996 and 2006 [23]. Meanwhile, the
greatest expansion in the urban areas occurred during 2006-2011, which may reflect the legacy of
the prior surge of urban migrants to 2006 and related resumption of urban economic development.
Nonetheless, the migration pattern reflects both push factors (e.g., rural poverty) and pull factors (e.g.,
better public services and economic opportunities) [25,69].

It is notable that cultivated areas in Nepal are often located near urban areas, and there is, therefore,
inherent competition for these lands amongst farmers and urban developers. As in Nepal, such
competition and ultimate expansion of urban cover over arable lands is observed widely in many
developing-world contexts. Indeed, transition probabilities from cultivated lands to built-up lands
reported by similar spatial studies elsewhere are similarly extremely high [5,46,47,87,89,95,96].

The implications of projected net agricultural contraction over 20162026 are uncertain and
potentially serious, depending on underlying land-use dynamics. The apparent re-vegetation of
peripheral upland agricultural areas is commensurate with the abandonment of underproductive,
marginal agricultural areas and related rural-to-urban migration [97,98]. If agricultural intensification
occurs simultaneously with ongoing agricultural contraction, regional food security might remain
stable despite the contractions. This possibility is, however, undermined by the slightly lesser but still
substantial losses of relatively fertile, per-urban agricultural lands due to urban expansion. Clearly,
food security also depends on the degree to which the apparent re-vegetation of agricultural uplands
is due to permanent land abandonment or rather its transition to ephemeral fallows or productive
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tree crops [99]. The permanence of agricultural losses to urban covers, as well as their concentration
in fertile per-urban zones and floodplains, highlights serious implications for national agricultural
productivity [100]. Our study area is characterized by fertile land and is considered highly important
for national grain and pulse production [101].

Generally, urbanization follows an “S-shaped” maturation trend described by initial slow urban
development, then rapid expansion and, finally, slow consolidation [102,103]. Our Nepalese case
study does not adhere to this general trend well, indicating either that Nepalese urbanization is still in
its middling phases and/or that the maturation trend is not inevitable. Therefore, the prediction of
future urban growth is prudent to help steer developments toward sound sustainable consolidation
as soon as possible [104]. As this study underscores, such outcomes are relevant for per-urban areas
but may also have broader implications for land-use change elsewhere. As the scale of urbanization
grows, urbanization policy in developing countries is expected to influence land-use changes more
widely [103], e.g., as in regard to regional water resource availability, green belts, and erosion control.

Although this study used a wide variety of data and robust methodology, it has several limitations
that should be recognized as opportunities for further research. This study could not consider
various probable drivers of urban expansion, such as local population growth, government policy,
agricultural market demand (land rents), and so on due to a lack of spatial data and reliable means
of associating such drivers with spatially explicit land-cover change. Complex processes driven by
dynamic non-linear or spatial interactions shape land change and are difficult to capture using available
data and algorithms [105]. Such missing factors may significantly affect the LULC trajectory of future
urban expansion and agricultural loss, such that our projections are best understood exclusively as
extensions of the trends and data observed. Future land-change scenarios in which urban expansion is
limited to lands zoned for this purpose should particularly be considered as a means of gauging the
utility of current land-use plans for future food security. We also acknowledge large uncertainties in
our estimations. Our spatial model is based on historical land-change transitions; thus, its projections
will diverge from reality should future trends in LULC change depart from the past. Similarly, our
results may differ from those based on historical observations employing an alternative typology of
land-cover classes. Indeed, the land-use/cover maps used for LULC modeling were derived from the
30-m resolution Landsat imagery, the resolution of which limited both the range and the accuracy
of observable land-cover classes. In the future, high-resolution satellite data (e.g., SPOT satellite or
WorldView) could be used to derive more diverse and thematically precise observations of particular
agricultural and urban covers relevant to agricultural loss and food security, e.g., subsistence vs.
mechanized cultivation, or sprawling vs. high-density urban cover. The use of high-resolution
imagery may even prove especially useful in estimating the productivity of agricultural lands that
are converted, abandoned, and newly established, thus further refining estimates of changing food
security. Nonetheless, our simulation helps to understand, forecast, and anticipate the future in the
likely event that the future reflects the past.

5. Conclusions

This study investigated the major LULC transformations in the western Tarai region of Nepal
during 1989-2016 and examined the future trends to 2026 and 2036 using an artificial neural
network-Markov chain spatial model. The major transformations observed include a continuous
expansion of urban/built-up area, the corresponding decline of cultivated land, and non-linear changes
in forest cover. Rapid increases in urban cover and losses to agricultural areas are expected to continue
at only slightly reduced rates. The average annual urban growth rate is projected to decline from
13.35% during 1989-2016 to 5.56% during 2016-2036.

The continued rapid and largely unplanned expansion of urban cover and the corresponding
decline of cultivated land may have serious consequences for food security and environmental
sustainability. The nature of such consequences depends on the nature of peripheral agricultural land
use, land abandonment and revegetation, and any economic “feedback” to the national agricultural
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market. A long-term sustainable urban-expansion plan is essential to promote orderly urbanization
and should be linked to similarly urgent plans for agricultural resilience. The research presented here
may serve such purposes. Urban growth models saw rapid development and extensive adoption.
Furthermore, the emergence of freely available spatial data and the reduction in computational costs
offer opportunities to model change at finer resolutions and/or greater extents. We recommend that
future studies continue to explore these models and data to develop simulations addressing future
LULC uncertainties.
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matrix calculated using pairs of Landsat classifications for 1996-2006, 20062016, and 1996-2016.
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