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Abstract: Column-averaged dry air mole fraction of atmospheric CO2 (XCO2), obtained by multiple 
satellite observations since 2003 such as ENVISAT/SCIAMACHY, GOSAT, and OCO-2 satellite, is 
valuable for understanding the spatio-temporal variations of atmospheric CO2 concentrations 
which are related to carbon uptake and emissions. In order to construct long-term spatio-temporal 
continuous XCO2 from multiple satellites with different temporal and spatial periods of 
observations, we developed a precision-weighted spatio-temporal kriging method for integrating 
and mapping multi-satellite observed XCO2. The approach integrated XCO2 from different sensors 
considering differences in vertical sensitivity, overpass time, the field of view, repeat cycle and 
measurement precision. We produced globally mapped XCO2 (GM-XCO2) with spatial/temporal 
resolution of 1 × 1 degree every eight days from 2003 to 2016 with corresponding data precision and 
interpolation uncertainty in each grid. The predicted GM-XCO2 precision improved in most grids 
compared with conventional spatio-temporal kriging results, especially during the satellites 
overlapping period (0.3–0.5 ppm). The method showed good reliability with R2 of 0.97 from cross-
validation. GM-XCO2 showed good accuracy with a standard deviation of bias from total carbon 
column observing network (TCCON) measurements of 1.05 ppm. This method has potential 
applications for integrating and mapping XCO2 or other similar datasets observed from multiple 
satellite sensors. The resulting GM-XCO2 product may be also used in different carbon cycle 
research applications with different precision requirements. 

Keywords: XCO2; multi-satellites; precision weighting; spatio-temporal kriging; mapping 
 

1. Introduction 

Spatio-temporal variation of atmospheric CO2 concentration reflects the balance between 
anthropogenic carbon emissions and terrestrial and oceanic carbon uptake or emissions [1]. Increased 
fossil fuel emissions after the start of the Industrial Revolution contribute to the continuous growth 
of atmospheric CO2 concentrations [2] from 277 parts per million (ppm) in 1750 [3] to 407.4±0.1 ppm 
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in 2018 [4]. The growth rate of CO2 concentrations in the atmosphere is smaller than the rate of CO2 
emitted by human activities because nearly 45% of the emissions are absorbed by oceans and the 
terrestrial biosphere each year [5]. The seasonal variations of terrestrial carbon uptake and emission 
contribute most to the seasonal cycle in atmospheric CO2 [6], which varies spatially due to non-
uniform land-biosphere CO2 exchange [7]. In addition, there is spatial-temporal variability of 
atmospheric CO2 concentrations that can be used to study changes in regional land biosphere net CO2 
fluxes, for example, seasonal cycle amplitude increase [8,9] and regional effects of extreme weather 
patterns like droughts [10,11]. Atmospheric CO2 concentrations have also been used for carbon flux 
or to estimate carbon uptake/emission changes using atmospheric inversion models [12,13] and a 
data-driven method [14]. The spatio-temporal variability of CO2 and related carbon sources/sinks 
distribution are still not fully understood [15,16]. A long time series of comparable global CO2 
concentration datasets has the potential to improve our understanding of land-biosphere interactions 
and our ability to evaluate trends in regional terrestrial CO2 absorption capacity.  

There are several methods to measure atmospheric CO2 concentrations, including surface 
measurements and satellite observations and approaches to estimate concentrations from model 
simulations. A network of surface CO2 monitoring station observations has been organized into the 
popular GLOBALVIEW-CO2 product and provides in situ measurements but is limited by station 
sparseness and the inherent spatial inhomogeneity of the surface atmosphere. Model simulations can 
provide continuous maps of CO2 using estimated surface fluxes and atmospheric mixing transport 
in addition to the previously noted sparse validation stations [17]. Satellite observations of 
atmospheric CO2 have the advantage of global coverage and high measurement density and can 
complement the surface network to advance our understandings of the carbon cycle and its changes 
[18,19]. With the development of remote sensing technology, there are several satellites used for 
atmospheric CO2 concentration observations [20,21]. Leveraging all available XCO2 datasets to 
construct a long time series, continuous, and comparable global CO2 concentrations would be useful.  

Satellite-observed column-averaged dry air mole fraction of CO2 (XCO2) have been wildly used 
for carbon cycle studies, including CO2 enhancement detection induced by anthropogenic emissions 
[22,23], constraining model simulations of carbon fluxes [24,25], investigating carbon cycle responses 
to weather extremes [11,26], and improving understanding of vegetation uptake [27]. Satellites 
measuring XCO2 are the SCanning Imaging Absorption spectroMeter for Atmospheric 
CHartographY (SCIAMACHY) onboard the Environmental Satellite (ENVISAT) [28], Greenhouse 
Gases Observing Satellite (GOSAT) [29], and Orbiting Carbon Observatory-2 (OCO-2) [30]. They 
observe XCO2 but with different spatial/temporal resolution, prior vertical profile estimates, local 
overpass time, data precision, and observing gaps. As a result, there is an opportunity to generate a 
long time series of global XCO2 dataset starting from 2003 using XCO2 retrievals from these satellites 
with careful integration and gap-filling. 

Gap-filling satellite-observed XCO2 has been investigated in several studies from different 
perspectives [31–33]. Geostatistical approaches, especially kriging, were widely used for GOSAT 
observed XCO2 Level 3 product production [17,34,35]. Spatial-only geostatistical methods do not take 
into account the temporal correlation structure of CO2 data [19], which may provide extra 
information. In order to make full use of spatio-tempal correlation of atmospheric CO2, a new spatio-
temporal kriging method was developed for the global mapping of XCO2 [19,36]. Because these 
methods were previously used for observations from a single satellite, measurement error could be 
assumed to be uniform and not interfere with the kriging approach. In order to produce high spatio-
temporal resolution and a long time series of XCO2 from multiple satellite observations, the precision 
of different datasets should be considered in this geostatistical method.  

