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Abstract: Information for individual trees (e.g., position, treetop, height, crown width, and crown 
edge) is beneficial for forest monitoring and management. Light Detection and Ranging (LiDAR) 
data have been widely used to retrieve these individual tree parameters from different algorithms, 
with varying successes. In this study, we used an iterative Triangulated Irregular Network (TIN) 
algorithm to separate ground and canopy points in airborne LiDAR data, and generated Digital 
Elevation Models (DEM) by Inverse Distance Weighted (IDW) interpolation, thin spline 
interpolation, and trend surface interpolation, as well as by using the Kriging algorithm. The height 
of the point cloud was assigned to a Digital Surface Model (DSM), and a Canopy Height Model 
(CHM) was acquired. Then, four algorithms (point-cloud-based local maximum algorithm, 
CHM-based local maximum algorithm, watershed algorithm, and template-matching algorithm) 
were comparatively used to extract the structural parameters of individual trees. The results 
indicated that the two local maximum algorithms can effectively detect the treetop; the watershed 
algorithm can accurately extract individual tree height and determine the tree crown edge; and the 
template-matching algorithm works well to extract accurate crown width. This study provides a 
reference for the selection of algorithms in individual tree parameter inversion based on airborne 
LiDAR data and is of great significance for LiDAR-based forest monitoring and management. 
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1. Introduction 

Forest ecosystems are one of the three surface ecosystems which act as the terrestrial biosphere, 
and also play a crucial role in global and regional carbon cycles [1,2]. The forest canopy structure 
influences the transmittance of sunlight within the canopy, and thus affects the major 
physiochemical processes of vegetation (e.g., photosynthesis, transpiration, and nutritional cycle), as 
well as the energy exchange and circulation between land, vegetation, and atmosphere [3–5]. 
Additionally, the forest canopy structure is important in determining forest net primary 
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productivity [6]. Therefore, an accurate estimate of the forest canopy structure is necessary for the 
monitoring and investigation of forest resources, and it will also improve the accuracy of 
aboveground biomass calculation, thus further contributing to a more accurate estimation of forest 
carbon sequestration [5,7,8]. 

Light Detection and Ranging (LiDAR) has been increasingly utilized to retrieve information on 
forest canopy structure in recent years [9–11]. In terms of the form of return signal, there are two 
types of LiDAR: discrete return LiDAR and full waveform LiDAR. It is difficult to separate 
topographic components from waveform LiDAR data, and the separation accuracy remains to be 
improved. High-density point cloud data provide a detailed vertical structure of individual tree 
crowns and serve as a data basis for the research of individual tree crown detection and delineation. 
Scientists have done a large number of studies on inversion of forest canopy structural parameters 
based on point cloud data [10,12–15]. 

The LiDAR technology calculates the spatial coordinates of the target by measuring the time 
interval between the reflected signal and the transmitted signal, as well as the observation angle. 
Suarez et al. pointed out that it needs 6–10 points to extract the canopy three-dimensional structure 
of each individual tree [16]. The forest canopy is not a fully enclosed surface. LiDAR signals can 
penetrate the canopy to the interior and ground of the forest ecosystem to obtain the vertical 
structure information. At present, the methods of retrieving individual tree structural parameters 
based on LiDAR point cloud data can be divided into two types. The first type is to generate Canopy 
Height Model (CHM) and then to segment it based on morphological method. The second type is to 
identify individual tree by analyzing the spatial distribution of the point pattern in the point clouds, 
and then to calculate tree height, crown width, and other parameters. 

The first type of algorithm mainly includes local maximum filtering, region growth, 
marker-based watershed algorithms, multiscale template-matching algorithms, and wavelet 
algorithms [17–20]. Popescu et al. selected a local maximum filtering algorithm, to locate individual 
trees and measure individual tree parameters [21]. Chen et al. also retrieved individual tree position 
based on a local maximum, and then proposed a marker-based watershed algorithm, to retrieve 
individual tree parameters [13]. Takahashi et al. conducted the inversion of individual tree 
parameters of cedar forests in three mountainous areas with different slopes in Japan. They used a 
spline interpolation method to extract a Digital Elevation Model (DEM), applied an Inverse Distance 
Weighted (IDW) interpolation algorithm to extract digital surface model (DSM), and then smoothed 
the CHM with a Gauss filter. Based on the CHM, a local maximum filter was used to retrieve the 
position of individual trees. The validation through high-resolution image gave a promising result 
[22]. Wu et al. used an unmanned aerial vehicle (UAV)-based LiDAR data and a CHM-based 
method to estimate the canopy cover of a pure ginkgo planted forest in China. In this process, each 
individual tree within the plot was segmented, using watershed, polynomial fitting, individual tree 
crown segmentation (ITCS), and point cloud segmentation algorithms, and then canopy cover was 
calculated [11]. Yin and Wang selected the UAV-based LiDAR data to achieve individual tree 
detection and delineation, as well as measure the tree height (TH) and crown diameter (CD), of each 
mangrove tree. They combined the variable window filtering method and marker-controlled 
watershed algorithm and found that TH and CD were estimated with higher accuracies than in 
previous studies [15]. 

