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Abstract: Sea ice drift detection has the key role of global climate analysis and waterway planning. 

The ability to detect sea ice drift in real-time also contributes to the safe navigation of ships and the 

prevention of offshore oil platform accidents. In this paper, an Enhanced Delaunay Triangulation 

(EDT) algorithm for sea ice tracking was proposed for dual-polarization sequential Synthetic 

Aperture Radar (SAR) images, which was implemented by combining feature tracking with pattern 

matching based on integrating HH and HV polarization feature information. A sea ice retrieval 

algorithm for feature detection, matching, fusion, and outlier detection was specifically developed 

to increase the system’s accuracy and robustness. In comparison with several state-of-the-art sea ice 

drift retrieval algorithms, including Speeded Up Robust Features (SURF) and the Oriented FAST 

and Rotated BRIEF (ORB) method, the results of the experiment provided compelling evidence that 

our algorithm had a higher accuracy than the SURF and ORB method. Furthermore, the results of 

our method were compared with the drift vector and direction of buoys data. The drift direction is 

consistent with buoys, and the velocity deviation was about 10 m. It was proved that this method 

can be applied effectively to the retrieval of sea ice drift. 

Keywords: Delaunay Triangulation; dual-polarization; feature tracking; pattern matching; sea ice 

tracking; Sentinel-1; Synthetic Aperture Radar (SAR) 

 

1. Introduction 

Sea ice drift has an essential influence on the distribution of sea ice on different temporal and 

spatial scales, and presents a potential risk for navigation and other industrial activities [1]. 

Nowadays, monitoring sea ice drift is not only crucial for safe navigation, but also greatly crucial to 

climate analysis for all of the world. However, due to the lack of ground stations in sea ice-covered 

areas, there is still a shortage of dependable sea ice drift products for the application. 

With the development of science and technology, a large number of tools are used to observe 

sea ice conditions. Sea ice drift was first measured with ship observations by Nansens expedition in 

1893–1896 [2]. Since 1979, the International Arctic Buoy Programme (IABP) has installed about 20 

buoys per year to build a network of buoy data to monitor sea level pressure, surface air temperature, 

and ice motion throughout the Arctic Ocean. These buoys data can provide continuous local 

measurements, but the spatial distribution is too sparse to provide a large area of the velocity field. 

In order to effectively observe and predict sea ice motion, it is necessary to obtain the movement of 
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sea ice on large scales. Since the 1990s, with the development of satellite remote sensing technology, 

sea ice drift has been estimated from satellite data with daily and global coverage of the polar oceans 

[3–6]. Thus, the coverage scale problem was effectively solved. Currently, the most commonly 

satellite sensors include Advanced Very High-Resolution Radiometer (AVHRR) [7–9], 

SeaWinds/QuikSCAT enhanced resolution data [10], Special Sensor Microwave/Imager (SSM/I) [11–

13], and Synthetic Aperture Radar (SAR) [14–18]. The microwave radiometers and scatter meters 

customarily monitor large-scale sea ice drift, but due to their limited resolution, the local movement 

of sea ice cannot be obtained. Fowler et al. [19] used a combination of the Scanning Multichannel 

Microwave Radiometer (SMMR), SSM/I, AVHRR, and the optical data to first compute the daily 

movement of Arctic sea ice from sequential satellite images using the maximum-cross correlation 

(MCC) method, and obtained sea ice motion vectors by merging ice motions from satellite-based 

infrared and multichannel microwave (MW) images, buoy measurements, and reanalysis data [20,21]. 

These approaches are efforts to overcome the resolution problem of passive microwave measurement. 

Nowadays, the Synthetic Aperture Radar (SAR) has the advantages of high temporal resolution and 

large spatial coverage, which are desirable for monitoring the rapid motion of sea ice. Sentinel-1 SAR 

is one of desirable satellite, which is a polar-orbiting, all-weather, day-and-night radar imaging 

mission for land and ocean services. Currently, the Sentinel-1A and B together provide frequent and 

reliable data, which will provide significant observations for the Arctic. As the amount of SAR 

imagery is growing, improving the efficiency of the sea ice drift retrieval algorithms is required. 