In this study, to create the longest possible time series of XCO2 and leverage multiple 
measurements to improve precision when possible, we developed a precision-weighted spatio-
temporal kriging method for gap filling of integrated XCO2 from multiple satellite observations. 
Datasets used in this study and data preprocessing are described in Section 2. XCO2 integration 
methods and global mapping can be found in Section 3. Results of global mapped XCO2 and its 
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validation are shown in Section 4 and data quality considerations are discussed in Section 5. Finally, 
conclusions are presented in Section 6. 

2. Dataset 

In this study, we collected atmospheric CO2 concentration datasets from multiple satellite-
observations to produce a long time series of spatio-temporal continuous XCO2 from satellite 
observations, which was then evaluated by XCO2 from surface measurements and model 
simulations. 

2.1. XCO2 from Multi-Satellite Observations 

Atmospheric CO2 concentrations used here were the released Level 2 products that contain the 
full-physics retrievals of column-averaged CO2 in units of dry air mole fraction (XCO2). Satellite 
observations of XCO2 used here are from ENVISAT/SCIAMACHY, GOSAT, and OCO-2, which span 
from 2003 to 2016. XCO2 from SCIAMACHY onboard the European ENVISAT are obtained by the 
full-physics based Bremen Optimal Estimation–DOAS (BESD) algorithm (v02.01.01) [37], which span 
from January 2003 to March 2012 with a spatial/temporal resolution of 30x60 km every 35 days. XCO2 
from GOSAT is produced by the algorithm of the Atmospheric CO2 Observations from Space (ACOS) 
team (v7.3 lite) [38], which span from June 2009 to May 2016 with spatial/temporal resolution of a 
diameter of 10.5 km every three days. XCO2 from OCO-2 is produced by the ACOS team (r9 lite) [39], 
which span from September 2014 to December 2016 with spatial/temporal resolution of 2.25 × 1.25 
km every 16 days. Data quality was maximized by filtering XCO2 product by screening criteria 
specified by the corresponding user guides. Specifications of the three satellites that observed XCO2 
are shown in Table 1. These satellites follow different orbits and have different gaps as shown in 
Figure 1. XCO2 retrievals from each satellite also have different data precision for different sensors, 
observation conditions, and retrieval methods. Therefore, we use different XCO2 precisions in time 
and space in the XCO2 integration and mapping with the spatio-temporal kriging method. 

Table 1. Specifications of multiple satellites that observed XCO2. 

Attributes\Satellites ENVISAT/SCIAMACHY GOSAT OCO-2 

Period of selected data January 2003–March 2012 June 2009–May 2016 
September 2014–

December 2016 

Repeat cycle (days) 35 3 16 

Field of view (km)  30 × 60  Diameter of 10.5 2.25×1.25 

Overpass local time  10:00 13:00 13:36 

version BESD v02.01.01 ACOS v7.3 OCO2 r9 

Profile layers number  10 20 20 

Criteria of data screening  XCO2_quality_flag=0; 

XCO2_quality_flag=0; 

gain=H; 

land_fraction>90; 

warn_level<10 

XCO2_quality_flag=0; 

gain=H; 

land_fraction>90 

Name referred hereafter  SCI-XCO2  GOS-XCO2  OCO-XCO2  

Reference [37] [38] [39] 
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Figure 1. Example of XCO2 from SCIAMACHY, GOSAT, and OCO-2. Green and blue points represent 
SCI-XCO2 and GOS-XCO2 from 1–8 June 2009. Black and red points are GOS-XCO2 and OCO-XCO2 
from 1–8 September 2014. Total carbon column observing network (TCCON) sites used for validation 
are shown with a pink star. 

2.2. The Total Carbon Column Observing Network 

The total carbon column observing network (TCCON) are upward-looking terrestrial Fourier 
transform spectrometers established for measuring atmospheric XCO2 and other trace gases from the 
surface [40]. The instruments have high accuracy with approximately 0.25% error in XCO2 retrievals, 
which has been extensively used for validation of satellite observations [21,40,41]. In this study, we 
selected 12 TCCON sites within the mapping area as shown in Figure 1, with at least five years of 
coincidental measurements in the period from January 2003 to December 2016 for validating 
combined XCO2 products. 

2.3. XCO2 from Model Simulation 

CarbonTracker (CT) is a modeling system that assimilates global atmospheric CO2 observations 
from the ground, tall tower, and aircraft, coupled with an atmospheric transport model for simulating 
global distributions of atmospheric CO2 and tracking CO2 sources and sinks. Model-simulated 
atmospheric CO2 from CarbonTracker 2017 [42] was used in three steps of the integration and 
mapping method, primarily to normalize differences in altitude sensitivity and overpass time. First, 
we used CarbonTracker CO2 profiles in a grid of 2° × 3° (latitude x longitude) in 3-hour intervals as 
the common profile to align the a priori CO2 profiles and averaging kernels of multi-satellite 
observations. Second, we adopted diurnal patterns of CO2 concentrations in different pressure layers 
from CarbonTracker to unify the CO2 from satellite observations to 13:00 local time. XCO2 from 
CarbonTracker (CT-XCO2) was calculated from the model CO2 profile data with 25 layers at the local 
time 13:00 by using a pressure weighting average method [43]. Third, we used the CT-XCO2 for 
comparing with our new globally mapped XCO2 product. 

3. Method 

In this study, we developed a method for spatio-temporal integration and mapping of multi-
satellite observed XCO2 considering variable data precision for producing globally mapped 
continuous XCO2 with spatial/temporal resolution of 1° × 1° every eight days from 2003 to 2016. We 
present the flow chart of global mapped XCO2 production and the precision weighted spatio-
temporal kriging method in Figure 2. First, we adjusted a priori vertical CO2 profiles and averaging 
kernels of multiple satellite-observed XCO2 products to a common profile. Second, we corrected to a 
common local time and regularizing spatio-temporal scales of XCO2 from multiple satellites. Third, 
we used a modeled continuous XCO2 spatio-temporal random field for interpolation. Fourth, we 
developed a precision-weighted spatio-temporal kriging method for producing global maps of XCO2. 
Finally, we validated the new global mapped XCO2. We present details on developing the precision-
weighted spatio-temporal kriging method including: 1) conventional spatio-temporal kriging 
method; 2) optimization of spatio-temporal correlation structure; 3) XCO2 prediction through 
integrating data precision, and; 4) uncertainty and precision of mapped XCO2.  
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Figure 2. Workflow chart of spatio-temporal integration of multi-satellite observed XCO2 using a 
precision-weighted kriging method. 

