
Backscatter harmonization using bulkshift() in R 

This function is hosted permanently at https://github.com/benjaminmisiuk/bulkshift. Any changes, 

bugfixes, or updates will be available there. 

Setup and arguments 

Source the function and check the arguments. 

source("bulkshift.R") 

args(bulkshift) 

The args() call returns the following: 

function (shift, target, preds = NULL, shift.method = "lm", mosaic = FALSE,  

    save.data = FALSE, err.plots = TRUE, dist.plots = FALSE,  

    sample = FALSE, samp.size = 0.25, family = gaussian, link = "identity",  

    tc = 2, lr = 0.01, bf = 0.5, verb = FALSE) 

The primary arguments from above are: 

shift The backscatter raster being corrected. 

target The target backscatter dataset being referenced. 

preds Vector of optional additional predictors used for the bulk shift. 

shift.method The modelling method used; one of “mean”, “lm”, or “brt”. 

mosaic Output the corrected, harmonized backscatter mosaic? 

save.data Save and output the data frame used for bulk shift calculations? 

err.plots Output 2d (from bivariate models) or 3d (from multivariate models) error plots? 

dist.plots Output distribution (CDF and PDF) plots for shifted data? 

sample Subsample the area of overlap for large datasets? 

samp.size If sample=TRUE, what proportion of cells to sample between 0 and 1. 

When shift.method="lm", the following arguments are passed to glm(): 

family The error distribution.  

link The link function. 

When shift.method="brt", the following arguments are passed to gbm.step() (see the dismo package for 

details): 



tc Tree complexity. 

lr Learning rate. 

bf Bag fraction. 

verb Trace the BRT progress? 

The arguments and code for the function can be viewed by calling: 

View(bulkshift) 

Importing raster data 

The first step is to import the raster backscatter data to R. This is done using the raster package. 

library(raster) 

 

#set the working directory to where the raster files are stored 

setwd("C:/Documents/bulkshift_files")  

 

#read in the shift and target layers 

bedford_400 <- raster("bedford_400kHz") 

bedford_200 <- raster("bedford_200kHz") 

Before calling the function, ensure that the rasters have the same projection. 

projection(bedford_400) 

 

"+proj=utm +zone=20 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0" 

 

#check if the projections match 

projection(bedford_400)==projection(bedford_200) 

 

TRUE 

It is best practice to ensure that the backscatters rasters have the same resolution before proceeding, and 

that they are properly aligned. If the resolutions do not match though, or if the rasters are unaligned, the 

function will automatically resample them to match. We can view the rasters before running the bulk shift 

to ensure that they overlap. 

plot(bedford_200, col=colorRampPalette(c("dodgerblue2", "white"))(100), legend=FALSE) 

 

plot(bedford_400, col=colorRampPalette(c("green4", "white"))(100), alpha=0.75, add=TRUE, 

legend=FALSE) 



 

An example using default arguments 

Findings suggest that the default arguments for bulkshift() are generally the most transferable of the 

methods included in the function. Linear regression will be used by default. The function checks for 

required packages and installs any that are not found; this can take a few minutes, but only occurs on the 

first run. 

bulk.shift <- bulkshift(bedford_400, bedford_200) 

 

Loading required package: rgdal 

Loading required package: dismo 

Loading required package: ggplot2 

 

Aligning rasters...  

Fitting simple regression...  

Predicting new raster...  

Plotting error...  

 

Complete. List contains 1: the shifted raster, 2: the fitted model, 3: bulk shift statistics  

 

Fitted MAE = 1.952222 ; K-S statistic D = 0.1813082 

The second to last line above describes the function output. The last line gives the evaluation statistics. 

Because err.plots=TRUE by default, the function has returned a plot of the error between backscatter 

datasets as function of the shift layer (400 kHz), including the fitted error model. In other words, the red 

regression line in the following plot represents the values that are applied to a given dB level in the 400 

kHz dataset in an attempt to match the 200 kHz values. 



 

Next, we can access the function outputs. They are a list comprising three elements. 

names(bulk.shift) 

 

"shifted"   "model"     "fit.stats" 

We can access each element of the list. For example, check and plot the shifted raster, check the model 

parameters, and investigate the evaluation statistics: 

#check the raster 

bulk.shift$shifted 

 

class : RasterLayer 

dimensions : 1794, 2142, 3842748  (nrow, ncol, ncell) 

resolution : 1, 1  (x, y) 

extent : 449190, 451332, 4947232, 4949026  (xmin, xmax, ymin, ymax) 

coord. Ref. : +proj=utm +zone=20 +datum=WGS84 +units=m +no_defs +ellps=WGS84   +towgs84=0,0,0 

data source : in memory 

names : layer 

values : -32.72094, 4.819676  (min, max) 

