
remote sensing  

Article

A Spatio-Temporal Analysis of Rainfall and Drought
Monitoring in the Tharparkar Region of Pakistan

Muhammad Usman 1 and Janet E. Nichol 2,*
1 Centre for Geographical Information System, University of the Punjab, Lahore 54590, Pakistan;

muhammad.usman@connect.polyu.hk
2 Department of Geography, School of Global Studies, University of Sussex, Brighton BN19RH, UK
* Correspondence: janet.nichol@connect.polyu.hk; Tel.: +852-9363-8044

Received: 6 January 2020; Accepted: 5 February 2020; Published: 10 February 2020
����������
�������

Abstract: The Tharpakar desert region of Pakistan supports a population approaching two million,
dependent on rain-fed agriculture as the main livelihood. The almost doubling of population in the last
two decades, coupled with low and variable rainfall, makes this one of the world’s most food-insecure
regions. This paper examines satellite-based rainfall estimates and biomass data as a means to
supplement sparsely distributed rainfall stations and to provide timely estimates of seasonal growth
indicators in farmlands. Satellite dekadal and monthly rainfall estimates gave good correlations
with ground station data, ranging from R = 0.75 to R = 0.97 over a 19-year period, with tendency
for overestimation from the Tropical Rainfall Monitoring Mission (TRMM) and underestimation
from Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) datasets. CHIRPS was
selected for further modeling, as overestimation from TRMM implies the risk of under-predicting
drought. The use of satellite rainfall products from CHIRPS was also essential for derivation of spatial
estimates of phenological variables and rainfall criteria for comparison with normalized difference
vegetation index (NDVI)-based biomass productivity. This is because, in this arid region where
drought is common and rainfall unpredictable, determination of phenological thresholds based on
vegetation indices proved unreliable. Mapped rainfall distributions across Tharparkar were found
to differ substantially from those of maximum biomass (NDVImax), often showing low NDVImax in
zones of higher annual rainfall, and vice versa. This mismatch occurs in both wet and dry years.
Maps of rainfall intensity suggest that low yields often occur in areas with intense rain causing
damage to ripening crops, and that total rainfall in a season is less important than sustained water
supply. Correlations between rainfall variables and NDVImax indicate the difficulty of predicting
drought early in the growing season in this region of extreme climatic variability. Mapped rainfall
and biomass distributions can be used to recommend settlement in areas of more consistent rainfall.
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1. Introduction

The Thar Desert, located to the northwest of the Indian subcontinent, is one of the largest
subtropical deserts [1]. It is regarded as the only fertile desert in the world, with a population
dependent on rain-fed agriculture and livestock rearing, and it was declared by the World Food
Program as the most food-insecure region of Pakistan [2]. Pakistan itself is the fifth most affected
country in the long-term Climate Risk Index [3]. The climate of the Thar is characterized by low
and erratic rainfall, high temperature, and long spells of dry weather, which threaten agricultural
livelihoods. Tharparkar is the largest district in Sindh province, but climatic stations in Sindh are
sparsely distributed between 100 and 150 km apart. Mithi, the only continuous rain gauge station
within Tharparkar (Figure 1), has 277 mm of rainfall annually, but this varies greatly from year
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to year. Pressure on water resources is compounded by population growth, as the population of
Tharparkar increased from 0.4 million in the 1960s to 0.9 million in 1998 [4], and 1.649 million in
2017 [5], almost doubling over the last two decades (Table 1).
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Table 1. Human population growth in Tharparkar district [5].

1960s 1970s 1980s 1998 2017

400,000 622,233 774,617 907,000 1,649,000
0.4 m 0.62 m 0.77 m 0.91 m 1.64 m

The increase in frequency and severity of droughts in recent decades reduced agricultural yield,
leading to increased poverty and food insecurity. In fact, in February 2014, drought due to extremely
low rainfall in Tharparkar resulted in 167 human fatalities and great loss of animal life [2]. A recent
study [1] challenged prevailing notions about aridity and changing rainfall pattern in Tharparkar.
They found that lower agricultural yield, leading to food scarcity in the last four decades, was actually
accompanied by increased annual rainfall at the rate of 6.35 mm/year. Thus, they attribute recent
hardships of food insecurity and water scarcity in Tharparkar to erratic rainfall rather than overall
rainfall deficit. With an average winter temperature of approximately 20 ◦C, temperature is never a
limiting factor to plant productivity.

