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Abstract: In this work, crop leaf nitrogen concentration (LNC) is predicted by leaf impedance 
measurements made by electrical impedance spectroscopy (EIS). This method uses portable 
equipment and is noninvasive, as are other available nondestructive methods, such as hyperspectral 
imaging, near-infrared spectroscopy, and soil-plant analyses development (SPAD). An EVAL-
AD5933EBZ evaluation board is used to measure the impedances of four different crop leaves, i.e., 
canola, wheat, soybeans, and corn, in the frequency range of 5 to 15 kHz. Multiple linear regression 
using the least square method is employed to obtain a correlation between leaf nitrogen 
concentrations and leaf impedances. A strong correlation is found between nitrogen concentrations 
and measured impedances for multiple features using EIS. The results are obtained by PrimaXL 
Data Analysis ToolPak and validated by analysis of variance (ANOVA) tests. Optimized regression 
models are determined by selecting features using the backward elimination method. After a 
comparative analysis among the four different crops, the best multiple regression results are found 
for canola with an overall correlation coefficient (R) of 0.99, a coefficient of determination (R2) of 
0.98, and root mean square (RMSE) of 0.54% in the frequency range of 8.7–12 kHz. The performance 
of EIS is also compared with an available SPAD reading which is moderately correlated with LNC. 
A high correlation coefficient of 0.94, a coefficient of determination of 0.89, and RMSE of 1.12% are 
obtained using EIS, whereas a maximum correlation coefficient of 0.72, a coefficient of 
determination of 0.53, and RMSE of 1.52% are obtained using SPAD for the same number of 
combined observations. The proposed multiple linear regression models based on EIS 
measurements sensitive to LNC can be used on a very local scale to develop a simple, rapid, 
inexpensive, and effective instrument for determining the leaf nitrogen concentrations in crops. 

Keywords: leaf nitrogen concentration; EIS; correlation coefficient; coefficient of determination; 
ANOVA; SPAD 

 

1. Introduction 

Nitrogen is the most required mineral nutrient of a crop due to its importance in several plant 
cell components; its concentration in plant tissue is the highest of all mineral nutrients. Leaf nitrogen 
concentration (LNC) provides valuable information about the physiological status of plants which is 
directly linked to photosynthetic potential and primary production [1–3]. Precise timing and the rate 
of nitrogen fertilizer application play a major role in plant nutrition. Nitrogen deficiency significantly 
reduces the photosynthetic yield of crops while excessive application of nitrogen fertilizer causes 
stress to the crop and environmental pollution. Therefore, the prediction of nitrogen requirements is 
necessary for efficient utilization of nitrogen fertilizers [1]. Soil tests or tissue tests are possible ways 
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to predict the nitrogen in plants, but these are expensive, laborious, and time-consuming. 
Applications of handheld chlorophyll meters, for example, soil-plant analyses development (SPAD), 
near-infrared spectroscopy, and hyperspectral imaging are mostly desirable as rapid, nondestructive, 
and noninvasive methods for predicting nitrogen in the leaves [4–6]. Leaf chlorophyll content is a key 
indicator of plant physiological status. It is correlated with leaf nitrogen concentration, although the 
correlation depends on soil condition, plant species, and the stage of growth [7–12]. The nitrogen 
status in the leaves can also be determined by analyzing the distribution of the color components of 
an image of a single leaf or group of plants. 

In one study, leaf nitrogen status was determined by hyperspectral indices which were based on 
various algorithms [4]. In other studies, hyperspectral remote sensing images and spectral indices 
were used to assess the leaf nitrogen status and reflectance spectra of a wheat and reed canopy, as 
shown by the variation in wavelengths [13–15]. Hyperspectral data, fluorescence, and near-infrared 
spectroscopy, detected via digital cameras and satellite-mounted hyperspectral sensors, have been 
developed and studied for the detection of the nutritional status in crop fields. In addition, plant 
nitrogen status can also be correlated with laser-induced chlorophyll fluorescence. 