In the past decades, several methods have estimated sea ice drift with satellite sensors data, 

including pattern matching, feature tracking, and optical flow [22], as well as the combination of 

different methods. The pattern matching methods include the maximum cross-correlation (MCC) 

[2,23] and phase-correlation (PC) [24] method. The MCC method has proven to be robust and simple 

and has been well-validated, but the computational inefficiency limits its widespread application and 

it cannot capture the rotational component of sea ice motion. The PC method uses the Fast Fourier 

Transform (FFT), so its computational efficiency is several times faster than the MCC algorithm [25] 

and it has the ability to monitor the rotation sea ice motion, but a weakness is that the peak value in 

the phase correlation matrix does not provide an evident measure of similarity between two sub-

images [26]. The feature tracking method contains Scale-Invariant Feature Transform (SIFT) [27,28], 

Speeded Up Robust Features (SURF) [29], Oriented FAST and Rotated BRIEF (ORB) [30], and other 

enhanced versions [31–33]. This kind of algorithm can detect features from sequential images and 

can optimize feature correspondence. Compared with the MCC method, it is more computationally 

efficient to handle shear zones, rotation, and divergence/convergence zones, but the resulting 

features may be unevenly distributed in space, and large gaps may occur between features vectors 

[34]. 

In order to resolve the above problems, an Enhanced Delaunay Triangulation (EDT) sea ice 

tracking algorithm that combines with feature tracking and pattern matching was proposed to 

monitor sea ice drift with high-resolution dual-polarization Sequential Sentinel-1 SAR images. The 

remainder of this paper is divided into four sections. Section 2 introduces the study area and SAR 

data. In Section 3, some details of our sea ice drift algorithm are described. Section 4 presents the 

results of the experimental and the EDT algorithm performance in comparison with other state-of-

the-art methods. Finally, Section 5 gives the conclusions and future avenues for research. 

2. Study Area and Data 

The Sentinel-1 mission includes two satellites, Sentinel-1A (launched in April 2014) and Sentinel-

1B (launched in April 2016), each carrying a single C-band SAR with a center frequency of 5.405 GHz. 

The most commonly used mode of the Sentinel-1 on sea, glacier, and polar areas is the Extra Wide 

mode Ground Range Detected Medium Resolution (EW GRDM), which can cover an area of 400 km 

× 400 km per image with a resolution of 40 m × 40 m. Also, its excellent coverage performance and 

revisit performance can cover the entire European and Canadian regions and the surrounding 

maritime areas in a single day, which provides strong support for monitoring sea ice drift. The 

Sentinel-1 C-band SAR sensor supports single polarization (HH/VV) and dual polarization (HH + 
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HV and VV + VH). We used two pairs of dual-polarization (HH+HV) images acquired over the 

Beaufort Sea to illustrate the method performance, which are shown in Figure 1, and the data 

information are shown in Table 1. 

 

Figure 1. Location of the study area and the Synthetic Aperture Radar (SAR) data for the sea ice drift 

retrieval. 

Table 1. List of Sentinel-1 SAR images used in this paper. 

Datasets Start Time End Time Geographic Extent Dual Polarization 

1 
2017-10-10 

17:11:42 

2017-10-12 

16:55:20 

79°01′—81°45′N 

119°42′—134°25′W 
HH+HV 

2 
2017-10-16 

16:23:34 

2017-10-18 

16:07:14 

76°52′—78°15′N 

140°49′—157°06′W 
HH+HV 

3. Methods 

Our sea ice drift algorithm is based on multi-polarization Sequential SAR images and is designed 

to combine feature tracking and pattern matching. As described in the flowchart in Figure 2, the 

algorithm included five main stages: (A) Data preprocessing, (B) feature detection and description, 

(C) feature matching and fusion, (D) outlier detection and correction, and (E) enhanced Delaunay 

Triangulation sea ice tracking. 
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Figure 2. Flowchart of the sea ice drift retrieval algorithm. 