The scenario of increasing hunger and starvation in recent years demands a better response from
authorities in the future, for which identifying the spatial and temporal dimensions of drought in any
season is required. A number of studies used satellite datasets to identify and characterize drought by
comparing rainfall products [6,7] with vegetation indices over time [8–10]. However, the ability to
detect patterns of past drought using time-series satellite data does not automatically translate into
drought prediction ability. Indeed, Aziz et al. [11] working in Pakistan demonstrated satellites’ ability
to detect drought over large areas in Pakistan using vegetation indices, but did not show how drought
or its impacts could be predicted in advance.

More recent developments using satellite data for phenological analysis show more promise if
spatial relationships between total crop yields and seasonal phenological variables can be established.
These variables include the start, length, and end of the growing season, drought periods, and the nature
of rainfall, whether early, late, frequent, intense, or well-distributed. Such variables can potentially be
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mapped using satellite images and their trends identified [12–14]. However, different methodologies
have been shown to give significantly different seasonal transition dates [14] and algorithms effective
in one study area may not apply in others. White et al. [15] compared 10 different techniques for
defining the start of the growing season (SOS), finding average differences of ±60 days and standard
deviation of ±20 days among the different methods. Since temperature is the most common limiting
factor to growth, many studies used temperature thresholds to define growing season days such
as daily average above 5 ◦C [16]. Landscapes in more arid regions and/or those with low seasonal
amplitude of vegetation indices were shown by several studies to give the lowest agreement between
satellite normalized difference vegetation index (NDVI) and ground-measured phenology [12–14].
Kang et al. [12] also demonstrated uncertainty in phenology measurement arising from the spatial
resolutions of different satellite sensors.

Thus, satellite-based precipitation estimates may be able to provide a viable alternative to sparsely
distributed climate station data, as well as provide regular indication of vegetation productivity
over the whole region. Satellite rainfall products have high spatial and temporal resolution. Thus,
they provide timely, repetitive, and cost-effective information of rainfall at different time scales from
daily to annual [6]. However, large differences were observed in algorithm performance [17,18], and,
for drought monitoring, assessment of low rainfall situations is essential [17,19]. This would enable
spatially detailed assessment of the relationship between vegetation productivity and rainfall for
advanced drought warnings and relief measures.

The specific objectives of this study are as follows:

(1) To evaluate satellite-based rainfall estimates against ground station data in their ability to provide
realistic and useful estimates of on-ground rainfall conditions and adequacy throughout the
growing season;

(2) To determine if satellite NDVI data can be used along with satellite rainfall data to provide timely
crop forecasts, thus enabling rapid response to crop failure in drought situations.

2. Study Area

Tharparkar is the largest district in the arid Sindh province of Pakistan within latitude 24◦–26◦

north (N) and longitude 69◦–71◦ east (E), with Mithi as its district headquarters (Figure 1). Tharparkar
has a population of approximately 1.65 million and an area of 22,000 km2, 97% of which is desert.
The natural vegetation of grasses and scattered, drought-resistant shrubs and trees was replaced in
many areas by croplands, and cultivation occupies 42% of the land area, 98.4% of which is rainfed and
1.6% of which is irrigated from canals. The desert landscape of Tharparkar is dominated by Quaternary
parabolic dunes, in the form of sand ridges, deposited by pre-monsoon winds from the southwest [20].
Although the landscape rises gradually from below 50 m in the west to over 150 m in the east, local
topography is controlled by the ridge and hollow pattern of the dune–inter-dunes with cultivation
taking place mainly in inter-dune depressions. Dug wells are the only source of drinking water in the
area, with depths ranging from 18 m in the west to 80 m in the east, but the supply is increasingly
brackish, and the water table depth is falling [21]. Local people often construct small ponds lined with
clay to store rainwater for domestic and animal use. The subsistence nature of farming in this arid
region where rainfall is highly variable introduces considerable risk for livelihoods. The main crops
are millet, mung beans, and guar (cluster beans). These crops are planted in July/August soon after the
first rains and harvested in October/November following the last rains. In recent years, below average
rainfall adversely affected livestock and agriculture, as well as human health, resulting in the death of
newborn children and nutrition issues in pregnant and lactating women [5]. Malnutrition is cited as
a cause of stunted growth in approximately 50% of children under five years in the southern Sindh
Province of Pakistan [22]. Livestock rearing in Thar compounds the water deficiency situation, as the
animal population is increasing at almost twice the rate of population growth, from 0.4 million in 1976
to 1.26 million in 1985 to four million today (Table 1).
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The average water requirement for a cow in Thar is 57 liters per day and 7.5 for a sheep or goat,
and, in the 1970s, the ratio of cows to goats was 1:1, whereas it was 1:6 at the 1998 census [4]. Following
a severe drought in 2018, with only 58 mm of rainfall received at Mithi, the Sindh government declared
a drought calamity in six districts and decided to provide 50 kg of wheat per month to a total of 323,435
families in Tharparkar [23]. During drought years, migration away for alternate livelihood is common.
Although drought vulnerability may have reduced due to improved road infrastructure and other
economic opportunities, the frequency and intensity of drought appears to have increased since 1990
due to climate change. Thus, there is a trend of increasing exposure to drought [20].