Noninvasive methods involving leaf or canopy reflectance properties have been studied and 
applied mostly to determine crop N status. Canopy-level sensors are capable of measuring crop N 
status in larger areas by analyzing different reflectance spectra. The normalized differential 
vegetation index (NDVI) calculated using near-infrared (NIR) canopy reflectance has been studied to 
determine crop N requirements [13–15]. Plant-based N measurements and modeling approaches 
have been reported in various studies. The chlorophyll index and leaf nitrogen of canola have been 
evaluated under a wide range of soil moisture using SPAD [16]. The area- and mass-based leaf 
nitrogen of wheat have been estimated using continuous wavelet analysis [17]. The leaf nitrogen and 
chlorophyll of soybean plants have been measured using SPAD [18]. The leaf nitrogen of corn has 
been assessed from digital images using the dark green color index (DGCI) [19]. Although there are 
many advantages of these noninvasive methods, they have some limitations as to their environmental 
sensitivity and confounding factors (i.e., soil condition, light intensity, canopy shape, and color). 
Hyperspectral imaging creates images using hundreds of thousands of narrow bands. Although 
complete field imaging and estimation are done very rapidly using hyperspectral imaging, in most 
cases, the primary disadvantages are cost and complexity. Fast computers, sensitive detectors, and 
large data storage capacities are needed to analyze hyperspectral data. However, SPAD has 
limitations in the measurement of leaf nitrogen concentrations because the measurement is indirect 
and not linear, and the device is not cost effective. SPAD-based leaf nitrogen estimation is affected by 
environmental factors and the characteristics of individual crop species [20]. 

Several researchers have reported methodologies based on electrical impedance measurements 
to determine plant physiological status, such as nitrogen nutrition stress in tomato leaves [21], N 
status estimation in lettuce [22], citrus fruit acidity (pH measurement) [23], tea leaf growth [24], and 
other biological analyses [25]. The impedance measurement is done using electrical impedance 
spectroscopy (EIS), which is less sensitive to environmental variables than other available 
noninvasive methods. The nutrition status of trifolium subterraneum and tomato plants was also 
determined by electrical measurements using EIS [26,27]. EIS is a fast, nondestructive, easily 
implemented, and inexpensive method which could be an attractive alternative to optical 
spectroscopy for applications in plant science [28–30]. Impedance is very sensitive to the variation of 
frequencies set by the EIS tool, which is both convenient and easy to implement, but the computation 
is complex and model dependent. EIS works in a large range of frequencies operated by an electrical 
source and is easier to control than other noninvasive methods. EIS is proposed in this work to collect 
in situ data locally and directly on the leaf, which, then, is used for the prediction and validation of 
N status. 
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Therefore, the objectives of this study are the following: (i) To find the correlations between leaf 
nitrogen concentrations and leaf impedances of canola, wheat, soybeans, and corn, using simple and 
multiple regression analysis; (ii) to predict or determine the leaf nitrogen concentrations of the four 
different plant species using EIS with the help of multiple regression analysis; and (iii) to compare 
the performance of EIS with the SPAD measurement for the determination of leaf nitrogen 
concentrations. 

2. Materials and Methods 

The EVAL-AD5933EBZ evaluation board (Analog Devices Inc.) is a high-precision impedance 
converter system that combines an on-board frequency generator with a 12-bit, 1 mega sample per 
second (MSPS) analog-to-digital converter (ADC), and an internal temperature sensor. The schematic 
diagram of the board is shown in Figure 1a [28]. Both the excitation signal and response signal are 
sampled by the ADC. The frequency range of the board is from 5 to 100 kHz without external 
components. Frequencies lower than 5 kHz are achievable using an external divider. The device has 
a master clock of 16.77 MHz. Although the device is model dependent, it offers high accuracy and 
versatility for a well-fitted model, which makes it suitable for electrochemical analysis, corrosion 
monitoring, automotive sensors, proximity sensing, and bio-impedance measurements. 

The experiments were carried out at the greenhouse of the Agriculture and Agri-Food Canada 
(AAFC), Research and Development Centre, Saskatoon, Saskatchewan, Canada, as shown in Figure 
1b. The experimental setup of the EIS data acquisition system, as shown in Figure 1c, was connected 
to a graphical user interface of the supporting software. For impedance spectroscopy measurements, 
a 2Vp-p generator voltage was used. The AC signal injected into the sample was generated by a built-
in function generator of the evaluation board. The frequency generator allows an external complex 
impedance to be excited with a known frequency. This portable impedance converter network 
analyzer was used in EIS for measuring the impedances of the four different plant leaves (e.g., canola, 
wheat, soybeans, and corn) by varying the frequency in a range of 5 to 15 kHz. A pair of electrodes 
for an electrocardiogram (ECG) were connected to the evaluation board and used to measure the 
impedance of the leaf samples noninvasively. A separation of 3 cm between the two electrodes was 
maintained for all the measurements. Although the EIS method is time-consuming for large crops, 
the test duration is short because of on-board implementation which enables measurements at 
particular frequencies. 