3.1. Data Preprocessing 

The preprocessing of Sentinel-1 data was performed as follows. First, the normalized radar cross 

section was calculated as follows: 

2
0

2
= i

i

DN

A
  (1) 

where 
0  denotes the normalized radar cross section, iDN  represents the digital number 

provided in the source TIFF file, and 
2
iA  expresses the value of normalization coefficient and i  is 

an index of a pixel [30]. 

In order to effectively extract feature information, the normalized radar cross section 
0  has 

to be transformed into intensity values. This transformation was calculated as follows: 
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-
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The next stage was denoising processing for the input SAR images to reduce the SAR speckle 

noise and preserve the edge details and object boundaries. In this paper, we used the image 

despeckling convolutional neural network (ID-CNN) method [35], which can automatically remove 

speckle from the input noisy images. 

In order to select an effective denoising method, we compared the result of SAR block-matching 

3-D (SAR-BM3D) [36] with the ID-CNN [35] method. The experimental results are shown in the 

Figure 3. Figure 3a shows the original SAR image, while Figure 3b,c show the results of the SAR 

block-matching 3-D (SAR-BM3D) method [36] and ID-CNN method [35], respectively. We selected a 

row of SAR image data with a red line to compare the spatial intensity changes as shown in Figure 

3a. Figure 3d–f shows the spatial luminance profile changes for the unfiltered SAR image, filtered by 

the SAR-BM3D and ID-CNN method, respectively. The advantages of using the ID-CNN compared 

with the SAR-BM3D method are obvious, as the SAR-BM3D method produces over-smooth edges, 

and many details may be lost during the processing of despeckling. In contrast, the INCNN not only 

reserved the sharp edges and fine details, but also achieved visually pleasant results in the smooth 

region. Thus, this advantage is beneficial to subsequent feature extraction. 
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Figure 3. (a) Original SAR image, of size 512 × 512 pixels, we selected a row of SAR image data with 

a red line to compare the spatial luminance profile changes. (b) Filtered results with the SAR block-

matching 3-D (SAR-BM3D) method. (c) Filtered results with the image despeckling convolutional 

neural network (ID-CNN) method. Spatial luminance profile changes at the red row of the SAR image: 

(d) Unfiltered SAR image, (e) filtered via SAR-BM3D method, and (f) filtered via ID-CNN method. 

3.2. Feature Detection and Description 

The second step is feature detection, which is used Scale-Invariant Feature Transform (SIFT) 

algorithm [27]. This algorithm attempts to obtain scale-invariant features using a staged filtering 

method. In our method, the scale space of a SAR image can be defined as  L x,y, , which is 

calculated as: 

       L x,y, G x,y, I x, y  (3) 

where the  G x,y,  stands for variable-scale Gaussian function, calculated as 

   2 2 2- /2

2

1
e

2







x +y
G x, y, ,   stands for the scale space factor,  I x,y  represents the 

original SAR image, and   is the convolution operation in x and y . 

In order to detect stable key point locations in the scale space, we obtained the scale-space 

extreme  D x, y,  from the difference of Gaussians function convolved with the SAR image 

 I x,y . 
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D x, y, G x, y,k G x, y, I x, y

L x, y,k L x, y,
 (4) 

where k  is a constant multiplicative factor. 

For the sake of obtaining the local maxima and minima of  D x, y, , each sample point was 

compared to the eight neighbors in the scale space. It was selected only if it was larger than all of 

these neighbors or smaller than all of them. Then, we assigned a consistent orientation to each key 

point. 