3.1. Preprocessing 

3.1.1. Adjustment of a Priori Vertical Profiles and Averaging Kernels 

Each satellite has different measurement sensitivity at different altitudes through the 
atmospheric column and, therefore, they use different averaging kernels based on a priori 
assumptions of vertical CO2 profiles to account for senor sensitivities in XCO2 retrieval algorithms. 
The corrections are based on prior vertical profile layers as shown in Table 1. The a priori profiles 
from different satellite retrievals should be adjusted to a common profile when comparing XCO2 from 
different instruments. Additionally, the smoothing effect of the retrievals should be considered by 
applying the averaging kernels [44] to reduce the effects from different instruments on XCO2 
retrievals [37,45]. In this study, we introduce a common a priori XCO2 profile from CT to integrate 
XCO2 retrievals from ENVISAT/ SCIAMACHY, GOSAT, and OCO-2 by using Equation (1).  XCO , = XCO , + 𝒉 ∙ (𝑰 − 𝑨) ∙ X , − X ,  (1) 

where XCO ,  is the adjusted XCO  at observation time t, XCO ,  is the original XCO2 retrievals 
from satellites, h is a pressure-weighting vector, A is column-averaging kernels in the XCO2 retrieval 
algorithm, I is an identity matrix, X ,  is a set of common a priori CO2 profiles from CT, and X ,  is 
a set of a priori CO2 profiles used in XCO2 original satellite-specific retrieval algorithms. A priori CO2 
profiles of each satellite, as shown in Table 1, were interpolated into the same 25 pressure layers of 
the CT model.  

3.1.2. Unification of Observing Time and Spatio-Temporal Scales 

The three satellites have different local overpass times: SCIAMACHY at 10:00, GOSAT at 13:00, 
and OCO-2 at 13:36 (Table 1). In order to reduce the effect of atmospheric CO2 concentrations diurnal 
variation [46,47], we introduce a correction coefficient to normalize the satellite observations local 
time to 13:00 based on diurnal variation of CT model simulations using Equation (2). 
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XCO , = 𝒉 X ,𝒉 X , ∙ XCO ,  (2) 

Where XCO ,  is the converted XCO  at the reference time (rt, 13:00 local time); XCO ,  is the 
adjusted XCO2 derived from Equation (1) at satellite overpass time t; 𝑋 ,  and 𝑋 ,  are CO2 profiles 
from CT at times of rt and t, respectively;  and  𝒉 is the pressure-weighting vector. 

Moreover, XCO2 is affected by the different fields of view and observing dates as shown in Table 
1. In order to reduce this effect, we integrate spatial and temporal scales of XCO2 retrievals using 
precision weighted averaging of XCO ,  within 30 km by 30 km every 8 days using Equations (3a) 
and (3b). This unification also reduces computational complexity and preserves local spatiotemporal 
patterns. A temporal resolution of 8 days is also well-suited for biosphere-atmosphere interaction 
analysis with other 8-day resolution datasets like vegetation indices from the Moderate Resolution 
Imaging Spectroradiometer (MODIS). An integrated XCO2 dataset at 30 km resolution every 8 days 
from 2003 to 2016 (integrated-XCO2) was generated. 

XCO , = p ∙ XCO ,  (3a) 

p = μm = 1 (3b) 

where XCO ,  is the integrated combination of XCO  datasets, n is the number of observations 
in one unit, XCO ,  is converted satellite observed XCO2, 𝑝  is the weighting factor, which is 
determined by m  (data precision of XCO , ). 𝜇 is an arbitrary constant used for normalizing the 
data precision weighting factor. We adopted the data precision from these satellites observed XCO2 
Level 2 product. The data precision in ACOS-GOSAT and OCO-2 is XCO2 posterior error, and that in 
BESD-SCIAMACHY is 1-sigma uncertainty of the retrieved XCO2. 

3.2. Modeling XCO2 Spatio-Temporal Random Field for use in Kriging 

XCO2 increases from year-to-year varies by latitude and has a significant seasonal cycle in most 
locations [48,49]. In order to interpret spatio-temporal geostatistics, we need to construct a second-
order stationary random field represented by the stochastic residual component after removing inter-
annual, latitudinal, and seasonal trends mentioned above, termed the deterministic mean. In this 
study, we adopted a fitting method for decomposing [50] the deterministic spatiotemporal mean and 
stochastic residual component of latitude-zonal XCO2. The fitting method is a combination of a linear 
function to fit the long-term increase and annual periodic function as shown in Equation (4). 

m(s, t) = a (𝑠) + a (𝑠) + (𝛽 (𝑠) ∙ sin(𝑖𝜔𝑡) + 𝛾 (𝑠) ∙ cos(𝑖𝜔𝑡)) + 𝑅(𝑠, 𝑡) (4) 

where 𝜔 = 2 ∙ π/T and T is the period of 46 time-units, t is the time in the time-unit, s represents the 
latitudinal zone, and a , 𝛽  and 𝛾  are parameters to be estimated. a  is the cumulative annual 
increase for each time-unit determined by the Earth System Research Laboratory (ESRL) global 
annual CO2 growth rate [4]. The harmonic functions fit the annual cycle, semi-annual oscillation, 
seasonal variation and monthly variation of XCO2 [19]. 𝑅(𝑠, 𝑡)  represents the spatio-temporal 
residual component of satellite observed integrated XCO2, which will be used for interpretation. 