Rainfall in Tharparkar

Annual rainfall varies from 50 to 300 mm, and 87% of Thar’s total rainfall is in the monsoon
months of June–September [4]. Mean annual rainfall at Mithi station is 277 mm, with a maximum
in August, and the only other months with significant rainfall are July and September (Figure 2).
However, rainfall is highly variable, and the rainy season may commence in early June to mid-July
(Figure 3). Any rainfall deficit during the rainy monsoon months severely impacts the socio-economy
of the region [24], and Tharparkar was officially declared a drought calamity area 15 times since 1968,
with the most recent times being the three years 2013, 2014, and 2018.
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3. Datasets Used

3.1. Weather Station Rainfall data

Daily rainfall data for four stations (Figure 1) were obtained from the Pakistan Meteorological
Department (PMD) (Table 2). Daily rainfall data were accumulated to form dekadal (10 days) and
monthly rainfall for comparison with satellite-based rainfall estimates.

Table 2. Overview of rain gauge stations.

No. Weather
Station

Data
Availability

Temporal
Coverage

Latitude
(◦ North (N))

Longitude
(◦ East (E))

Elevation
(m above Sea
Level (a.s.l.))

1 Mithi Daily 2005–2015 24.71 69.80 30
2 Chhor Daily 1998–2012 25.52 69.78 05
3 Hyderabad Daily 1998–2012 25.38 68.42 28
4 Badin Daily 2007–2012 24.63 68.90 09

3.2. Satellite-Based Rainfall Products

Satellite-based rainfall products typically exploit a combination of data from thermal infrared
(TIR), passive microwave (PMW), and ground-based gauge observations, and these datatypes are often
combined to create an optimal product. Various rainfall datasets were produced using convective
cloud top temperature by applying the cold cloud duration (CCD) technique [25]. In this study,
two satellite-based rainfall products Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS) and Tropical Rainfall Monitoring Mission (TRMM) were selected for evaluation against
rainfall gauge data, because of their long time series, near-real-time data availability, and free access.

3.2.1. Tropical Rainfall Measuring Mission (TRMM)

The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between the National
Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA)
aimed at improving observations of precipitation across the globe between 45◦N and 45◦ south (S).
The most widely used outputs are the TRMM Multi-Satellite Precipitation Analysis (TMPA) three-hourly
(3B42) product accumulated to daily and monthly (3B43) products, which are available from 1998 to
2014 at spatial resolution of 25 km [25,26]. The TMPA product depends on input from a combination
of optical, thermal, and microwave sensors, as well as gauge data [18]. Daily TRMM 3B42 V7 and
monthly 3B43 V7 products were used in this study.

3.2.2. Climate Hazards Group Infrared Precipitation with Stations (CHIRPS)

The CHIRPS Version 2.0 rainfall dataset was developed by the United States (US) Geological
Survey (USGS) and Climate Hazard Group at the University of California, Santa Barbara. It is available
from 1981 onward at a spatial resolution of 5 km. The CHIRPS algorithm (i) incorporates satellite
thermal infrared (IR) data to represent sparsely gauged locations, (ii) blends station data to produce a
preliminary information product with a latency of about two days and a final product with an average
latency of about three weeks, and (iii) uses a novel blending procedure incorporating the spatial
correlation structure of CCD estimates to assign interpolation weights. CHIRPS also uses the TRMM’s
TMPA product, which includes several microwave sources, to calibrate global cold cloud duration
(CCD) rainfall estimates [27].