3.3. Feature Matching and Fusion 

Once the feature descriptors have been obtained from the extracted key points, the next step is 

feature matching. Feature matching aims to establish a set of correspondences between features from 

two or multiple SAR images. In this section, we used the Euclidean distance to measure the similarity 

between two features. For more efficient matching, we used the nearest neighbor distance ratio 

(NNDR) [27] to verify matching. The match is correct can be verified by the ratio of the distance from 

the closest neighbor to that of the second closest neighbor. In our experiment, we set the distance 

ratio to 0.8, which can filter out 90% of the false matches while eliminating less than 5% of the correct 

matches. In this paper, we extracted features from HH and HV polarization, respectively. We found 

that the key points from HH and HV polarization had different location information, so we fused the 

feature points. The experiment details are discussed in Section 4.1. 

3.4. Outliers Detection and Correction 

In this paper, we focused on improving the robustness of the method. In order to reduce the 

impact of potentially feature vectors on the following steps, we used the Pauta Criterion to eliminate 

the outliers. The Pauta Criterion was proposed for the outlier filtering of the sample data. The process 

of detecting outliers by the Pauta Criterion can be listed as follows: 

 
0.68 if  ( , + )   

p 0.95     if  ( 2 , +2 )

0.99 if  ( 3 , +3 )

   

   

   

 


  
  

x

x x

x

 (5) 

where   and   denote the mean and standard values of the sample data, respectively. The basic 

thought of the Pauta Criterion is to set a confidence interval to remove the outliers. When the 

measured data is within the (μ-3σ,μ+3σ) range, 0.1% of data are the outliers, which are not desirable, 

so these data should be removed from the measured data. In this paper, in order to effectively remove 

outliers, we set confidence intervals within (μ-σ,μ+σ), which can filter out more false matches while 

preserving more correct matches. The experiment details are discussed in Section 4.2. 

3.5. Enhanced Delaunay Triangulation Sea Ice Tracking Algorithm 

The proposed sea ice drift retrieved method is based on the feature tracking and pattern 

matching. First, using the feature points obtained by the above method, we constructed a triangular 

network based on the locations of feature points by the Delaunay Triangulation algorithm [37–39] as 

shown in Figure 4. Second, we selected one group of the corresponding triangle A1B1C1 and A2B2C2 

from the first image (Image-1) and the second image (Image-2) as shown in Figure 5. Then, we 

calculated the center of gravity P1 and P2 of each triangle as illustrated by Figure 5, and a group of 

new feature points was obtained. However, there were still some open problems that needed to be 

solved, including the fact that that feature points P1 and P2 may not be optimally matched. In order 

to solve this problem, we used a pattern matching algorithm to obtain optimal and feature points. 
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Figure 4. Constructed a triangular network by the Delaunay Triangulation algorithm. 

 

Figure 5. Combination of feature tracking and pattern matching algorithm. 

In our experiments, the pattern matching method was based on the maximum cross-correlation 

(MCC) method. Considering a small sub-image 1I  around the point of interest  1 1 1,p x y  from 

the Image-1 with size 50×50 (gray square) and a larger sub-image around the point  2 2 2p ,x y  from 

the Image-2 with size 200×200 (red square), the normalized cross-correlation matrix NCC [40,41] was 

defined as: 

 
   

1 2

1 1 2 2

,
I I

NCC x y
I I I I




  


 

 (6) 

where 
50 50 50 50

1 2,  I R I R . In the matrix NCC, we obtained the maximum normalized cross-

correlation value, and its coordinate value represents the best match point  ' ' '
1 1 1p ,x y  in the second 

image. 
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argmax

' '
1 1, , ,x y x y NCC x y  (7) 

To explain the pattern matching process, an example is shown in Figure. 5. A sub-image was 

selected from the first image (as shown in Figure 6a with a green empty square). Cross-correlations 

were computed between the sub-image, with a large search area in the second image (as shown in 

Figure 6b with a yellow empty square). Figure 6c shown the cross-correlation matrix. The sub-image 

(as shown in Figure 6b with a red empty square) is the area that produced the highest maximum 

cross-correlation coefficient with the sub-image (yellow empty square) in the first image. As shown 

in Figure 6b, the drift vector of the sea ice is the deviation between the green empty square and the 

red empty square. 