3.3. Precision Weighted Spatio-Temporal Kriging 

In the ordinary kriging method, a predicted value at an arbitrary target point is estimated by 
considering the statistical properties of a set of observed data. As a result, the predicted value (Z(s )) 
at point s  can be expressed as a weighted sum of the observational data as shown in Equation (5). 
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Z(s ) = 𝜔 ∙ 𝑍(𝑠 ) (5) 

where 𝜔  is the weighting factor at the observation point 𝑠 , n is the total number of observational 
points to be used, and 𝑍(𝑠 )  is the observed value at each point 𝑠 . The following subsections 
describe the precision-weighted spatio-temporal kriging method. Different kriging models were 
developed by adjusting the number of points ‘n’ and the weighting factor ‘𝜔 ’. 

3.3.1. Conventional Spatio-Temporal Kriging 

In spatio-temporal geostatistical analysis of XCO2, kriging prediction of Z(𝑠 ,𝑡 ) at a point (𝑠 ,𝑡 ) 
can be calculated as the linear weighted sum of the XCO2 values that minimizes the mean squared 
prediction error [19]. Weights of observations used for interpolation are determined by the geometry 
of observations and the spatio-temporal correlation structure of the data. Spatial and temporal 
information would be used for variogram modeling of the correlation structure [19,31] as shown in 
Equation (6). 

𝛾 (ℎ , ℎ ) = 12𝑁(ℎ , ℎ ) [𝑍(𝑠 + ℎ , 𝑡 + ℎ ) − 𝑍(𝑠 , 𝑡 )]( , )
 (6) 

where 𝛾 (ℎ , ℎ ) is an empirical variogram value at the lag (ℎ , ℎ ). 𝑍(𝑠 , 𝑡 ) is the observational 
data. 𝑁(ℎ , ℎ ) is the number of data pairs within a distance of (ℎ , ℎ ). Once the empirical variogram 
has been constructed, we need to select a spatio-temporal variogram model to fit it. As shown in Zeng 
et al. [19,31], the spatio-temporal variogram model adopted here (Equation (7)) is a combination of 
the product-sum model [51,52] and an extra global nugget model to capture the nugget effect [53] 
(last term in Equation (7)). γ (h , h ; θ , θ , κ, N )= γ (h ; θ ) + γ (h ; θ ) − 𝜅 ∙ γ (h ; θ ) ∙ γ (h ; θ ) + N ∙ γ (h ; h ) 

(7) 

We selected the exponential model for the marginal variogram model γ (h ) and γ (h ) as 
shown in Equation (8). 

γ(h; θ = [C, a]) = 0, ℎ = 0𝐶 ∙ 1 − 𝑒 , ℎ ≠ 0 (8) 

where γ (h ; θ ) and γ (h ; θ ) are the marginal spatial and temporal variograms, [θ , θ , 𝜅, N ] = 
[C , a , C , a , 𝜅, N ] are parameters to be estimated, and N , C, and a are all greater than or equal 
to zero. In the exponential model, a, C and N  represent the influence range, partial sill, and nugget 
effects, respectively. 

As a result, an arbitrary target point (Z(s , t )) to be estimated by using the spatio–temporal 
kriging method can be expressed as Equation (9). Z(s , t ) = ∑ 𝜔 (s , t ) ∙ 𝑍(𝑠 , 𝑡 ) with  ∑ 𝜔 (s , t ) = 1 (9) 

where 𝜔 (s , t )  is the weight assigned to a known observation 𝑍(𝑠 , 𝑡 )  so as to minimize the 
prediction error variance while maintaining an unbiased prediction. The prediction error variance, 
which is a measurement of prediction uncertainty, is given by σ = γ Γ Υ − (𝟏 Γ 𝛾 − 1)𝟏 Γ 𝟏  (10) 

where Γ(i, j) = γ(|s − s |, |t − t |), Υ (i, 1)= γ(|s − s |, |t − t |), and 1 is the n × 1 unit vector. 

3.3.2. Optimization of Spatio-Temporal Correlation Structure 

In a conventional spatio-temporal geostatistical analysis, all data pairs were used for spatio-
temporal correlation structure using equal weight. XCO2 observations from different 
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satellites/sensors, observing conditions and inversion methods have different data precision. So, the 
varying data precision should be considered in building the loss function for optimizing spatio-
temporal correlation structure with precision weighting factor as shown in Equation (11). 

δ = λ ∙ (γ − γ )
= λ ∙ (γ (ℎ ) + γ (ℎ ) − 𝜅 ∙ γ (ℎ )  ∙ γ (ℎ ) + 𝑁 − γ(h , h ))  

(11a) 

λ = 𝜇𝑚 = 1 (11b) 

where λ  represents different weighting factors for data with different precisions. γ  is the spatio-
temporal variogram model shown in Equation (7). γ  is the empirical variogram shown in Equation 
(6). m  and 𝜇  represent data precision and a normalization term. 

The gradient descent method was used to calculate the optimal parameters. The partial 
derivative parameters (δ ∗‘ ,  δ ∗‘ , δ ∗‘ , δ ∗‘ , δ ∗‘ , δ ∗‘ ) that need to be estimated are shown in Equations 
(12a) ~ (12f). 

δ ∗‘ = 2 ∙ λ ∙ γ (h , h ) − γ(h , h ) ∙ (1 − 𝑒 || ||∗ ) (12a) 

δ ∗‘ = 2 ∙ λ ∙ γ (h , h ) − γ(h , h ) ∙ −C∗ ∙ 𝑒 || ||∗ ∙ (||ℎ || ∙ 𝑎∗ ) (12b) 

δ ∗‘ = 2 ∙ λ ∙ γ (h , h ) − γ(h , h ) ∙ (1 − 𝑒 || ||∗ ) (12c) 

δ ∗‘ = 2 ∙ λ ∙ γ (h , h ) − γ(h , h ) ∙ −C∗ ∙ 𝑒 || ||∗ ∙ (||ℎ || ∙ 𝑎∗ ) (12d) 

δ ∗‘ = 2 ∙ λ ∙ γ (h , h ) − γ(h , h ) ∙ (γ (h ; θ∗) ∙ γ (h ; θ∗)) (12e) 

δ ∗‘ = 2 ∙ λ ∙ γ (h , h ) − γ(h , h )  (12f) 

where C∗, a∗, C∗, a∗, κ∗ and N∗  are parameters waiting to be optimized. Parameters, λ , γ , γ and γ , 
are the weighting factors (Equation (11-2)), exponential models (Equation (7) and Equation (8)) and 
empirical variogram values (Equation (6)), respectively. 