The template-matching algorithm makes use of the geometric features of tree crowns. First, a 
set of template libraries describing the radiation characteristics of tree crowns is defined, and then 
matched tree crowns are searched in the image for edge extraction. Some research automatically 
extracted individual tree position, tree height, and crown width based on a spatial wavelet analysis 
algorithm. Kwak et al. adopted the tool of Terrasolid to separate the ground points, and the TIN 
method to generate DTM and DSM, and finally generated CHM, which was used to acquire 
structural parameters, using the watershed method [23]. Burt et al. used generic point cloud 
processing techniques, including Euclidean clustering, a principal component analysis, region-based 
segmentation, shape fitting, and connectivity testing in the open-source software treeseg, to 
automatically extract individual trees [20]. 



Remote Sens. 2019, 12, 571 3 of 21 

 

The first type of algorithm is based on CHM to retrieve individual tree parameters, which will 
cause errors due to rasterization [24,25]. Therefore, scholars proposed a point-cloud-based 
segmentation algorithm—that is, the second type of algorithms [26,27]. Morsdorf et al. proposed a 
transition algorithm. He retrieved individual tree parameters from point cloud data by K-means 
clustering segmentation algorithm based on seed points of local maximum extracted from DSM, 
although the accuracy of this method depends on raster data [28]. Lee et al. proposed an adaptive 
clustering algorithm to retrieve individual tree information from LiDAR point cloud data. This 
method is similar to watershed algorithm, but it only tests pine forests and needs more training data 
[29]. Edson and Wing compared the accuracy of Fusion, TreevaW, and watershed algorithm in 
retrieving individual tree position and tree height. The results showed that Fusion had the highest 
accuracy in tree position, and the watershed algorithm had the lowest accuracy; TreevaW had the 
highest accuracy in tree height, and the watershed algorithm had the worst performance [30]. Li et al. 
proposed several criteria to automatically retrieve individual tree parameters based on spatial 
distribution and shape index of point clouds [26]. Chang et al. proposed to determine the crown 
width of a single tree based on the geometric relationship between the local highest and lowest 
points extracted from point clouds. The highest point represents the highest point of a single tree 
canopy, and the lowest point represents the edge [31]. Tang et al. marked single tree and multi-tree 
clusters based on 3D information. Then, crown width and canopy volume were inverted based on 
level set theory. Finally, individual tree species were classified. This inversion algorithm has high 
accuracy, but also has high calculation cost [32]. Dai et al. aimed to use multispectral airborne LiDAR 
point clouds for delineating individual trees, and the mean shift segmentation method on different 
feature spaces was used for crown isolation. Results showed the main improvements were achieved 
for the clumped tree segment with multispectral features, in comparison to segmentation solely 
using geometric spatial information [33]. Yan et al. developed a method to calculate the crown 
volume of individual trees based on vehicle-borne laser scanning (VLS) data, using a concave hull by 
slices method. Compared with those from five existing methods (manual measurement, 3D alpha 
shape, 3D convex hull, convex hull by slices, and voxel-based), this proposed method produced the 
smallest average crown volume and can reduce this effect of gaps and holes in the point cloud [28]. 

Different algorithms to retrieve individual tree structural parameters from LiDAR data succeed 
in various levels. Previous studies have compared the success levels of some of the first or second 
algorithms, but there are still great limitations in the comparison. Airborne LiDAR point cloud data 
are used in this study, DEM is extracted, and CHM is computed with various methods, on the basis 
of separating ground and canopy points. Then, using CHM and point cloud data, four algorithms 
(point-cloud-based local maximum algorithm, CHM based local maximum algorithm, watershed 
algorithm, and template-matching algorithm) are selected to extract individual tree position, tree 
height, and crown width, and their accuracy is compared and analyzed. The results can provide a 
reference for algorithm selection in forest individual tree parameter inversion based on airborne 
LiDAR data. 

2. Study Area and Data 

2.1. Study Area 

The study area is located in the Dayekou forestry site of Qilian Mountain area (38°29′ N–38°35′ 
N, 100°12′ E–100°20′ E) of Gansu province, China (Figure 1a,b). The elevation varies from 2500 to 
3800 m. The Mongolia anticyclone controls the atmospheric circulation in winter and the climate is 
cold and dry with little precipitation. The continental cyclone controls the atmospheric circulation in 
summer, and the diurnal temperature difference is dramatic. The difference in precipitation between 
summer and winter is relatively large, and the annual precipitation takes place mainly in summer. 
Affected by the climate and the terrain, the dominant vegetation types in the Qilian Mountain area 
are mountainous pastures and coniferous forests. The major forest species include Picea crassifolia 
and Sabina przewalski. Vegetation density varies with terrain, water, soil, and climate. In this study, 
the coniferous tree species of Picea crassifolia was the target forest species in the sample plots. 
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Figure 1. Location of the study area and investigated plots: (a,b) the study area of Dayekou forestry 
site in Gansu, China; (c) Digital Elevation Model (DEM) map; (d) distribution of LiDAR points and 
field data; (e) individual trees distribution in the field measurements, the numbers on this figure are 
the super plot numbers. 

2.2. Data and Its Preprocessing 

The data used in this study include the high-density LiDAR data and field survey data of the 
coordinate position, height, and crown width of each tree. 

(1) LiDAR data 

An airborne LiDAR flight was conducted over the forestry site in June 2008. The airborne laser 
scan system used was LiteMapper-5600, developed by IGI. It is one of the first commercial airborne 
LiDAR terrain mapping systems to use waveform digitization. The laser scanner is RIEGL 
LMS-Q560. The sensor specifications are shown in Table 1. 

(c)  (d)  

(e) 

(a) 

(b) 



Remote Sens. 2019, 12, 571 5 of 21 

 

Table 1. The system parameters of RIEGL LMS-Q560. 