(a) First image (b) Second image (c) NCC 

Figure 6. Illustration of the maximum cross-correlation (MCC) method. (a) First image. (b) Second 

image. (c) The cross-correlation matrix between sub-image with a green empty square and the sub-

image with a yellow empty square. 

4. Experimental Results and Discussion 

4.1. Compared the Performance of Feature Extraction 

In our experiment, we extracted features from HH and HV polarization, respectively. These 

features points were matched by the NNDR [27] method, and the result can be seen in Figure 7a,b, in 

which we obtained 155 and 141 key points from the HH and HV polarization image, respectively. 

Comparing Figure 7a,b, we found that the key points from the HH and HV polarization had different 

location information, so we fused the features from the HH with the features from the HV 

polarization, as shown in Figure 7c. This fusion strategy increased the number of features to 296, 

which was much more than the features obtained by the other two single-polarization images. 

In order to evaluate the density and distribution of feature vectors, we calculated the closest 

distance between adjacent feature points. Figure 8 shows a boxplot of the closest distances for the 

features as shown in Figure 7. As detailed in Figure 8, combining the vectors from the HH and HV 

polarization provided a minimal median distance and very narrow interquartile range. Furthermore, 

it had only a few feature points of closest distance exceeding 40 pixels. In the HH polarization mode, 

it obtained a compromised median distance, but had a very wide interquartile range. Under the HV 

polarization mode, it obtained a compromise in the interquartile range, but had a large median 

distance. From this analysis, we can draw a conclusion that the combined vectors from the HH and 

HV polarization were especially adapted for feature fusion. 
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(a) (b) (c) 

Figure 7. Comparison of successfully matched key points from (a) HH polarization, (b) HV 

polarization, and (c) HH+HV polarization. The key points are extracted from case 1. 

 

Figure 8. Boxplot of distances between neighbor vector, tracked with HH, HV, and HH+HV 

polarization for case 1. 

4.2. Compared the Performance of the Outliers Removing 

To improve the accuracy of the sea ice drift tracking, the resulting set of putative feature matches 

must be checked by a criterion. The criterion is that if the end position of the feature tracking deviates 

from start position by more than a threshold value pixels, these vectors should be deleted. In this part, 

we used the Pauta Criterion to remove the outliers, and compared the result with the Random Sample 

Consensus (RANSAC) method [42]. The RANSAC algorithm is a widely used robust estimator that 

has become a standard in the field of image processing. It is capable of smoothing data containing a 

significant percentage of outliers and is thus ideally suited for applications in automated image 

analysis. 

In our experiment, the horizontal and vertical displacements of feature points were used to 

simulate outliers. According to Pauta Criterion, we set the confidence intervals within (μ-3σ,μ+3σ), 

(μ-2σ,μ+2σ) and (μ-σ,μ+σ), respectively. Figure 9 shows the successful elimination of outliers, and 

we can notice that as the confidence interval grew, the number of outliers increased as shown in 

Figure 9bd. Meanwhile, we can notice that both Pauta Criterion and RANSAC method can remove 

outliers. The RANSAC method not only removed outlier, but also eliminated the correct feature 

vector as shown in Figure 9e. 

Table 2 illustrates the statistics of the outliers with a different method for case 2. We can notice 

that when the confidence interval was (μ-3σ,μ+3σ) and (μ-2σ,μ+2σ), there was still a small number 

of outliers in the feature points. When using the RANSAC method, the outlier was almost nonexistent, 
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but 149 good matching features were eliminated. However, when the confidence interval was (μ-

σ,μ+σ), it not only removed all the outliers, but also kept all of the good matching points. In the course 

of this analysis, we demonstrated that the confidence interval (μ-σ,μ+σ) is especially suitable for 

outliers detection and correction. 