We optimized the structure through minimizing δ . Initial parameters β =(C , a , C , a , κ , N ) were obtained by using a least-squares approximation in the conventional 
spatio-temporal kriging method. Then, parameters were determined by a learning rate and partial 
derivative as shown in Equation (13). β = β + α ∙ 𝛿  (13) 

where β  represents ( C∗, a∗, C∗, a∗, κ∗, N∗ ) . α  is the learning rate, usually in the range of (10  ~ 10 ). 𝛿  is the partial derivative parameter. We set the operating condition as a current 
change of less than 1% of all the changes in this adjustment. As a result, one example of optimized 
spatio-temporal semi-variogram surface is shown in Figure 3. 
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Figure 3. One example of the optimized spatio-temporal semi-variogram surface (Zone 1: Latitude 
center: 55°N). Grey, black, and red points represent spatio-temporal semi-variogram that was 
calculated from experimental data, fitted models of the conventional and optimized correlation 
structure. 

3.3.3. Integrating XCO2 Using Variable Data Precision 

We estimated XCO2 in unobserved points using observational data and weighting factors from 
spatio-temporal correlation structure and data precision as shown in Equation (14).  

Z(s , t ) = 𝜔 ∙ 𝜔 ∙ 𝑍(𝑠 , 𝑡 ) (14) 

where 𝜔  is the weighting factor from the spatio-temporal correlation structure and 𝜔  is from 
data precision. 𝑍(𝑠 , 𝑡 ) is observed XCO2 used for Z(s , t ) estimation. These two weighting factors 
were calculated by Equations (15a) and (15b). 𝜔 ∙ 𝛾(ℎ ) + 𝜀 = 𝛾(ℎ ) 

𝜔 ∙ 𝛾(ℎ ) + 𝜀 = 𝛾(ℎ ) 

……  

𝜔 ∙ 𝛾(ℎ ) + 𝜀 = 𝛾(ℎ ) (15a) 

𝜔 ∙ 𝜔 = 1 (15b) 

where 𝜔  and 𝜔  are weighting factors in Equation (14). Equation (15-2) was used to control 
unbiased estimation.  𝛾(ℎ ) …  𝛾(ℎ )  and 𝛾(ℎ )  … 𝛾(ℎ )  are spatio-temporal variograms for 
observations used for estimation of  Z(s , t ). 𝜀 is the polynomial residuals. 𝜔  can be achieved by 
Equation (16). 

𝜔 = μm = s (16) 

where m , μ  and s are data precision, arbitrary constant and the number of used observational 
data. 

We applied this method for global mapping of XCO2 (GM-XCO2), which provides a long time 
series of spatio-temporal continuous XCO2 dataset for global carbon cycle research. 
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3.3.4. Uncertainty and Precision of Mapped XCO2 

We calculated data uncertainty and precision of the mapped XCO2 by using precision-weighted 
kriging. Uncertainty of predicted data from the spatio-temporal kriging method is shown in Equation 
(17) σ = w ∙ γ(h ) + 𝜀 (17) 

where σ  presents the prediction uncertainty, w , γ(h )  and 𝜀  are the estimated weighting 
factor, spatio-temporal variograms, and polynomial residuals, respectively as shown in Equation 
(15). 

In addition, the precision of GM-XCO2 integrated from the observed data is shown in Equation 
(18), according to the error transfer equation. 

ε = sqrt( ε ∙ w ∙ w ) (18) 

As a result, these two sources of uncertainty can be used for data screening in GM-XCO2 
application.  

3.4. Validation of Global Mapped XCO2  

We validated the mapped GM-XCO2 product using cross-validation, compared to TCCON 
measurements and model simulation. Cross-validation has been used in accuracy assessments for 
spatio-temporal kriging methods [19,54]. In this study, we adopted cross-validation based on the 
Monte Carlo sampling method used in Zeng et al.[19]. As above, we used the satellite-observed 
integrated XCO2 dataset (XCO ) for interpolation to GM-XCO2. The cross-validation was conducted 
by repeatedly (100 times) reserving 5% of the XCO  data for validation. Predicted GM-XCO2 was 
compared with the 5% reserved XCO  data in those corresponding spatio-temporal locations. We 
selected three statistical parameters for results evaluation: 1) the coefficient of determination (r2), 2) 
the root mean square error (RMSE), and 3) the percentage of estimation bias less than 1 or 2 times of 
data precision. 

We compared GM-XCO2 with the XCO2 measured from TCCON (TCCON-XCO2) in 12 sites with 
more than 5 years of observation. TCCON-XCO2 was calculated with the pressure-averaged method 
[43] and data observed at a local time of 11:00 to 15:00. In addition, we did a comparison between 
GM-XCO2 and XCO2 from the CT model simulation in the spatio-temporal change over the global 
area. 

4. Results 

4.1. Integrated-XCO2 from Three Satellites 

Here we presented latitudinal and temporal variability of the integrated XCO2 (top panel) and 
the difference between the integrated product and the original retrieval XCO2 values (bottom panel) 
from SCIAMACHY, GOSAT, and OCO-2 (Figure. 4). The top panel shows XCO2 increased more than 
30 ppm from 2003 to 2016 over most latitudes. Especially high XCO2 values occurred during the start 
of 2016 in the northern hemisphere (dark red). The bottom panel shows XCO2 adjustments, integrated 
XCO2 (XCO ) minus original XCO2 (XCO ) were mainly within −2.0 to 1.0 ppm and include 
seasonality, with high adjustment values in summer and low adjustment values in winter, except for 
some scattered grids in high or low latitudes. This could be caused by seasonal changes of the XCO2 
averaging kernel (Appendix A: Figure A1) that was adopted for XCO2 adjustment in Equation (1). In 
addition, the adjustments decreased sharply in 2012 and 2016, with stability improvements of the 
newer satellite sensors.   
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(a) Integrated XCO2  

 
(b) XCO2 adjustments made during the integration processing 

Figure 4. Latitudinal-temporal change of integrated XCO2 (a) and XCO2 adjustments made during the 
integration processing, integrated XCO2 ( XCO ) minus original XCO2 ( XCO ) (b) from 
SCIAMACHY, GOSAT, and OCO-2. 