Parameters Data 
Max. Measurement range 1800 m  

Laser wavelength 1550 nm 
Max. pulse repetition frequency  200 kHz  

Multiple target separation within single shot 0.6 m  
Measurement accuracy 20 mm 

Return pulse width resolution 0.15 m  
Scan speed  10–160 scans/s 

Scan angle accuracy  0.001°  
Laser beam divergence  ≤0.5 m rad  

The flight over the study area was conducted with a nominal height over ground of 700–800 m. 
The horizontal/vertical positioning accuracy of the surface points in LiDAR system is 0.1 m/0.03 m, 
respectively. The obtained point cloud data include two parts: low-density and high-density point 
cloud (Figure 1d). The density of the low-density point cloud is 0.7–1.4 points/m2, and the coverage 
area is 56.56 km2. It was used to generate the DEM (Figure 1c). The density of the high-density point 
cloud is 3.3 points/m2, with a coverage area of about 1.78 km2. It was used for the individual tree 
detection and structural parameter inversion. 

(2) Field Survey Data 

From 1 to 13 June 2008, investigators designed a super sample plot along the hillside. The size of 
the sample plot was 100 m × 100 m. The location was measured using differential GPS (Z-MAX) and 
total station (TOPCON 7002). The horizontal accuracy of the positioning is between ±6 and ±36 mm, 
the elevation adjustment is between ±27 and ±55 mm, and the error equals ±26.9 mm at the 
breakdown point. The height measurement error is ±50 mm. The position of individual trees is 
shown in Figure 1d. 

The forest type of the sample plot is natural pure forest of Picea crassifolia in Qinghai. The age 
structure of the sample plot is mainly mature forest, and the surface cover is moss. According to the 
study needs, the position, height, and crown width of individual trees were obtained from field 
measurements. Table 2 is the statistical data of 16 samples. The number of trees within each plot 
ranged from 36 to 153. The average tree height is 6.42–11.62 m, the average crown width is 2.59–4.21 
m, the average Diameter at Breast Height (DBH) is 9.69–19.62 cm, and the average height under 
branches is 2.15–5.24 m. The preprocessing of ground data is mainly to add the single tree position 
points of geographical coordinates to ArcGIS, convert them into shape file, and then convert the 
projection into UTM 47N for later research. 

Table 2. Trees measurement in 16 investigated plots. 

Plot 
No. 

Number of 
Trees 

Average Tree 
Height (m) 

Average Crown 
Width (m) 

Average 
DBH (cm) 

Average Height Under 
Branches (m) 

1 98 8 3.02 12.15 2.86 
2 113 9.47 3.26 13.12 4.47 
3 77 11.49 3.14 16.25 5.02 
4 80 11.62 3.21 15.69 5.24 
5 69 10 3.67 16.13 3.95 
6 90 9.51 2.97 14.04 4.25 
7 120 9.56 3.07 13.95 4.39 
8 153 6.42 2.59 9.69 2.69 
9 86 9.34 3.17 14.52 3.34 

10 99 8.21 3.12 11.96 2.76 
11 110 8.22 3.27 13.47 2.99 
12 92 10.6 3.48 15.25 4.79 
13 61 10.73 3.97 17.38 3.6 
14 93 9.81 3.39 14.55 3.82 
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15 76 7.85 3.64 12.93 2.15 
16 36 10.8 4.21 19.62 2.62 

Total 1453 - - - - 

3. Methodology 

3.1. Ground Point Extraction 

In this section, the iterative TIN algorithm was used to extract the ground points, and then four 
interpolation algorithms were used, and their accuracy was analyzed. In order to eliminate the 
influence of scanning angle, 27 LiDAR lines—each with a scanning degree of less than 10 
degrees—were selected based on Terrasolid software, totaling 8,028,759 points, with an average 
density of 0.7 points/m2. Iterative TIN algorithm assumes that the ground changes are smooth, and 
the large elevation changes in some areas are caused by buildings or vegetation [3]. Therefore, the 
ground points are screened by controlling the increment of slope. The extraction of ground points is 
to filter ground points based on a large grid and construct a sparse irregular triangular network. 
Then, a new triangular network is constructed with the initial ground points, and the iteration 
increment is calculated. The ground points are re-screened until the termination conditions of 
iteration or a certain number of iterations are met, the iteration is stopped, and the output is the 
expected result. 

There are three types of parameters that need to be set in this algorithm: one is the initial mesh 
size, the other is the increment of iteration, and the third is the termination condition. According to 
the study area conditions, the parameters of the algorithm were set as follows: the initial mesh size 
was set to 60 m × 60 m; the termination conditions included terrain angle, iteration angle, and 
iteration distance, which were set to 88 degrees, 9 degrees, and 1.4 m, respectively; and the 
classification option was to stop iteration when the distance became less than 5 m. After calculation, 
1,996,001 ground points were selected. One profile is shown in Figure 2. It showed that the algorithm 
did not detect all the ground points, but it was enough to construct high-precision DEM. 

 
Figure 2. The profile of ground point separation results (orange ones indicate the ground points, and 
white ones are the non-ground point.). 

3.2. DEM Extraction Based on Interpolation Algorithms 

Based on the extracted ground points, DEM were generated, using an inverse distance 
weighted algorithm (IDW), a thin spline algorithm, a trend surface interpolation algorithm, and a 
Kriging algorithm. 