3.3. Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI 16-Day Maximum Value Composites

For spatio-temporal analysis of vegetation conditions, the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor onboard the Terra satellite provides the normalized difference
vegetation index (NDVI) from 2000 onward. These are produced from MODIS surface reflectance
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images at 250-m resolution [28], based on compositing daily images to select the highest-quality,
highest-value pixels over 16-day periods.

4. Methodology

4.1. Statistical Measures

Satellite rainfall estimates were compared with gauge rainfall using pairwise comparison
statistical measures, Pearson product moment coefficient of correlation (R), bias, mean error (ME),
and root-mean-square error (RMSE).

The Pearson correlation coefficient (R) measures the strength of the linear relationship between
satellite and gauge rainfall. Values of R close to 1 indicate a perfect relationship between satellite
and gauge rainfall estimates. The statistical significance of correlation (R) is represented by asterisks
(** p < 0.01 and * p < 0.05).

R =
Σ(G−

−

G )(S−
−

S )√
Σ(G−

−

G )
2
√

Σ(S−
−

S )
2

, (1)

where G is the gauge rainfall amount,
−

G is the average gauge rainfall amount, S is the satellite rainfall

estimate,
−

S is the average satellite rainfall estimate, n is the total number of data.
Bias indicates how well the average of variable 1 corresponds with the average of variable 2. Thus,

values close to 1 show that cumulative satellite rainfall estimates are close to cumulative gauge rainfall
measures, while values greater than 1 indicate that the satellite overestimates the measure, and values
less than 1 indicate that the satellite underestimates the measure.

Bias =
ΣS
ΣG

. (2)

Mean error (ME) is the measure of average difference. Thus, a positive value reflects an overestimation
of satellite rainfall, whereas a negative value indicates an underestimation of satellite rainfall.

ME =
1
n

∑n

i=1
(S−G). (3)

Root-mean-square error (RMSE) is the standard deviation of the difference. Thus, a higher value
of RMSE indicates a large difference between the satellite and gauge rainfall measures.

RMSE =

√
1
n

∑n

i=1
(S−G)2. (4)

4.2. Smoothing of NDVI Time Series Using Savitzky–Golay filter

Due to cloud cover, varying atmospheric conditions, and bi-directional effects, there are some
disturbances in the NDVI time series. During the rainy season, clouds are a major problem and
often prevail for more than two weeks. Although NDVI datasets are an Maximum Value Composite
product (selection of maximum NDVI value over 16 days), there is still noise, represented by negatively
biased NDVI values. To overcome this noise, TIMESAT, which uses a Savitsky–Golay filter [29,30],
was applied to smooth the NDVI time series pixel-wise, and to construct high-quality NDVI time-series
datasets for further analysis. The Savitsky–Golay filter is a moving filter that fits local polynomial
regression to replace negatively biased NDVI values with an upper envelope of NDVI time series.
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4.3. Phenological Metrics

In order to investigate spatial aspects of various phenological metrics over the study area,
these metrics were mainly derived from rainfall data. Rainfall data were used because common
phenology algorithms based on vegetation indices such as TIMESAT or singular spectrum analysis [31],
which uses adjustable thresholds on the seasonal amplitude of the NDVI curve, proved unsuitable
for use in this semi-desert region with highly variable rainfall. For example, the commonly used
thresholds of 10% from the base of the NDVI curve to define the start of season (SOS) and 35% for
the end of season (EOS) frequently returned a nine-month length of growing season (LOS) into the
following year (see maps of EOS for wet and dry years (Supplementary Material S1)). This may
be because, at low NDVI, or due to persistence of greenness within image pixels long after the last
rains, vegetation signals are often confused with soil reflectance [32] in semi-desert regions. In fact,
the maximum time between planting and harvest in Tharparkar is only 4–5 months, from June to
October. Indeed Zhang et al.’s [33] phenological study of different vegetation indices compared to
PhenoCam ground measurements reported significant differences among different vegetation indices,
with EOS prediction showing the greatest uncertainty. Furthermore, the uncertainty was greatest for
EOS in dry zone ecosystems, with up to 29 days of difference for savannas compared to seven days for
forests. This high level of uncertainty was observed in spite of using daily data. Since our study uses
16-day interval MODIS composites, even greater uncertainty would be expected.