4.2. Globally-Mapped XCO2  

4.2.1. Latitudinal and Temporal Variability of Globally Mapped XCO2  

The latitudinal and temporal variability of globally mapped XCO2 (GM-XCO2) and its prediction 
uncertainty and precision are shown in Figure 5. Comparing Figure 5a to gaps in Figure 4a show 
missing observations have been reasonably filled. GM-XCO2 also shows the yearly increase and 
seasonal variation from 2003 to 2016. GM-XCO2 is higher in the northern hemisphere compared to 
the southern hemisphere, and the annual maximum GM-XCO2 lasts longer in mid-latitudes than 
high/low latitudes.  

In the middle panel, kriging standard deviations (square root of σ  in Equation 17) of the 
predicted GM-XCO2 represents the prediction uncertainty, which is determined by the available data 
around gaps. Higher uncertainty is shown in the tropic and high latitudes because of low numbers 
of robust observations in these latitudes corresponding to gaps in Figure 4a. The uncertainty also 
shows seasonal variation for different latitudes. In mid-high latitudes (35–60 °N), the uncertainty is 
high in winter for the observations affected by snow cover. In mid-low latitudes (extratropics within 
35°N/°S), uncertainty is high in summer likely due to cloud contamination during the monsoon 
season. 

In the bottom panel, GM-XCO2 precision is calculated from integrated XCO2 (XCO ) precision. 
The precision is significantly improved from the middle of 2009 and 2014. It was 1.5 to 2.5 ppm before 
2009, 0.5 to 1.5 from 2009 to 2014, and below 0.5 after 2014. That is because of the observing precision 
improvement of the newer sensors. Generally, the observed GM-XCO2 precision is better in mid-
latitudes. 



Remote Sens. 2020, 12, 576 12 of 24 

 
(a) Global mapped XCO2 

 
(b) Uncertainty of prediction 

 
(c) Precision of GM-XCO2 

Figure 5. Latitudinal and temporal variability of global mapped XCO2 (GM-XCO2, top panel), the 
uncertainty of the prediction (standard deviation, middle panel), and precision (bottom panel). 

4.2.2. Comparison with Conventional Spatio-Temporal Kriging Results 

The latitudinal and temporal differences between the results from the precision-weighted (this 
study) and conventional spatio-temporal kriging methods are shown in Figure 6. Precision (Figure 
6c) of GM-XCO2 from precision weighted spatio-temporal kriging is improved for most of the 
predictions, especially for the SCIAMACHY and GOSAT overlapping periods (June 2009–March 
2012) or GOSAT and OCO-2 overlaps (September 2014–May 2016). The precision improved by 0.3–
0.5 ppm over latitudes with overlapping observations. GM-XCO2 (Figure 6a) is enhanced by 0.1–0.2 
ppm for the summer of 2009 to 2011 and reduced by 0.2–0.3 for the summer of 2014 to 2016. 
Differences in the uncertainty of prediction (Figure 6b) are small for both kriging results 
(conventional and precision-weighted) because they are based on the same observations (XCO ), 
which results in a similar spatio-temporal correlation structure as shown in Figure 3. 
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(a) Difference in GM-XCO2 

 
(b) Difference in the uncertainty of prediction 

 
(c) Difference in GM-XCO2 precision 

Figure 6. Latitudinal and temporal difference between results from precision-weighted and 
conventional spatio-temporal kriging methods for global mapped XCO2 (GM-XCO2, top panel), the 
difference in the uncertainty of the prediction (standard deviation, middle panel) and the difference 
in GM-XCO2 precision (bottom panel). Positive values indicate precision-weighted results are higher 
and vice versa. 

4.2.3. Spatial Distribution of GM-XCO2 

GM-XCO2 provides important information about the mean spatial distribution and localized 
anomalies which could relate to local carbon uptake and emission. We present the spatial-temporal 
distribution of GM-XCO2 during different seasons in 2003, 2008, 2013, and 2015 (Figure 7). Seasonal 
patterns of GM-XCO2 were similar with an annual increase of approximately around 2.0 ppm. In 
spring, high GM-XCO2 appeared in northern Canada, the North China Plain, and the Arabian 
Peninsula. In summer, extremely low GM-XCO2 occurred in mid-high latitudes in the northern 
hemisphere. In autumn, the north-south hemispheric GM-XCO2 gradient relaxes. In winter, high 
XCO2 returns over the North China Plain and Central Africa. 
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Figure 7. Spatial-temporal distribution of mean seasonal globally-mapped XCO2 (GM-CO2) during spring (March, April, May), summer (June, July, August), autumn 
(September, October, November) and winter (December, January, Febryary) of 2003 (top-left), 2008 (top-right), 2013 (bottom-left), and 2015 (bottom-right). Color 
bars for different years assume an annual increase of 2 ppm. 
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In addition, we give out the global spatial distribution of mean XCO2 in 2016 shown in Figure 8. 
We can find that the main high XCO2 of 2016 is distributed in Eastern China, Southeast Asian regions, 
Amazon forest regions, African forest regions, south of the United States, the Arabian Peninsula, and 
India. These regions could be related to three main conditions, including 1) an industrial development 
zone inhabited by human beings; 2) a large area of tropical/subtropical rainforest area; 3) large 
agricultural regions.  

150°90°30°-30°-90°-150°
60°

30°

0°

-30°
  

  
 

Figure 8. Spatial-temporal distribution of mean GM-XCO2 in 2016. 