(1) Inverse Distance Weighted Algorithm 

The first law of geography states that the similarity between two objects decreases as their 
distance increases. Therefore, the closer to the target point, the higher the similarity with it, the 
higher the weight when estimating. Inverse Distance Weighted interpolation (IDW) is based on this 
model. The general equation of IDW is as follows: 
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In the formula, Z0 is the estimated value of point 0; Zi is the Z value of point i; di is the distance 
between point i and point 0; s is the number of points involved in the estimation; and k is the power. 
Moreover, k denotes the relationship between similarity and distance of spatial objects. The larger 
the k value, the faster the similarity of things decays with increasing distance. 

This method is simple, intuitive, and efficient. The interpolation effect of the algorithm is good 
when the distribution of known points is uniform. The interpolation results are between the 
maximum and minimum values of the interpolate data and are susceptible to extreme values. 

(2) Thin Spline Algorithm 

Thin spline function is based on known points, and a smooth interpolation curve is generated 
by using the polynomial fitting method. It has the feature that all points are on the surface, and the 
surface slope changes least. The approximate expression of the thin spline function is as follows: 

2( , ) logi i iQ x y Ad d a bx cy= + + +  (2) 

Here, x and y indicate the abscissa and ordinate of the interpolation points;
2 2 2( ) ( )i i id x x y y= − + −  represents the square of the distance from the known point i to the point 

to be interpolated; xi and yi are the abscissa and ordinate of control point i, respectively. Thin spline 

functions include two parts: ( a bx cy+ + ) is a local trend function whose expression is similar to 

the first order linear trend surface; 
2 logi id d  is a basic function used to generate a surface with 

minimum curvature. The coefficients of iA , a, b, and c are derived from the following linear 
equations. 
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(3) 

In the formula, n is the number of control points, fi is the known value of control point i, and the 
estimation of coefficients is a solution of an equation system consisting of n+3 equations. 

Unlike IDW, the predicted values of thin spline function method are not limited to the 
maximum and minimum values of control points. This method has the advantages of easy operation 
and small computation [18]. However, it is difficult to estimate the error, and the interpolation effect 
is poor when the sampling points are scarce. 

(3) Trend Surface Interpolation Algorithm 

Trend surface analysis is based on the principle of regression analysis. Least squares method is 
used to fit a binary nonlinear function, to simulate the spatial distribution of geographical elements, 
and to show their change trend. 

In field measurement, only discrete data can be obtained. Trend surface analysis builds 
polynomials based on these known points and estimates the values of other points. The first-order 
trend surface is expressed as follows: 

, 0 1 2x yz b b x b y= + +
 (4) 
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In the formula, the attribute value Z is a function of coordinates x and y, and the coefficient bi is 
estimated by known points. The model uses the least square method to estimate bi, thus the fitting 
degree of the model can be measured. 

Actually, the spatial distribution of geographic objects is more complex than the inclined 
surface generated by the first-order trend surface, such as the third-order surface containing 
mountains and valleys. This model is based on the following formula: 

2 2 3 2 2 3
, 0 1 2 3 4 5 6 7 8 9x yz b b x b y b x b xy b y b x b x y b xy b y= + + + + + + + + +  (5) 

The first-order trend surface needs three coefficients, while the third-order trend surface needs 
to estimate 10 coefficients (bi), to predict the value of unmeasured points. The higher the order of the 
trend surface model is, the higher the accuracy is, and the larger the calculation amount is. Therefore, 
it is necessary to choose the appropriate model order according to the research complexity. 

(4) Kriging Algorithm 

Kriging is a geostatistical method for spatial interpolation. Compared with the previous three 
interpolation methods, Kriging can evaluate the prediction quality by estimating the prediction error. 
This study adopted the ordinary Kriging method. Assuming that there is no drift, the ordinary 
Kriging method only considers the spatially correlated factors and interpolates directly with the 
fitting semivariogram. The equation for estimating the Z value of a measurement point is as follows: 

0
1

s

x x
i

z z w
=

=
 

(6) 

In the formula, Z0 is the value to be estimated; Zx is the known value of x; wx is the weight of x; 
and s is the number of sample points. The weight can be obtained by solving a set of simultaneous 
equations. For example, when estimating the value of an unknown point (0) from three known 
points (1, 2, 3), the three equations in (7) need to be combined. 
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W W W
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γ γ γ λ γ
γ γ γ λ γ

+ + + =
+ + + =
+ + + =

+ + + =  

(7) 

Here, γ(hij) is the semivariogram between known points i and j; γ(hi0) is the semivariogram 
between the known point i and the unknown point; and λ is the introduced Lagrange coefficient to 
ensure the minimum estimation error. 

After calculating the weight, Z0 can be estimated by Equation (8): 

0 1 1 2 2 3 3z z W z W z W= + +  (8) 

The abovementioned equations indicate that Kriging method considers not only the 
relationship between estimated points and known points, but also the semivariogram between 
known points when calculating weights. Compared with other local fitting methods, Kriging 
calculates the variation of each estimated point, and the interpolation accuracy is higher. 

The DEM was acquired by the interpolation method. The height of the point cloud was 
assigned to the DSM and the CHM was acquired. 