 

#plot the raster 

plot(bulk.shift$shifted) 

 



 

#check model parameters 

bulk.shift$model 

 

Call:  glm(formula = err ~ shift, family = family(link = link), data = back_data) 

 

Coefficients: 

(Intercept)        shift   

     5.0406      -0.2126   

 

Degrees of Freedom: 180763 Total (i.e. Null);  180762 Residual 

Null Deviance:     1445000  

Residual Deviance: 1133000  AIC: 844700 

 

#check evaluation statistics 

bulk.shift$fit.stats 

 

      MAE         D  

1.9522219 0.1813082 

We can then export the corrected backscatter layer to the working directory for use in other GIS 

applications. 

writeRaster(bulk.shift$shifted, filename = "bedford_400_corrected", format="GTiff") 



Additional options 

We can choose to output additional information on the bulk shift, and also mosaic the corrected layer 

with the target to produce a single harmonized dataset. 

bulk.shift <- bulkshift(bedford_400, bedford_200, mosaic=TRUE, save.data=TRUE, dist.plots=TRUE) 

 

Aligning rasters...  

Fitting simple regression...  

Predicting new raster...  

Plotting error...  

 

Loading required package: reshape2 

Loading required package: cowplot 

 

Creating harmonized mosaic...  

 

Complete. List contains 1: the shifted raster, 2: the harmonized mosaic, 3: the fitted model, 4: bulk shift 

statistics, 5: training data and predictions  

 

Fitted MAE = 1.952222 ; K-S statistic D = 0.1813082 

Because we set dist.plots=TRUE, the output now also includes plots of the probability density function 

(PDF) and cumulative distribution function (CDF) for the shift, shifted, and target datasets. These show 

that the shifted distributions match the target more closely. 

 



We have also chosen to save the modelling data frame (save.data=TRUE), which contains observations of 

the target and shift datasets, and the error between them, which is used to create the model. The last 

column contains the shifted values. These data could be used to set up an independent evaluation, 

conduct further modelling and correction, or produce custom plots.  

head(bulk.shift$data) 

 

target shift dummy err shifted

74515 -10.817500 -28.55511 1 17.73761 -17.44239

74516  -9.890500 -27.54522 1 17.65472 -16.64725

76624 -12.931600 -28.36830 1 15.43670 -17.29531

76625 -11.401750 -27.96323 1 16.56148 -16.97638

76626  -9.996727 -27.09061 1 17.09389 -16.28932

78732 -13.106501 -27.73611 1 14.62961 -16.79755

 

plot(bulk.shift$data$shift, bulk.shift$data$err) 

abline(bulk.shift$model, col="red") 

 

 

We have also saved the harmonized mosaic, which can be plotted and exported. 

plot(bulk.shift$mosaic, col=colorRampPalette(c("black", "white", "orange", "red"))(100)) 

writeRaster(bulk.shift$mosaic, filename = "bedford_400_200_mosaic", format="GTiff") 



 

Additional variables 

If additional environmental variables that might help inform the correction are available, we can read 

them in as rasters. 

#read in bathymetry raster from working directory 

bathy <- raster("bathymetry") 

 

#check the raster information and plot it 

bathy 

 

class : RasterLayer 

dimensions : 1794, 2142, 3842748  (nrow, ncol, ncell) 

resolution : 1, 1  (x, y) 

extent : 449190, 451332, 4947232, 4949026  (xmin, xmax, ymin, ymax) 

coord. Ref. : +proj=utm +zone=20 +datum=WGS84 +units=m +no_defs +ellps=WGS84   +towgs84=0,0,0 

data source : C:/Documents/bulkshift_files/bathymetry 

names : bathymetry 

values : -63.1, -13.87  (min, max) 

 

layout(matrix(c(1,2), nrow=1, ncol=2)) 

plot(bedford_400, col=colorRampPalette(c("black", "white", "orange", "red"))(100), legend=FALSE) 

plot(bathy, col=colorRampPalette(c("blue", "green", "yellow", "red"))(100), legend=FALSE) 



 

Both layers cover approximately the same area, so we can use bathymetry to help predict the bulk shift. 

Note: if the extents of additional covariates are less than the shift backscatter layer, all raster layers will 

automatically be masked and resampled to the layer of minimum extent by the bulkshift() function. We 

recommend ensuring that the extent of additional covariates is appropriate before running bulkshift(). 

bulk.shift <- bulkshift(bedford_400, bedford_200, preds=bathy) 

 

Aligning rasters...  

Fitting multiple regression...  

Predicting new raster...  

Plotting error...  