Thus, the seasonal rainfall variable for SOS was defined based on daily rainfall from the CHIRPS
satellite rainfall product. We used the definition of Zhang et al. [13] in the Sahel zone and modified it
according to local patterns of rainfall in Mithi and surrounding weather stations, as described below.

Rainy season onset was defined as the first occurrence of at least 20 mm of cumulative rainfall
within seven consecutive days after 1 June, followed by at least 20 mm of rainfall in the next 20 days to
avoid “false starts”. The intensity of rainfall was defined as the total amount of rainfall during the rainy
season divided by the number of rainy days with rainfall ≥1 mm. NDVImax represents the maximum
NDVI values reached during a growing season, and the variables, SOS, and timing of NDVImax are
expressed in Julian days. The variable NDVImax was used to represent biomass productivity, as, in this
region of rain-fed agriculture, farmers cultivate a single crop per season, and the amount of offtake at
harvest is likely to correspond to the maximum biomass achieved in a season. Thus, other measures
such as greater or lesser integral, which also consider biomass development over the whole season,
were considered less relevant for this study.

4.4. Correlation

The Pearson product moment correlation was calculated between pairs of variables (e.g., annual
rainfall and NDVImax) using the 19 grid layers (grids for each year 2000–2018) for each variable over
Tharparkar. For each pixel in a dataset, a vector of values from 19-year time series is correlated between
the two datasets [34]. To avoid spatial dependence, the CHIRPS dataset at 5-km resolution was firstly
resampled to match the 250-m pixel size of the NDVI data. A p-value greater than 0.05 was used to
mask pixels where correlation was insignificant at the 95% confidence level.

5. Results and Discussion

5.1. Evaluation of Satellite Rainfall Estimates

5.1.1. Daily Comparison

For daily comparisons between satellite-based daily rainfall estimates from TRMM and CHIRPS
and individual rain gauges for the period 1998–2014, only weak relationships were observed,
with correlation coefficients (R) ranging from 0.2 to 0.38 for individual weather stations (Figure 4).
CHIRPS with a higher correlation coefficient (R = 0.36) and a lower RMSE value of 6.17 mm/day
performed slightly better overall than TRMM (R = 0.29 and RMSE value of 7.84 mm/day). CHIRPS
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showed underestimation of daily rainfall with a bias of 0.74 and negative mean error (ME) value of
−0.19 mm/day, while TRMM showed overestimation with a bias of 1.15 and positive ME value of
0.11 mm/day.
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and satellite-based rainfall estimates for four weather stations for the period 1998–2014.

5.1.2. Dekadal Comparison

For 10-day (dekadal) comparisons, a good relationship was shown between satellite-based rainfall
estimates and gauge rainfall, with correlation coefficient R values between 0.60 and 0.85 for individual
weather stations. Correlation values for both TRMM and CHIRPS were similar, with R values of
0.75 and 0.74, respectively, while CHIRPS showed slightly higher RMSE value of 22.45 mm/dekad
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compared to TRMM’s RMSE value of 21.93 mm/dekad. CHIRPS showed some underestimation of
dekadal rainfall with a bias of 0.73 and negative mean error (ME) value of −2.08 mm/dekad, while
TRMM showed overestimation, with a bias of 1.12 and positive mean error value of 0.94 mm/dekad.

5.1.3. Monthly Comparison

Monthly satellite rainfall estimates showed better performance than daily or dekadal timeframes,
with correlation values between 0.80 and 0.97 for individual weather stations. This improvement was
because aggregation of daily or dekadal data into monthly values canceled out short-term errors at
daily or dekadal scales. TRMM, with a higher correlation coefficient (R = 0.90) and lower RMSE value
of 28.6 mm/month, performed better overall than CHIRPS (R = 0.84 and RMSE of 38.6 mm/month).
Similar to daily and dekadal scales, CHIRPS showed underestimation of monthly rainfall with a bias of
0.77 and negative mean error (ME) value of −5.05 mm/month, while TRMM showed overestimation of
monthly rainfall with a bias of 1.16 and positive mean error of 3.61 mm/month. For drought monitoring
studies, overestimation of satellite rainfall (ME > 0) should be avoided, whereas underestimation is
undesirable for hydrological and flood forecasting studies [6]. Since the CHIRPS dataset showed a
tendency to underestimate rather than overestimate rainfall, it was selected for further analysis in this
study, comparing spatial distributions of phenological growth parameters with rainfall.