4.3. GM-XCO2 Validation 

4.3.1. Evaluation Using Cross-Validation 

Results of cross-validation using the precision-weighted spatio-temporal kriging method are 
shown in Figure 9. Predicted XCO2 (GM-XCO2) agreed well with integrated XCO2 (XCO ) with a 
high R2 of 0.97, showing the interpolation method retains much of the input signal. Total RMSE (root 
mean square error) between predicted GM-XCO2 and integrated XCO2 (XCO ) is 1.36 ppm, which 
indicates good stability and the high precision of this method. Most of the predicted bias is within 1.0 
ppm, except for some XCO2 data precision which is larger than 1.5 ppm (right panel). Specifically, 
61% of the prediction bias is less than 1.0 ppm. Additionally, 70% and 80% of the predicted bias is 
within 1 and 2 times of XCO2 precision, respectively. Results from cross-validation suggest that this 
mapping method is effective and precise in gap-filling of multi-satellites observed XCO2, which could 
also be affected by original data precision. 

  
(a) Relationship between GM-XCO2 and XCO  (b) Distribution of predicted bias 

Figure 9. Results of cross-validation using the precision-weighted spatio-temporal kriging method. 
The relationship between predicted XCO2 (GM-XCO2) and reserved integrated XCO2 (XCO ) is 
shown in the left panel. The distribution of predicted bias (absolute difference between GM-XCO2 and 
reserved XCO ) and XCO  precision is shown in the right panel. The black and red lines in the 
right panel represent the slope of 1 and 2. 
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4.3.2. Validation of GM-XCO2 with TCCON Measurements 

High accuracy and continuous time series of XCO2 from TCCON measurements were used for 
validation of GM-XCO2 derived from satellite observations. In this study, we selected 12 sites with 
measurements for more than five years from 2003 to 2016 for comparison with GM-XCO2. XCO  
and GM-XCO2 data within 500 km of each TCCON site was used for this comparison (Figure 10). 
GM-XCO2 retained information from satellite observations, which captured the annual increase and 
seasonal variation of XCO2 well. The temporal variation of GM-XCO2 is consistent with TCCON 
XCO2. Comparison statistics between GM-XCO2 and TCCON XCO2 are shown in Table 2. If we 
assume TCCON measurements are accurate, the accuracy of GM-XCO2 performs well with the total 
averaged bias of 0.01 ppm across 303 data pairs. The precision of GM-XCO2 in most TCCON sites 
(9/12) is within 1.0 ppm with an averaged absolute bias of 0.92 ppm. The mean value of the standard 
deviation of the bias over 12 sites is 1.05 ppm. 

    
(a) Bialystok (53.23 °N, 23.02 °E) (b) Bremen (53.10 °N, 8.85 °E) 

 
(c) Karlsruhe (49.10 °N, 8.44 °E) (d) Orleans (47.97 °N, 2.11 °E) 

    
(e) Garmisch (47.48 °N, 11.06 °E) (f) Park Falls (45.94 °N, 90.27 °W) 

    
(g) Lamont (36.60 °N, 97.49 °W) (h) Tsukuba (36.05 °N, 140.12 °E) 

    
(i) JPL/Caltech (34.20 °N, 118.18 °W) (j) Saga (33.24 °N, 130.29 °E) 
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(k) Darwin (12.43 °S, 130.89 °E) (l) Wollongong (34.41 °S, 150.88 °E) 

Figure 10. Temporal variation comparison of GM-XCO2 at 12 TCCON sites. Grey, red, and blue points 
represent XCO , GM-XCO2, and XCO2 from TCCON measurements, respectively. XCO  was 
retrieved within 500 km of TCCON sites. TCCON measurements from 11:00 to 15:00 local time were 
selected for comparison. 

Table 2. Comparison statistics between GM-XCO2 and TCCON XCO2. Bias is calculated using GM-
XCO2 minus TCCON XCO2 for each coincident data pair and averaged for each site. 

Sites Location (Latitude, 
Longitude) 

Coincident 
Data Pairs 

Averaged 
Bias (ppm) 

Averaged 
Absolute 

Bias (ppm) 

Standard 
Deviation 

(ppm) 
Bialystok (53.23°N, 23.02°E) 249 −0.19 0.73 0.92 
Bremen (53.10°N, 8.85°E) 260 0.21 0.97 1.25 

Karlsruhe (49.10°N, 8.44°E) 226 0.51 0.90 0.98 
Orleans (47.97°N, 2.11°E) 232 0.34 0.71 0.85 

Garmisch (47.48°N, 11.06°E) 361 0.62 1.05 1.16 
Park Falls (45.94°N, 90.27°W) 499 0.00 0.74 0.96 
Lamont (36.60°N, 97.49°W) 381 −0.45 0.77 0.92 
Tsukuba (36.05°N, 140.12°E) 210 0.73 1.70 1.89 

JPL/Caltech (34.20°N, 118.18°W) 243 −1.06 1.19 0.97 
Saga (33.24°N, 130.29°E) 204 −0.33 0.76 0.91 

Darwin (12.43°S, 130.89°E) 434 −0.47 0.89 1.00 
Wollongong (34.41°S, 150.88°E) 341 0.09 0.58 0.75 

Overall - 303 0.01 0.92 1.05 

4.4. Comparison between GM-XCO2 and CarbonTracker Simulated XCO2 

GM-XCO2, the spatial-temporal continuous XCO2 from satellite observations, can provide a 
detailed distribution of XCO2 over global or regional land areas. In order to explore the advantages 
and disadvantages of GM-XCO2, we present the latitudinal-temporal change comparison between 
GM-XCO2 with CT-XCO2 and their local temporal change comparison in the northern hemisphere. 

4.4.1. Comparison with Latitudinal and Temporal Variability of CT-XCO2 

The latitudinal and temporal variability of the difference between GM-XCO2 (Figure 5) and CT-
XCO2 (Appendix A: Figure A2) and statistical summary are shown in Figure 11. The mean difference 
is 1.53 ± 0.80 ppm. XCO2 difference in the mid-latitudes showed better consistency with the mean 
value than that in low/high latitudes. The difference in high latitudes is smaller, especially for data 
before March 2012. In low latitudes, the difference varied with time, with lower values in summer 
and higher values in winter. The differences decreased with the satellite observations precision 
improvement from 2009 to 2016.  