 

Loading required package: plot3D 

Loading required package: plot3Drgl 

Loading required package: rgl 

 

Complete. List contains 1: the shifted raster, 2: the fitted model, 3: bulk shift statistics  

 

Fitted MAE = 1.765896 ; K-S statistic D = 0.111759 

From the output, we can see that the fitted evaluation statistics (MAE and D) are better with the addition 

of bathymetry. Because we now have two predictors, the function will output an interactive 3d error plot 

using the plot3D, plot3Drgl, and rgl packages, with the multiple linear regression now represented as a 

plane. Here, we can explore the error in relation to the shift backscatter values and the bathymetry (called 

“Var 1” on the plot) using the mouse. Error plots are useful for exploring relationships between covariates 

and the error, and for diagnosing model fit, but they can be disabled using err.plots=FALSE. 



 

Alternative modelling methods 

The simplest method within the bulkshift() function is "mean", which adds the mean of the backscatter 

error to the shift layer. This is equivalent to an intercept-only model. It can run with additional covariates, 

but they will not influence the results. 

bulk.shift <- bulkshift(bedford_400, bedford_200, shift.method="mean", mosaic=TRUE, 

dist.plots=FALSE) 

 

Aligning rasters...  

Shifting layer by the mean of the error...  

Predicting new raster...  

Plotting error...  

Creating harmonized mosaic...  

 

Complete. List contains 1: the shifted raster, 2: the harmonized mosaic, 3: the fitted model, 4: bulk shift 

statistics  

 

Fitted MAE = 2.238535 ; K-S statistic D = 0.1330243 

 



 

The evaluation statistics are not as good than the regression methods. The error plot shows the mean 

value, which is simply added to all values in the shift layer. It is important to note that while the mean 

shift has the highest bias of all the methods included (the least flexible model fit), it also has the lowest 

variance, meaning that its performance on new data should be very similar to what is observed in model 

fitting. This method may require fewer samples (i.e., less overlap) than other methods, but may not 

produce as good results across the entire dataset. One potential approach is to first try the mean shift, 

observe the error plots and harmonized mosaic, then increase the model complexity as necessary using 

different methods, such as regression, and additional covariates. 

dev.off() #may need to reset the graphics device after  previous plots 

plot(bulk.shift$mosaic, col=colorRampPalette(c("black", "white", "orange", "red"))(100)) 

 



 

We can see visible differences between high dB values of the two datasets in the bottom right of the 

harmonized mosaic. The mean shift has not performed as well at these values as regression. 

Conversely, boosted regression trees (BRT) are a highly flexible algorithm capable of modelling specific 

errors – they are implemented in the bulkshift() function using gbm.step() from the dismo package. The 

default hyperparameters for BRT in the bulkshift() function have been found to perform generally well 

(tc=2, lr=0.01, bf=0.5), but these can be tuned for individual applications to adjust the flexibility of the 

fitted model (i.e., the bias-variance tradeoff) – particularly the tree complexity (tc) and learning rate (lr). 

See the dismo package and Elith et al. (2008) for more details on these. BRT can take a long time to run 

with large datasets. We can subsample the dataset to speed up processing using sample=TRUE and 

samp.size=0.25; verb=TRUE tells the function to report the BRT progress. 

bulk.shift <- bulkshift(bedford_400, bedford_200, shift.method="brt", dist.plots=FALSE, sample=TRUE, 

samp.size=0.25, verb=TRUE) 

Aligning rasters...  

Fitting BRT model...  

 

Loading required namespace: gbm 

 

 GBM STEP - version 2.9  

  

Performing cross-validation optimisation of a boosted regression tree model  

for err and using a family of gaussian  

Using 45191 observations and 2 predictors  

creating 10 initial models of 50 trees  

 

 folds are unstratified  

total mean deviance =  7.9967  



tolerance is fixed at  0.008  

ntrees resid. dev.  

50    6.8344  

now adding trees...  

100   6.3687  

150   6.1634  

200   6.0622  

250   6.0055  

300   5.9715  

350   5.9485  

400   5.9329  

450   5.9218  

500   5.9143  

… 

fitting final gbm model with a fixed number of 900 trees for err 

 

mean total deviance = 7.997  

mean residual deviance = 5.879  

  

estimated cv deviance = 5.899 ; se = 0.04  

  

training data correlation = 0.515  

cv correlation =  0.512 ; se = 0.004  

  

elapsed time -  0.04 minutes  

 

Predicting new raster...  

Plotting error...  

Complete. List contains 1: the shifted raster, 2: the fitted model, 3: bulk shift statistics  

 

Fitted MAE = 1.871337 ; K-S statistic D = 0.1441216  

There were 11 warnings (use warnings() to see them) 

 



 

The output from gbm.step() is provided because we have specified verb=TRUE; it indicates the model 

progress. The left column is the current number of trees in the model, and the right is the residual 

deviance (these have been abridged for this tutorial with “…”). The model will stop fitting once the 

decrease in deviance falls below a threshold (determined by the tolerance). It is recommended to grow 

around 1000 trees (Elith et al., 2008), and this can be achieved by tuning tc and lr if the default results in 

fewer. 