3.3. Individual Tree Parameter Inversion Algorithm 

(1) Local Maximum Algorithms Based on Point Clouds 

Local maximum algorithms based on point clouds searches the maximum value in a certain 
window size as the treetop position. It needs to set the window size according to the distribution and 
structure of the tree crown. For the same forest stand with uniform crown size, a fixed window size 
can be used. When the crown size varies greatly, the fixed search window can easily produce pseudo 
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treetop or miss crown vertices. A feasible alternative is to determine the search window size 
according to the relationship between tree height and crown width [30]. For the forest area with the 
same tree species of Picea crassifolia, there is a linear relationship between tree height and crown 
width [18]: 

0.202 1.355Y X= +  (9) 

Here, X denotes tree height, and Y denotes crown width. The parameters of the equation were 
determined by linear regression of measured tree height and crown width in the surveyed plots. 

Firstly, the LiDAR point cloud data in xyz format was transformed into shp format, and then 
the elevation value of DEM was extracted and assigned to each point, and the difference between the 
height of point cloud and DEM was calculated, so that the distance between each point and ground 
was obtained. Based on this, the Thiessen polygons and TIN were constructed, and the volume was 
calculated by taking the height of the interior point of the Thiessen polygon as the base. If the 
volume was 0, it indicated that the point was the highest and was reserved as an individual treetop 
[22]. Then, the points with height less than 1.3 m were removed. Finally, using the relationship 
between tree height and crown width (Equation (9)), the pseudo-single-tree points which did not 
satisfy the conditions were gradually eliminated. 

(2) Local Maximum Algorithms Based on CHM 

In order to eliminate the noise in CHM, a 3 × 3 pixel mean filtering operation was performed on 
CHM, and then the local maximum of 3 × 3 pixel windows was searched as the candidate point of 
the treetop [6,18]. Finally, the theoretical crown width was calculated according to the tree height 
and Equation (9) of the candidate points. When the distance between the two candidate points was 
less than half of the theoretical crown width, the points with a smaller tree height were removed 
until the distance among all the points was greater than half of the theoretical crown width. 

(3) Watershed Algorithm 

A watershed is a mountain or plateau that separates two adjacent basins from which the river 
flows in two opposite directions. The watershed algorithm is the watershed transform based on the 
overflow model. It regards the gray value of the image as the elevation, and the water immerses the 
surface from the water-accumulation point, and gradually submerges the image at the same speed. 
When the rising water level from different minimum values meets, a dam is constructed to block it. 
Until only the top of the dam is above the water surface, the procedure is terminated and the 
segmentation is completed. 

Taking two pixels as radius, the mean filtering of CHM (with a spatial resolution of 0.5 m) was 
carried out, and the inverse was obtained. In this way, a large number of small gullies were obtained. 
On this basis, basin function embedded in ArcGIS tool was used to extract watershed. The highest 
value of each basin was taken as the height of an individual tree, and the location was taken as the 
position of an individual tree. 

(4) Template-Matching Algorithm 

Template-matching algorithm is a method to find objects similar to the template from the 
original images according to the distance or correlation. This technology is often used in image 
registration, interferometric SAR, and other remote-sensing data processing. The correlation 
coefficient can be used as an index to measure the matching degree of the template and graph 
(Equation (10)). 

2 2

( )( )

( ) ( )
i i

i i

x x y y
r

x x y y

− −
=

− −


 
 (10) 

Here, xi represents the gray value of the template, and yi represents the gray value of the 
detected image. When r = 1, it indicates that the current position is positively correlated with the 
template and the matching is successful; when r = 0, they are completely unrelated, or not the search 



Remote Sens. 2019, 12, 571 10 of 21 

 

target; if r = -1, this means that they are negatively correlated and need to be re-detected by rotation 
or other operations. 

In this study, the mean filtering of 3 × 3 was performed, and then the maximum value in the 
neighborhood of 3 × 3 was extracted. With this point as the center, the correlation coefficients were 
obtained by using two-dimensional cosine function and conic function whose diameter was 3, 5, 7, 9, 
11, 13, 15, 17, and 19 pixels and height was equal to the height of the treetop. Finally, the maximum 
value of correlation coefficient greater than 0.8 was retained as the single tree position, and the 
diameter of the maximum deceleration rate of correlation coefficient was used as the crown width. 

As shown in Figure 3, when the matching point is located at the top of the tree, the matching 
point extends gradually to the ground and the surrounding crown, and the determination coefficient 
of the crown and the model decreases gradually. When the matching points are located in the 
canopy around the treetop, with the increase in the radius, the matching points gradually extend to 
the ground and the surrounding canopy, and the correlation coefficient between the canopy and the 
model decreases first, then increases, and finally decreases. This rule can be used to extract the 
crown width of individual trees. 

 
Figure 3. The determination coefficient trend variance of correlation with the treetop and crown for 
different radius with cosine function. 

4. Results 

4.1. DEM 

Based on the extracted ground points, DEMs were generated by using an IDW algorithm, a thin 
spline algorithm, a trend surface interpolation algorithm, and a Kriging algorithm, and the accuracy 
of these interpolation algorithms was compared. The parameters used for the interpolation are 
shown in Table 3. 

Considering the large number and high density of ground points, the verification could be 
conducted by using field-measured data, and the results are shown in Table 4 and Figure 4. The 
results indicated that the trend surface interpolation results were on the high side, and the error was 
the largest; the thin spline interpolation algorithm has the lowest error, followed by the Kriging 
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algorithm. As can be seen from Table 4, except for trend surface interpolation, there was little 
difference among the other three algorithms. To be precise, the accuracy of the thin spline algorithm 
was slightly higher. Therefore, a thin spline interpolation algorithm was used to extract DEM. 