(a) (b) (c) 

  
(d) (e) 

Figure 9. Comparing the performance of the outlier removal with the horizontal displacements by 

different methods for case 2. The x-axis represents the simulated start position x1, and the y-axis 

represents the end position x2. (a) Original image. (b) Result of (μ-3σ,μ+3σ). (c) Result of (μ-

2σ,μ+2σ). (d) Result of (μ-σ,μ+σ) (e). Result of Random Sample Consensus (RANSAC). Red points 

are identified as outliers. 

Table 2. The statistics of the outliers with different methods for case 2. 

 Unfiltered Feature RANSAC (μ3σ,μ+3σ) (μ2σ,μ+2σ) (μσ,μ+σ) 

Feature points 296 118 276 270 267 

Bad matches 29 0 9 3 0 

Error removes - 149 0 0 0 

4.3. Comparison with SURF and ORB Method 

To evaluate our sea ice drift retrieval method, we compared the result of the ETD method with 

the SURF [29] and ORB algorithms [41,43] in the two cases described in Figure 1. The SURF algorithm 

is a novel-scale and rotation-invariant detector and descriptor. This operator solves the disadvantages 

of SIFT’s high computational complexity, and it approximates or even outperforms previously 

proposed schemes with respect to repeatability, distinctiveness, and robustness. It can also be 

computed and compared much faster. The ORB method is a very fast binary descriptor based on 

BRIEF, which is rotation invariant and resistant to noise. The efficiency has been tested on several 

real-world applications, including object detection and patch-tracking on a smartphone. The 

distribution of feature points can be seen from Figure 10. We observed that the SURF feature points 

extractor showed the most sparse key points, with many gaps and large distances between feature 
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points as shown in Figure 10a. Compared with the SURF method, the ORB method was improved, 

but there were still a lot of gaps between feature points, as shown in Figure 10b. As evident from 

Figure 10c, the EDT method performed well in feature space distribution and feature distance 

compared to the other two methods. 

  
(a) SURF (b) ORB (c) EDT 

 
(d) SURF (e) ORB (f) EDT 

Figure 10. The results of feature points tracking with SURF, ORB, and EDT methods. Results of (a) SURF, 

(b) ORB and (c) EDT methods for case 1. Results of (d) SURF, (e) ORB and (f) EDT methods for case 2 

In order to confirm these observations, we used a Voronoi diagram to evaluate the spatial 

density of feature points. As detailed in Figure 11, the color mapping zone from blue to red indicates 

that the spatial density varies from high to low. It can be observed that all of the algorithms tended 

to be deep blue in the center position, and there were only nonblue regions in the marginal region, 

which was largely due the fact that the target area had drifted away in the second image. As evident 

in Figure 11, SURF provided local low-density regions and the distribution was irregular. ORB 

generated relatively regular distribution but still had sparse regions. However, the performance of 

our method was quite outstanding in all aspects. 
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(a) SURF (b) ORB (c) EDT 

   
(d) SURF (e) ORB (f) EDT 

Figure 11. Spatial Density of feature points tracking with the SURF, ORB, and EDT methods. Results 

of (a) SURF, (b) ORB and (c) EDT methods for case 1. Results of (d) SURF, (e) ORB and (f) EDT 

methods for case 2. 

Figure 12 illustrates the sea ice drift vectors with three methods. It is evident that the distribution 

of drift vectors obtained from the SURF and ORB methods were not uniform, and there were a lot of 

gaps. The number of sea ice drift vectors with our method was two times greater than with SURF or 

SIFT, and the distribution of sea ice drift vectors was more even. In addition, the gaps between 

neighbor vectors were noticeably lower. 

 
(a) SURF (b) ORB (c) EDT 
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(d) SURF (e) ORB (f) EDT 

Figure 12. Visualization of sea ice drift vectors with the SURF, ORB, and EDT methods. Results of (a) 

SURF, (b) ORB and (c) EDT methods for case 1. Results of (d) SURF, (e) ORB and (f) EDT methods for 

case 2. 