XCO2 from low/high latitudes, especially for data before March 2012, shows the largest 
differences between GM-XCO2 and CT-XCO2. The potential reasons for this are: 1) Sparse satellite 
observation in high/low latitudes limited the accuracy of GM-XCO2; 2) Limited precision of XCO2 
from SCIAMCHY contributed to large differences compared to CT-XCO2; 3) Lacking or limited 
surface measurements in low/high latitudes constrained the CT model and affected the simulation of 
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accurate XCO2. GM-XCO2 provided spatial-temporal continuous XCO2 based on satellite 
observations that are different from the model simulation.  

  

(a) Difference between GM-XCO2 and CT-XCO2 (b) The differences histogram  

Figure 11. Latitudinal and temporal variability of the difference between GM-XCO2 and CT-XCO2 (a: 
GM-XCO2 minus CT-XCO2) and a histogram of the differences (b). 

4.4.2. Temporal Variability of GM-XCO2 and CT-XCO2 in Mid-Latitudes 

GM-XCO2 may provide insights into local carbon uptake and emission. We present the temporal 
variability of XCO , GM-XCO2, and XCO2 from CarbonTracker (CT-XCO2) from 2003 to 2016 over 
mid-latitudes of North America and Eastern Asia (Figure 12). Mean GM-XCO2 kept the original XCO2 
information from the satellites observation by kriging the XCO . However, GM-XCO2 presented 
sharp changes in XCO2 during the peak and minimum of XCO2 in each year, which is not as smooth 
as that of CT-XCO2. In addition, the temporal variability of GM-XCO2 was more consistent with CT-
XCO2 in Northern America than that of Eastern Asia. That could be attributed to the contribution 
from more surface measurements to constrain the models. As a result, GM-XCO2 might provide more 
information for areas with limited surface measurements, such as China.  

 

 

Figure 12. Temporal variation of XCO2 from integrated and global mapped results (grey and red 
points) and CarbonTracker (blue points) over latitude in the range of 30 to 45°N and longitude of 60 
to 125°W and 60 to 125°E. 
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5. Discussion 

There are some advantages of GM-XCO2 used in global carbon cycle studies. GM-XCO2 provided 
spatial-temporal continuous XCO2 data from 2003 to 2016 which filled the gaps in observation as 
shown in Figure 1. It improved the data precision compared with XCO2 from conventional spatio-
temporal kriging, especially for data in the satellites overlapping period. As a result, GM-XCO2 could 
help us understand the temporal and spatial changes in the global distribution of CO2 [17]. Because 
GM-XCO2 is from instantaneous satellite observations, it could capture detailed and abnormal XCO2 
change which could be related to local carbon uptake and emission [10,55]. It could also be an 
important dataset for biosphere-atmosphere interactions by relating its changes to local biosphere 
parameter variations [7,11]. In addition, we provide XCO2 precision and interpolation uncertainty for 
each XCO2. Users can select different temporal and spatial segments of GM-XCO2 data for their 
specific application. As it was discussed that space-based XCO2 with precision (no bias) of 2.5 ppm 
could be used for matching ground-based network and precision within 1.0 ppm, it could help reduce 
inferred CO2 flux uncertainties significantly [56]. For anthropogenic CO2 monitoring, a precision 
requirement of GM-XCO2 must be better than 0.7 ppm [57]. 

However, there are also some challenges that need to be discussed. Prediction of GM-XCO2 in 
regions with little observations could have low precision and high interpolation uncertainty. GM-
XCO2 in the tropical rainforest area and the winter in high latitudes should be used carefully as a few 
observations were limited by observing conditions [58,59]. The interpolation method might not 
describe the process of atmospheric transport perfectly, especially for regions with a complex climate 
like the Tibetan area. In addition, GM-XCO2 over a desert like the Sahara with an influence from high 
brightness reflection and complex dust for satellite observations inversion should also be used 
carefully [60]. 

6. Conclusion 

In this study, we developed a precision-weighted spatio-temporal kriging interpolation method 
of multiple satellite observed XCO2. It not only used the spatio-temporal variability of XCO2, but also 
the precision of each observation for gap filling. The spatio-temporal correlation structure was 
optimized and the weighting of XCO2 with high precision was improved. The precision of predictions 
improved in most of the grids, especially for the satellites overlapping period (0.3 – 0.5 ppm). It would 
be useful for gap-filling of increasing satellite observations not only in XCO2 but also for other data 
observed by multiply satellites with different precision. 

We also produced a spatial-temporal continuous XCO2 product, which provides the data 
precision and interpolation uncertainty of each grid. It is spatio-temporal continuous XCO2 from 
satellite observations which could capture the detailed change of XCO2. It could be an available 
dataset for global carbon cycle studies like biosphere-atmosphere interaction. 
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Acronyms 

Acronyms  Full Names 
XCO2 Column-averaged dry air mole fraction of atmospheric CO2 XCO  Original XCO2 retrievals from satellites XCO  Adjusted XCO  XCO  Converted XCO  XCO  Integrated combination of XCO  
GM-XCO2 Global mapped XCO2 
ENVISAT Environmental Satellite 

SCIAMACHY SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY 
GOSAT Greenhouse Gases Observing Satellite  
OCO-2 Orbiting Carbon Observatory-2 
BESD Bremen Optimal Estimation–DOAS 
ACOS Atmospheric CO2 Observations from Space 
TCCON The total carbon column observing network 
CT CarbonTracker  
r2 the coefficient of determination  
RMSE the root mean square error 
ESRL Earth System Research Laboratory 

Appendix A 

 
Figure A1. Latitudinal-temporal change of mean XCO2 averaging kernel from SCIAMACHY 
(January–March 2003), GOSAT (June 2009–May 2014), and OCO-2 (September 2014.09–December 
2016). 

 
Figure A2. Latitudinal-temporal change of CT-XCO2 from 2003 to 2016 
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