Table 3. The parameters used for the interpolation methods. 

Parameter Type Parameter Name Setting 

Common parameters 

Input point features Input file, las.shp 

Z value field Shape.Z 

Output raster Output file 

Output cell size 0.5 

IDW algorithm Power 2 

Trend algorithm 
Polynomial order 2 

Type of regression linear 

Spline algorithm 
Weight 0.1 

Spline type  tension 

Kriging algorithm 
Kriging method Universal 

Semivariogram model Linear with linear drift 

Table 4. The statistical table of the errors. 

Statistical Data IDW Spline Trend Kriging 
Average 0.17 0.14 17.30 0.16 

Mean Standard Error 0.00651 0.00588 0.09114 0.00595 
Standard Deviation 0.25037 0.22592 3.50260 0.22858 

Variance 0.063 0.051 12.268 0.052 
Skewness 1.409 1.953 -5.509 1.962 
Kurtosis 15.232 22.294 46.086 24.610 
Range 3.70 3.40 47.20 3.50 

Minimum -1.40 -1.20 -25.40 -1.20 
Maximum 2.30 2.20 21.80 2.30 
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Figure 4. The error histogram of the four interpolation algorithms: (a) inverse distance weighted 
(IDW), (b) thin spline, (c) trend surface, and (d) Kriging algorithms (X-axis = the difference between 
the measured and interpolated elevation; Y-axis = frequency). 

4.2. CHM 

Based on the ground points, the thin spline algorithm was used to generate DEM. The height of 
the point cloud of LiDAR was assigned to the DSM directly. The DSM was then subtracted from the 
DEM to obtain CHM, as shown in Figure 5. 

 
Figure 5. The canopy height model (CHM) of the study area. 

4.3. Individual Tree Position, Tree Height, and Crown Width 
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In this study, the local maximum method (point cloud based and CHM based), watershed 
algorithm and template-matching algorithm (cosine template and cone template) were used, 
respectively, to extract individual tree parameters, and the extraction accuracies of the individual 
tree position, tree height, and crown width were compared and analyzed. The local maximum 
algorithm (Max_CHM), watershed algorithm, and template-matching algorithm were all based on 
CHM, and the local maximum algorithm based on point cloud (Max_H) used high-density point 
cloud as the original data for inversion. The results of these algorithms were validated, using the 
measured individual tree information in the super plots, and the accuracy was analyzed from three 
perspectives: the number of detected individual tree, tree-height error, and crown-width error. 

Figure 6 showed the matching results of extracted and the nearest measured individual trees. If 
there were multiple points matching with one extracted tree, the points with similar height were 
selected. Among them, (a) the number of individual trees obtained by the Max_H algorithm was 
1119, and there were 758 matching results with the measured ones; (b) the number from Max_CHM 
algorithm was 437, and only 329 matched with the measured trees; (c) the watershed algorithm 
extracted 544 trees, and 372 matched; (d) the cosine-template-matching algorithm extracted 676, and 
only 370 matched; and (e) the number from cone-template-matching algorithm was 658, and the 
matching result was only 330. 

  
(a) (b) 

  
(c) (d) 
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(e) 

Figure 6. The distribution of the individual trees extracted by five different algorithms: (a) Max_H, 
(b) Max_CHM, (c) watershed, (d) cosine-template-matching, and (e) cone-template-matching 
algorithms. 

To further compare and analyze the accuracy of all the algorithms, the number of trees, average 
tree height, and crown width were calculated in 16 sample plots. Table 5 and Figure 7 indicated that 
the lower the height of the trees, the fewer actual field trees that can be extracted. For example, in 
sample plot 8, the extracted tree number is only 1/7 of the field number; in sample plots 1, 10, and 11, 
there were about 100 trees with an average tree height of 8.2 m, and the extracted tree based on CHM 
was only 1/5 of the field number. The higher the trees were, the more trees were extracted; for 
example, in sample plots 3 and 4, there were about 80 trees with an average tree height of 11.5 m, the 
number of individual trees extracted based on CHM reached 1/4 of the field number. 

Table 5. The counts of tree extracted by these five algorithms in 16 super plots. 

Plot 
No. 

Number of 
Trees Max_H Max_CHM Watershed Cosine Template 

Matching 
Cone Template 

Matching 
1 98 47 20 24 18 18 
2 113 63 24 27 25 26 
3 77 49 25 30 29 29 
4 80 45 24 24 22 20 
5 69 36 18 20 20 17 
6 90 43 19 19 21 17 
7 120 58 25 28 28 22 
8 153 80 24 27 20 19 
9 86 44 20 23 21 21 
10 99 44 20 23 21 15 
11 110 45 17 19 21 17 
12 92 51 24 26 28 20 
13 61 38 21 23 36 24 
14 93 47 20 25 23 23 
15 76 41 13 16 19 16 
16 36 27 15 18 18 26 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 7. The scatter plot of the measured and extracted tree heights by (a) Max_H, (b) Max_CHM, 
(c) watershed, (d) cosine-template-matching, and (e) cone-template-matching algorithms (X-axis is 
measured tree height; Y-axis is extracted tree height). 