5.2. Spatial Relationships between Annual Rainfall and Phenology Metrics

Figure 5a shows the spatial distribution of annual rainfall over Tharparkar from CHIRPS data,
with a steep decline from over 400 mm in the east to less than half of this (below 200 mm) in the west.
The strong positive correlation between annual rainfall and NDVImax, with R values mainly from 0.6
to 1.0 (Figure 5b), indicates the strong dependence of agricultural productivity on rainfall, except for
the northeast and along canals (masked areas in white).

However, when exceptionally wet and dry years were examined separately, the spatial patterns
were different (Figures 6 and 7). In dry years, there appeared to be little spatial relationship between
annual rainfall (Figure 6a,d) and biomass productivity, represented by NDVImax (Figure 6e–h). Highest
rainfall occurred in the southeast, but highest NDVImax values generally occurred in the west, northwest,
and east. In wet years, although there still appeared to be little spatial relationship between annual
rainfall (Figure 7a–d) and biomass productivity (Figure 7e–h), highest rainfall occurred in the northeast,
but NDVImax was highest in the northwest, southeast, and south-central. In the northeast, with very
high rainfall above 600 mm in 2006 and 2011, NDVImax values remained as low as 0.3, but reached
NDVImax > 0.6 in some areas with only 400 mm of rainfall. This may suggest that farming/settlement
patterns are not taking advantage of available rainfall, which is highest in the east.

Figure 8 shows the time of year when NDVImax was reached, for the four dry and four wet years,
classified in two-week intervals. No spatial or temporal pattern emerged, indicating that the crop
harvest in any particular year, whether a dry or wet year, could be early or late, depending on the
unpredictability of the seasonal rainfall pattern. Moreover, in a dry year, if there was at least some
rainfall, exceeding 150 mm as in 2004 and 2014, harvest could be as late as November.
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5.3. Correlations

The moderate, positive correlation between annual rainfall and SOS, with R = 0.47 (Table 3),
suggests that an early start to the growing season (low SOS value in days of the year (DOY)) often
occurred in years with low total rainfall; thus, an early SOS with early rains should not be used as
indicative of a high-rainfall year. However, since the relationship between SOS and NDVImax was
negative (R = −0.51), this indicates that early onset of season (low SOS value) tended to result in high
crop yields. Thus, an early start to growth followed by continued even distribution of rainfall may be
more important than total annual rainfall for good crop yields in a year. A fairly strong correlation
(R = 0.77) between mid-to-late rainy season (August) rainfall and annual rainfall was observed, and
August rainfall also showed the highest correlation (R = 0.62) with NDVImax. Unfortunately, this late
rainy season observation would not be useful for enabling early prediction of drought conditions.

The metric time of NDVImax correlated negatively (R = −0.59) with NDVImax, suggesting that
highest biomass was achieved when crops ripened early. This was especially true for years with
adequate rainfall, as can be seen from the mapped spatial distributions. Thus, comparisons between
Figures 6 and 8, and between Figures 7 and 8 also show that, spatially, high NDVImax was achieved in
areas with early NDVImax, especially for wet years (compare Figure 7f,h with Figure 8f,h). This agrees
with the observation (above) that the highest biomass in wet years was achieved in areas with early
SOS. However, in dry years (compare Figure 6f,g with Figure 8b,c), highest biomass was apparently
achieved late in the growing season, with harvesting as late as November, as in the drought years of
2004 and 2014.

Table 3. Correlation coefficients (R) for mapped phenology metrics (significant pixels only (p = 0.05)).
Annual rainfall is derived from amalgamation of CHIRPS monthly estimates, and start of the growing
season (SOS) is derived from daily estimates.