The leaf impedance measurement was done on a selected number of observations or samples (n) 
of the four different plant species. The plants were fertilized with different nitrogen levels of 0, 6, 12, 
and 20 g/liter with a constant water regime. A total of 111 samples were selected as follows: canola 
26, wheat 36, soybeans 21, and corn 28. The experiments were carried out with the available number 
of samples of each plant species at the AAFC greenhouse 5 to 6 weeks after sowing. The 
measurements were performed in the vegetative growth stage of the crops. The impedance (Z) of a 
leaf sample was measured at 100 Hz intervals within the 5 to 15 kHz frequency range. A total of 101 
features (k) were selected at different frequency points: f1 (5.1 kHz), f2 (5.2 kHz), f3 (5.3 kHz), …, f101 
(15 kHz). The impedance at each frequency point is considered a feature. Therefore, the whole dataset 
of a particular plant species consisted of 101 features for the given samples. 
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Figure 1. (a) Schematic diagram of EVAL-AD5933EBZ evaluation board [28]; (b) plants in the 
Agriculture and Agri-Food Canada (AAFC) greenhouse; (c) impedance measurement of plant leaves 
using electrical impedance spectroscopy (EIS); and (d) boxplots of actual nitrogen concentrations, 
measured by the laboratory experiments, for four different plant species. 

The impedance is related to the gain factor as follows: 𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒, 𝑍(𝑂ℎ𝑚) = 1𝐺𝑎𝑖𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 ൈ 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 (1) 

The magnitude of the impedance can be calculated as 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = ඥ𝑅ଶ + 𝑋ଶ (2) 

where R is the resistance and X is the reactance, and the gain factor is determined by the calibration 
using a known resistance of 7.5 kΩ [31]. 

After the impedances were measured, the samples with nitrogen concentrations were dried in a 
60 °C incubator for 2 days. Then, the dry samples were weighted and made into powder. The actual 
percentages of nitrogen concentration (i.e., (nitrogen mg/mass) × 100) were measured from the 
powdered samples with the help of laboratory experiments using a LECO TruMac nitrogen analyzer, 
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where nitrogen mg = ((area × calibration) – blank) × drift × sensitivity factor. The obtained results for 
the different plant species are represented by the boxplots, as shown in Figure 1d. It was determined 
that the nitrogen concentrations are different in the different plant species. The size and area of the 
leaf samples vary with the different plant species, as well as their physiological properties. In the 
example, as shown in Figure 1d, canola has high nitrogen concentrations as compared with the other 
plant species. 

The examination of two or three leaf samples from individual plants of each species shows the 
average impedance profiles of the samples at varying frequencies for different nitrogen fertilization 
levels (see Figure 2). It was determined that the leaf impedance of the plants decreases with an 
increase of frequency. Leaf impedance also decreases with an increase of nitrogen levels in the plants. 
The average impedance profile varies from 6 to 10 kohm with the variation of nitrogen fertilization 
levels from 0 to 20 gm/liter for a frequency range of 5 to 15 kHz. A high impedance profile is obtained 
for canola and corn as compared with soybeans and wheat. The measured impedances were 
examined to obtain correlations with the leaf nitrogen concentrations. 

In this work, simple and multiple linear regressions using the least square method were applied 
to determine any correlations between plant leaf nitrogen concentrations and leaf impedances. The 
results were obtained by XLMiner and PrimaXL Analysis ToolPaks and validated by analysis of 
variance (ANOVA) tests. In multiple regression, the number of features was considered along with 
the observations in a given frequency range. In order to obtain optimized regression models, either 
the feature selection or dimensionality reduction (DR) method can be applied to reduce the number 
of features in a dataset. The feature selection method using backward elimination was selected and 
applied in this work. For different observations of the plant species, the nitrogen concentrations are 
predicted accordingly. The correlation coefficient (R) between leaf impedance and nitrogen 
concentration was determined. The corresponding coefficient of determination (R2), adjusted R2, and 
root mean square error (RMSE) were also determined along with the ANOVA F-test and T-test, using 
multiple linear regression. In this work, the training and tests were performed with the same dataset, 
using statistical analysis. After taking the whole dataset, the features within the highest p-value (i.e., 
greater than 0.05) were removed. The prediction was confirmed for all the trained datasets by the 
obtained p-values less than or equal to 0.05 in both the F-test and T-test. After a few iterations, the 
multiple regression models were obtained for the selected features of different crops. 
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(c) (d) 

Figure 2. Plots of frequency versus leaf impedance. (a) canola; (b) wheat; (c) soybeans; and (d) corn at 
different nitrogen fertilization levels. The impedance profile for a few samples of wheat and soybeans 
could not be taken because of the effects of high nitrogen fertilization. 