We can add bathymetry to the BRT model to see how it handles extra variables. This time, we will leave 

verb=FALSE (the default), but will set dist.plots=TRUE to see what effect the model has on the data 

distribution. Note: we can add as many predictors as desired, but error plots will not be produced when 

there are more than three. A potential approach for visualizing these is to set save.data=TRUE, then 

reduce the dimensionality (e.g., using PCA). 

bulk.shift <- bulkshift(bedford_400, bedford_200, preds=c(bathy), shift.method="brt", mosaic=TRUE, 

dist.plots=TRUE, sample=TRUE, samp.size=0.25) 

Aligning rasters...  

Fitting BRT model...  

Predicting new raster...  

Plotting error...  

Creating harmonized mosaic...  

Complete. List contains 1: the shifted raster, 2: the harmonized mosaic, 3: the fitted model, 4: bulk shift 

statistics  

 

Fitted MAE = 1.429414 ; K-S statistic D = 0.07468301 



 

 

The data distribution plots show that the shifted dataset values now match the target closely, and the 3d 

error plot shows that the model fit is complex. It is extremely important to note, though, that these 



represent the fitted model, and do not necessarily inform on its performance with new data. Our results 

have shown that the performance of flexible models on independent data was usually much worse than 

the fitted statistics indicated – flexible models such as these should be used with caution. The mosaic can 

sometimes provide further insight. 

dev.off() 

plot(bulk.shift$mosaic, col=colorRampPalette(c("black", "white", "orange", "red"))(100)) 

 

The model certainly seems to have reproduced the backscatter intensity of features that are visible in the 

target layer but there are now also features that seem suspect, such as the stripe of seabed in the eastern 

portion of the mosaic at around 16 dB. This feature was not visible in the original shift layer and may be 

an artefact caused by overfitting the bathymetry layer. Our simulations for this dataset suggest that 

multiple linear regression did, in fact, outperform BRT on withheld test data. 

Further model customization 

The bulkshift() function provides a streamlined framework for backscatter harmonization using several 

approaches tested in our paper, but many other statistical models could be used. When this is desirable, 

a useful approach is to first run a simple bulk shift using shift.method="mean", and save.data=TRUE, 

including any additional predictors, which will initially be ignored by the mean shift. This will align the 

rasters, extract the area of overlap, calculate the error between datasets, subsample if desired, and save 

the data. The saved data can then be used to test and apply other modelling approaches, and these can 

be compared to the mean shift, which acts as a benchmark. 

bulk.shift <- bulkshift(bedford_400, bedford_200, preds=c(bathy), shift.method="mean", 

save.data=TRUE) 

 



Aligning rasters...  

Shifting layer by the mean of the error...  

Predicting new raster...  

Plotting error...  

 

Complete. List contains 1: the shifted raster, 2: the fitted model, 3: bulk shift statistics, 4. training data 

and predictions  

 

Fitted MAE = 2.238535 ; K-S statistic D = 0.1330243 

 

head(bulk.shift$data) 

 

target shift bathy err shifted

74515 -10.817500 -28.55511 -62.19810 17.73761 -18.13990

74516  -9.890500 -27.54522 -62.17804 17.65472 -17.13001

76624 -12.931600 -28.36830 -62.15000 15.43670 -17.95310

76625 -11.401750 -27.96323 -62.15000 16.56148 -17.54803

76626  -9.996727 -27.09061 -62.15000 17.09389 -16.67541

78732 -13.106501 -27.73611 -62.21413 14.62961 -17.32091

 

#modelling the error using multivariate adaptive regression splines 

library(earth) 

mars.model <- earth(err ~ shift, data=bulk.shift$data) 

 

#plot the fitted model values against the observed error for the shift layer 

j <- order(bulk.shift$data$shift) 

 

plot(bulk.shift$data$shift, bulk.shift$data$err, cex=0.25, pch=19, xlab="Shift backscatter (dB)", 

ylab="Error (dB)") 

 

lines(bulk.shift$data[j,2], mars.model$fitted.values[j], col="red", lwd=2) 



 

#predict the error raster and add it to the shift layer 

mars.corr <- (predict(bedford_400, mars.model)) + bedford_400 

 

#align origin and extent of the corrected layer with the target then plot the mosaic 

mars.align <- resample(mars.corr, extend(bedford_200, mars.corr), method="ngb") 

 

plot(mosaic(mars.align, bedford_200, fun=mean), col=colorRampPalette(c("black", "white", "orange", 

"red"))(100)) 
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