Annual
Rainfall

SOS
(Rainfall-Based)

August
Rainfall

September
Rainfall NDVImax

Time of
NDVImax

Annual rainfall 1 0.47 0.77 0.49 0.65 0.53
SOS (rainfall-based) 0.47 1 0 0.56 −0.51 0.56

August rainfall 0.77 0 1 0.81 0.62 0.52
September rainfall 0.49 0.56 0.81 1 0.49 0.56

NDVImax 0.65 −0.51 0.62 0.49 1 −0.59
Time of NDVImax 0.53 0.56 0.52 0.56 −0.59 1

Figure 9 shows rainfall intensity for (a–d) dry and (e–h) wet years (representing the total amount of
rainfall during the rainy season divided by the number of rainy days with rainfall ≥1 mm). Figure 9e–h
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indicate that, in wet years, there was a tendency for more intense rainfall toward the north and east of
the study area, and, in dry years, this tendency was toward the southeast. These are the areas where
relatively low NDVImax occurred, corresponding to relatively high annual rainfall. As it is known that
crop damage can occur from intense rainstorms preceding the harvest in Tharparkar [35], this may
partly explain the apparent low productivity of these areas.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 16 
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6. Discussion

Overall, CHIRPS showed better estimates for daily rainfall, while TRMM showed better monthly
estimates, and the results were similar for dekadal estimates. The lower accuracy observed for daily
estimates than for dekadal and monthly estimates is presumed to be partly due to the coarse spatial
resolution of the sensors compared to the rain gauge point location. In areas of very low rainfall, spatial
distribution of rain is also likely to be patchy. The longer time intervals (i.e., dekdal and monthly) would
tend to average out the uncertainty of the daily data. CHIRPS tended to underestimate while TRMM
tended to overestimate measures, but overestimation is considered more serious as this may overlook
a drought situation. Therefore, the study used CHIRPS data for the spatial representation of rainfall
metrics and their spatial correlation with biomass in the form of NDVImax and timing of NDVImax.

The very strong spatial relationship observed between CHIRPS-derived annual rainfall and
NDVImax confirmed that rainfall is fundamental to farming in Tharparkar. The study observed a
negative correlation between SOS and NDVImax, meaning that early start to the season tended to result
in high biomass and vice versa, which would normally be expected. However, the observation of
positive correlation between SOS and annual rainfall means that years with early rainfall may have
low total seasonal rainfall and vice versa, which is counter-intuitive. These two points together suggest
that the total rainfall in a season is not the most important factor in biomass productivity. They suggest
that sustained and consistent distribution of rainfall may be more important in this region of low but
highly variable rainfall. Thus, high biomass may well be achieved when SOS is early, but this is not
necessarily dependent upon very high total seasonal rainfall. Rather, subsequent sustained rainfall
is required to achieve good crop yields. Thus, even distribution of rainfall may be more important
than total annual rainfall for good crop yields in a year. Indeed, although pearl millet can survive low
annual rainfall of 300 mm, the seasonal distribution is more important. Rainfall is required before
sowing, followed by steady water supply after germination, then again during flowering and fruiting
40–60 days after germination [36]. However, damage may occur with heavy rain before harvest, which
may cause sprouting, breaking of the stalk, and bird feeding. Mung bean requires slightly higher
rainfall, of 400 mm, with similar seasonal distribution to millet, i.e., a continued water supply after
germination but more in the July–August flowering/fruiting stage [35]. Thus, the maps of rainfall
intensity, combined with those of annual rainfall, enable the monitoring of evenly distributed and
sustained rainfall, which appears more important than total seasonal rainfall in crop production in
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Tharparkar. This finding from satellite image data supports the conclusions of Memon et al. [1],
who compared rain gauge data over 38 years with farm questionnaires about response to drought in
Tharparkar. They reported the main cause of crop failure to be the increasingly erratic pattern of rain,
especially decline in the July mid-growing season, in spite of a slight increase in overall annual rainfall
over the last four decades.

In wet years, such as, for example, 2006 and 2011, with above 700 mm of annual rainfall,
the apparent lack of spatial correspondence between the mapped annual rainfall and NDVImax may be
due to susceptibility of arid zone crops, such as millet and mung beans, to heavy and intense rain.
The mapped distributions show that heaviest rainfall in these wet years occurred in areas which are
usually driest, with mean annual rainfall of 250–300 mm; thus, farmers would not expect such heavy
rain. This was confirmed by Figure 9e–h, showing more intense rainfall in these areas, i.e., the northeast
of the study area in wet years and southeast in dry years. More intense rainfall also suggests that
a considerable proportion of the annual rainfall would occur on fewer days, with uneven seasonal
distribution. This would not satisfy the water requirement of millet and mung bean, which require
evenly distributed water supply.