Table 6 showed that the individual tree height extracted by watershed algorithm was close to 
the measured value, and the accuracy was high (RMSE = 0.51). It should be noted that when there 
were too many trees in the forest, the LiDAR signal could not penetrate, even if a few signals reached 
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the treetops, the watershed algorithm cannot capture these features. Some extracted tree height was 
higher than the measured value, which was mainly due to three causes: (1) the canopy closure was 
larger and the measurement accuracy was poor; (2) the positioning error of point cloud lead to the 
error that adjacent canopy points of higher trees was regarded as the treetop; and (3) the field survey 
located individual trees by the root of the tree, while the individual trees extracted from the LiDAR 
point cloud located tree position by the tree top. Due to the influence of wind and slope, the top and 
root of trees were not always in the same vertical line, which brought positioning errors. 

In terms of crown width extraction, the watershed algorithm generally produced higher values 
than the measured ones, and the error was about 1.0 m (RMSE = 1.13). This was because watershed 
algorithm divided the whole region and took the area of each basin as the crown coverage. Actually, 
there were some forest gaps which were not covered by the crown also included in the watershed 
calculation output. This leads to the overestimated crown width. The accuracy of crown width 
extraction, using the watershed algorithm, was lower than that of tree-height extraction. 

Table 6. The statistics of the tree extracted by watershed algorithm in 16 super plots. 

Plot 
No. 

Number of 
Trees 

Measured Tree 
Height (m) 

Extracted Tree 
Height (m) 

Measured Crown 
Width (m) 

Extracted Crown 
Width (m) 

1 24 13.35 13.98 4.45 5.47 
2 27 14.45 13.98 4.50 5.32 
3 30 15.66 14.90 4.46 4.96 
4 24 15.40 15.38 4.20 5.13 
5 20 15.65 15.54 5.09 5.93 
6 19 15.12 15.24 4.36 5.42 
7 28 13.73 13.70 4.16 5.48 
8 27 10.05 9.92 3.37 5.09 
9 23 14.32 13.63 4.39 6.33 

10 23 13.64 12.99 4.22 5.45 
11 19 15.61 15.56 5.38 6.43 
12 26 16.13 16.30 4.56 5.17 
13 23 17.12 17.43 5.59 5.87 
14 25 15.79 15.39 4.60 5.56 
15 16 14.99 15.56 5.46 6.73 
16 18 15.69 14.53 5.19 6.49 
  Average Error 0.39  1.05 
  RMSE 0.51  1.13 

The results of the template-matching algorithm are shown in Tables 7 and 8. Comparisons 
indicated that the extraction performance of cosine template was slightly better than that of cone 
template-matching algorithm (Table 8). The tree height extracted by the two template-matching 
algorithms was significantly lower, and the error was larger (RMSE = 3.30 for cosine and 3.36 for 
cone), but the accuracy of crown width extraction was higher than that of the watershed algorithm 
(RMSE = 0.63 for cosine and 0.67 for cone). 

Table 7. The statistics of the tree extracted by template-matching algorithm (cosine) in 16 super plots. 

Plot No. 
Number of 

Trees 
Measured Tree 

Height (m) 
Extracted Tree 

Height (m) 
Measured Crown 

Width (m) 
Extracted Crown 

Width (m) 
1 18 11.66 8.57 4.26 4.50 
2 25 12.59 8.87 4.42 3.30 
3 29 13.4 10.33 4.57 4.02 
4 22 13.49 10.22 4.01 4.05 
5 20 13.54 11.08 4.51 5.00 
6 21 10.8 9.48 3.60 4.88 
7 28 13.36 9.83 4.22 4.29 
8 20 7.38 5.40 2.82 3.50 
9 21 13.13 8.01 4.48 4.31 
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10 21 11.49 9.37 3.78 4.93 
11 21 13.22 8.99 4.74 4.50 
12 28 13.13 10.12 3.97 3.54 
13 36 14.88 12.66 4.94 4.86 
14 23 14.64 10.88 4.32 5.15 
15 19 12 8.71 4.66 4.82 
16 18 14.02 9.64 4.69 4.94 
  Average Error 3.16  0.48 
  RMSE 3.30  0.63 

Table 8. The statistics of the tree extracted by template-matching algorithm (cone) in 16 super plots. 

Plot No. Number of 
Trees 

Measured Tree 
Height (m) 

Extracted Tree 
Height (m) 

Measured Crown 
Width (m) 

Extracted Crown 
Width (m) 

1 18 12.2 8.6 4.5 5.1 
2 26 12.4 8.5 4.4 4.5 
3 29 13.5 9.7 4.5 4.5 
4 20 12.9 9.7 3.8 4.6 
5 17 12.7 11.2 4.2 4.9 
6 17 11.2 9.3 3.8 4.8 
7 22 13.0 9.4 4.1 5.0 
8 19 7.7 5.2 2.9 3.8 
9 21 13.7 8.3 4.5 5.0 

10 15 11.3 9.6 3.8 4.6 
11 17 12.4 9.0 4.5 5.0 
12 20 13.6 10.4 4.1 4.2 
13 24 15.6 12.6 5.0 4.7 
14 23 15.0 10.8 4.4 5.7 
15 16 11.5 8.7 4.5 4.5 
16 26 13.4 9.6 4.8 5.3 
  Average Error 3.22  0.56 
  RMSE 3.36  0.67 

In summary, the algorithms of Max_H and Max_CHM can effectively extract the treetop and 
determine the location of individual trees. The watershed algorithm can accurately extract 
individual tree height and determine the maximum edge of the tree crown; the template-matching 
algorithm can be used to extract accurate individual tree crown width, in which the cosine template 
performed slightly better than the cone template. 