4.4. Comparison with Adjacent Buoys 

In this paper, the IABP (International Arctic Buoy Programme) Buoy dataset was used for 

verification. This dataset contains the position information (latitude/longitude) of the buoys and the 

corresponding time information, so we were able to easily calculate the velocity of the buoy for 

specific time. To evaluate the algorithm performance, we compared our experiment result against the 

sea ice drift speed obtained by the buoy data. Due to the limited number of buoys, we had to compare 

the latitude/longitude information of the buoy data and the experimental area and select the nearest 

buoys for case 1 and case 2 to verify the accuracy of the algorithm. There may be some errors in this 

verification method, but it was the best evaluation methods we could find at this stage. 

The speed of the sea ice drift with our method can be calculated by the following formula: 

2 2
2 1( )   x y G D tSv d d t  (8) 

where GSD  denotes the ground sample distance, which describes the physical size of one SAR 

image pixel, and 2 1 xd x x  and 2 1 yd y y  is the offset component of sea ice in the 

horizontal and vertical direction (in pixels), respectively. 1 1( , )x y  and 2 2( , )x y  are the positions of 

the targets in the two-scene image at a time 1t  and 2t , and 2 1( )t t  represents the time interval 

for monitoring the drift of sea ice. 

As shown in Table 3, the detective speed was obtained by three algorithms and was consistent 

with the velocity of the buoy. Compared with the velocity acquired from buoy data, the velocities 

obtained from the SURF and ORB methods have a large deviation. The ice drift velocity obtained by 

our method was closest to that of the buoy speed with less deviation. 

Table 3. Comparison of the average of sea ice drift speed (km/h). 

Case Buoy Speed SURF ORB EDT 

1 0.299 0.336 0.325 0.318 

2 0.286 0.328 0.316 0.298 

5. Conclusions 

Sea ice drift is one of the most important natural phenomena in the polar region. It has great 

significance for global climate analysis and waterway planning and presents a potential risk for 

navigation and other industrial activities. In order to efficiently monitor the sea ice motion, we 

proposed a novel method with Sentinel-1 SAR images for sea ice drift retrieval. Our sea ice drift 

algorithm was based on dual-polarization Sequential SAR images and was designed to combine 

feature tracking and pattern matching arithmetic. It contained several processes, including data 

preprocessing, feature detection and description, feature matching and fusion, outlier detection and 

correction, and Enhanced Delaunay Triangulation sea ice tracking with a feature tracking and pattern 

matching method. 

The algorithm application was illustrated on the retrieval of sea ice drift from two pairs of 

Sentinel-1A SAR images in 2017. First, we compared the performance of feature extraction used by 

dual polarization, and found the HH polarization was beneficial for sea ice tracking compared to the 

HV polarization. Compared with the single-polarization image, a combination of the HH and HV 

polarization extracted more feature points, and the gap between feature points was obviously 

smaller. Furthermore, it had only a few feature points of closest distance exceeding 40 pixels. 

Compared to the outlier detection and correction between the Pauta Criterion and Random Sample 

Consensus (RANSAC) method, the result showed that the confidence interval within (μ-σ,μ+σ) did 
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only remove all of the outliers, but also kept all of the good matching points, which is especially 

suitable for outlier detection and correction. Finally, we evaluated the algorithm against other feature 

tracking techniques and adjacent buoys. The results of the experiment provided compelling evidence 

that our method performed well in feature space distribution and feature distance and had a higher 

monitor accuracy than the detection from SURF and ORB methods. Then, we validated the accuracy 

of the retrieval of sea ice drift with the buoy data. We found that our result was consistent with the 

drift direction of buoy data, and the error was only about 10 m. The study concludes that the 

performance of our method was quite outstanding with respect to sea ice drift. 

This novel method is especially suitable for sea ice drift retrieval. We believe that the method 

described in our study will provide significant contributions to the retrieval of sea ice drift in the 

future. Although the algorithm has good favorable effects, it is limited to rigid motion, such as 

translation and rotation. There might be a failure in achieving nonrigid motion, such as expansion, 

contraction, and distortion. So, an important question for future studies is the retrieval of sea ice 

nonrigid motion. 
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