In dry years, areas showing an NDVImax response (areas with no NDVI response in dry years were
not mapped) were not the areas of highest rainfall; thus, dry years also lack spatial correspondence
with annual rainfall. Timing of maximum biomass in such dry years was also observed to be delayed
until October/November in these areas. For example, in these areas, under 200 mm of rain fell in 2004
and 2014, and ripening/harvest extended into late October, possibly due to farmers hoping for late rain.

In terms of overall ability to predict drought based on the mapped distributions, the only moderate
correlations between SOS and annual rainfall, and between SOS and NDVImax make early rain and
early start to the growing season fairly poor predictors of seasonal crop productivity. Additionally,
the moderately good correlations observed between mid-to-late rainy season (August) rainfall and both
annual rainfall (R = 0.77) and maximum biomass (NDVImax) (R = 0.62) would unfortunately be too late
to predict drought conditions and/or low crop yields. Low August rainfall may be the first indicator
of imminent low crop yields and economic hardships among farming families. However, according
to Pasha et al. [2], drought in Thar, as well as starvation and death resulting from it, was reported in
February of 2014, which indicates that greatest distress occurs late in the dry season following low
rainfall the previous year. Indeed, Mithi station recorded only 190 mm in 2013. Therefore, knowledge
of the location of failing rains in August would indeed give an early warning of imminent severe
distress in the following dry season among farming families in those areas affected.

7. Conclusions

The study demonstrated the effective utilization of satellite-based rainfall products for spatial
analysis of phenology over the Tharparkar desert region, as well as implications and policy indicators
arising from the analysis. Although both CHIRPS and TRMM generally gave reliable rainfall estimates
compared to ground stations, CHIRPS daily estimates were more reliable than those for TRMM and
the tendency for underestimation by CHIRPS, compared to overestimation by TRMM, made CHIRPS
better suited for use in a drought-prone region where overestimation may overlook serious drought
periods. In this arid region where drought is common and rainfall unpredictable, determination of
phenological thresholds based on vegetation indices proved unreliable. Therefore, the use of satellite
rainfall products from CHIRPS to derive spatial estimates of SOS and rainfall criteria for comparison
with NDVI-based biomass productivity was essential for this study.

The counter-intuitive observation of high rainfall associated with low NDVImax is unlikely to be
due to soil differences, as the Thar desert is dominated by compound parabolic sand dunes, arranged in
a repetitive pattern across the whole landscape. Thus, although local soil differences do exist, these are
at a dune scale, rather than a regional scale. A more likely explanation based on the data presented here
is damage to ripening crops by intense rainfall, as indicated by the spatial correspondence between
maps depicting areas of low NDVImax, high annual rainfall, and more intense rainfall. Rainfall of
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high intensity in an arid region also implies uneven rainfall distribution, which would be damaging
to major crops grown in Tharparkar, i.e., millet and various types of beans. A false start to the rainy
season encouraging farmers to plant may see them without sufficient seed for a second planting, even if
sufficient rain were to return, resulting in low yield for such areas, even given adequate rain. However,
if a false start does occur in any region (rainfall over 20 mm followed by a dry spell of no rain for
20 days), this can be determined using CHIRPS dekadal data, with a time lag of three dekads, i.e.,
30 days, at most. This would allow potential relief measures in areas affected, such as construction of
water storage reservoirs and food distribution and storage facilities.

Overall, the study demonstrated the great difficulty in predicting seasonal rainfall due to the
very high variability of rainfall in Tharparkar; thus, the occurrence of drought cannot be known
even one month in advance. The ability to map the spatial distribution of rainfall and biomass using
satellite products can, however, permit closer and timely analysis of the whole seasonal farming
calendar. This may include locating areas of potential economic hardship, malnutrition, and hunger
in the long dry season resulting from low seasonal rainfall the previous year. The data also enable
recommendations for the redistribution of settlements to areas of higher and more reliable rainfall.
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