5. Discussion 

In this study, airborne LiDAR-based individual tree parameter inversion algorithms were 
systematically studied, and the understory DEM interpolation algorithms and individual tree 
parameter extraction algorithms were compared and analyzed. Among them, aiming at DEM 
interpolation algorithm, the thin spline interpolation algorithm achieved the highest accuracy, 
followed by the Kriging interpolation algorithm, and the trend surface interpolation algorithm had 
the lowest accuracy. According to the analysis of individual tree parameter inversion results, it was 
found that the local maximum algorithm can effectively extract the treetop, which can be used to 
determine the position of individual trees, but can also easily extract data for too many treetops; the 
watershed algorithm can effectively estimate the height and maximum crown width of individual 
tree, but it was necessary to remove the impact of some non-canopy areas (e.g., forest gaps). The 
template-matching algorithm had the lowest accuracy in tree-height inversion, but it could be used 
to extract crown width accurately, combined with watershed algorithm. Overall, the detection and 
delineation accuracy of individual tree parameters in this study is generally consistent with the 
results from previous studies, especially for those with the same tree species [3,10,11,13,17,34,35]. 
However, there are some exceptions. These results are partly consistent with those reported in the 
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study of Edson and Wing [30] for the tree position. They pointed out that the Fusion software (using 
the local maximum algorithm of Max_H) had the highest accuracy in tree-position determination, 
and the watershed algorithm had the lowest accuracy. However, they also reported that the 
TreevaW software (using the local maximum algorithm of Max_CHM) had the highest accuracy in 
tree-height extraction, and also that the watershed algorithm gave the worst performance for the 
tree height. This part is not consistent with the result of our study. Through further analysis and 
comparison, we find that the reason lies in the difference of tree density between the two study 
areas, which leads to a difference of tree gap and then affects the accuracy of tree-height extraction 
based on watershed algorithm. 

When detecting the position of individual trees, a Max_H algorithm is simple in principle and 
easy to implement, and thus shows itself to be the best algorithm to preliminarily determine the 
treetop positions. In fact, there were totally 6013 candidate points extracted by Max_H algorithm in 
this study, and 2437 points were reserved after removing the points whose height was less than 1.3 
m; 1119 were kept after screening, and 758 effective individual trees were matched with the 
measured trees. Therefore, when removing those extracted points with the same matched individual 
trees, different levels of human impacts are revealed. The watershed algorithm can determine the 
canopy edge on this basis. This algorithm does not make full use of the information of canopy 
surface and is greatly influenced by the search window. Different from the watershed algorithm, the 
Max_CHM algorithm produced fewer candidate points, but more matched with field measured 
individual trees; therefore, there is less human disturbance in matching factors. As the tree density in 
the sample plots is 1.5 trees/m2, which is relatively high, and the structure is complex, the 
template-matching algorithm cannot effectively identify individual trees from the crown of 
multi-tree aggregation [23]; thus, the errors are the largest among these algorithms when detecting 
individual tree positions. 

In this study, the tree-position error is another effective indicator for the accuracy verification of 
the individual tree extraction results. However, considering that the top and root of lots of trees in 
the plots are not on the same vertical line due to the influence of wind and slope, it is difficult to 
eliminate this type of error; therefore, the tree-position error has not been taken as an 
accuracy-assessment indicator. It should be considered in future research, especially in field forest 
measurements. 

The reasons why the number of individual trees detected in this study is less than the field 
measured value are as follows: (1) the forest density is high, and the adjacent trees are covered with 
each other; (2) the template features are simple, and the detection capacity of the forest distribution 
with multi-tree aggregation method remains to be improved. Compared with the extraction 
algorithm based on point clouds, the accuracy of the algorithm based on CHM is poor. In addition, 
for extremely dense forests, it is difficult to extract individual trees effectively due to the limitation of 
laser pulse’s penetration ability. It is consistent with the conclusions of some previous studies 
[4,10,20]. In the study of Cao et al. [4,10], the tree height was estimated with high accuracy, while 
there was a large error in extracting the crown widths, due to the impact of adjacent trees. 

This study provides an essential reference for the algorithm selection for forest individual tree 
parameter inversion based on airborne LiDAR data. It also assists with accurate forest monitoring 
and management applications. When the airborne LiDAR data is used for the forest monitoring, the 
methodology should be selected according to the monitoring purpose. If it is only the number of 
trees needed, the local maximum algorithm is the optimal choice, and, additionally, the CHM is not 
necessary under this circumstance [6,22]; if the tree height and crown width of individual trees are 
the delineation objectives, then we should combine the watershed and template-matching 
algorithms, to extract the required structural parameters with high precision. During such a process, 
CHM is mandatory. The detection and extraction accuracy is determined by both the algorithm 
itself and the site conditions. 
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6. Conclusions 

In this study, through the comparative analysis of individual tree parameter extraction 
algorithms, it was found that the accuracy of individual tree position detection and tree-height 
extraction based on point clouds is much higher than those based on CHM, but the crown width 
cannot be obtained from point clouds directly. Among the three examined algorithms based on 
CHM, the local maximum algorithm of Max_CHM can be used to extract the potential treetop 
position effectively; the watershed algorithm can extract tree height more effectively and find the 
maximum distribution range of crown width, which provides the maximum matching range for 
template-matching algorithm and reduces its time complexity; finally, the template-matching 
algorithm can accurately extract the crown width of individual trees. Combining the three 
algorithms cannot only improve the accuracy of individual tree parameter extraction, but also 
improve the efficiency in forest monitoring and management applications. 
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