3. Results 

First, with the use of simple regression analysis, the maximum correlations between leaf 
impedance (Z) and LNC for a single feature were found for canola, wheat, soybeans, and corn, as 
shown in Figure 3. A positive correlation for canola was obtained at 11.4 kHz, a negative correlation 
for wheat at 5.6 kHz, a positive correlation for soybeans at 7.7 kHz, and a positive correlation for corn 
at 11.9 kHz. The results are shown in Table 1. 

  

(a) (b) 

 
(c) (d) 

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000

Le
af

 Im
pe

da
nc

e,
 Z

(O
hm

)

Frequency, f (Hz)

Soybeans

0 gm/ltr Nitro
6 gm/ltr Nitro

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000

Le
af

 Im
pe

da
nc

e,
 Z

(O
hm

)

Frequency, f (Hz)

Corn

0 gm/ltr Nitro
6 gm/ltr Nitro
12 gm/ltr Nitro
20 gm/ltr Nitro

Canola (linear):
R² = 0.03 (n=26, k=1, 11.4 kHz)

0
2
4
6
8

10
12
14

0 5000 10000 15000

LN
C

 (%
)

Leaf Impedance, Z (Ohm)

Canola (polynomial):
R² = 0.03 (n=26, k=1, 11.4 kHz)

0
2
4
6
8

10
12
14

0 5000 10000 15000

LN
C

 (%
)

Leaf Impedance, Z (Ohm)

Wheat (linear):
R² = 0.13 (n=36, k=1, 5.6 kHz)

0

2

4

6

8

10

0 5000 10000 15000

LN
C

 (%
)

Leaf Impedance, Z (Ohm)

Wheat (polynomial):
R² = 0.15 (n=36, k=1, 5.6 kHz)

0

2

4

6

8

10

0 5000 10000 15000

LN
C

 (%
)

Leaf Impedance, Z (Ohm)



Remote Sens. 2019, 12, 566 7 of 18 

 

 

(e) (f) 

 
(g) (h) 

Figure 3. Correlations between leaf impedance and leaf nitrogen concentration (LNC) for four 
different plant species. The coefficient of determination (R2) is extracted for canola (a) linear 0.03; (b) 
polynomial 0.03; for wheat (c) linear 0.13; (d) polynomial 0.15; for soybeans (e) linear 0.08; (f) 
polynomial 0.11; and for corn (g) linear 0.18; (h) polynomial 0.19. 

Linear and polynomial (order 2) curve fitting methods and simple regression models were used 
for the different plant species at the highest correlation point. A better correlation was found for 
polynomial curve fitting as compared with linear in different frequencies of simple regression of the 
plant species. A maximum correlation coefficient (R) of 0.44 was obtained for corn, 0.39 for wheat, 
0.34 for soybeans, and 0.19 for canola. On the one hand, based on a single feature, a moderate 
correlation was found for corn and wheat, on the other hand, the correlation was weak for soybeans 
and canola. Overall, the correlation results for different plant species are not satisfactory with simple 
regression analysis. 

Table 1. Correlations between leaf nitrogen concentration (LNC) and leaf impedance (Z).for different 
plant species. 

Plant Species 
Correlation Coefficient (R), Coefficient of Determination (R2)  

and Simple Regression Model 
Linear Polynomial (order 2) 

Canola R = 0.19, R2 = 0.03 at 11.4 kHz  𝐿𝑁𝐶 = 5𝐸ି଴ହ𝑍 + 8.9604 
R = 0.19, R2 = 0.03 at 11.4 kHz  𝐿𝑁𝐶 = −3𝐸ିଵ଴𝑍ଶ + 7𝐸ି଴ହ𝑍+8.8636 

Wheat R = -0.37, R2 = 0.13 at 5.6 kHz  𝐿𝑁𝐶 = −0.0003𝑍 + 7.9957 
R = –0.39, R2 = 0.15 at 5.6 kHz  𝐿𝑁𝐶 = −4𝐸ି଴଼𝑍ଶ + 0.0003𝑍 + 5.8849 

Soybeans R = 0.29, R2 = 0.08 at 7.7 kHz  𝐿𝑁𝐶 = 7𝐸ି଴ହ𝑍 + 6.3237 
R = 0.34, R2 = 0.11 at 7.7 kHz  𝐿𝑁𝐶 = 1𝐸ି଴଼𝑍ଶ − 0.0001𝑍 +7.2717 

Corn R = 0.42, R2 = 0.18 at 11.9 kHz  R = 0.44, R2 = 0.19 at 11.9 kHz  
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𝐿𝑁𝐶 = 0.0002𝑍 + 2.9853 𝐿𝑁𝐶 = −2𝐸ି଴଼𝑍ଶ + 0.0005𝑍 + 1.7835 

Next, multiple regression analysis was used to obtain better correlation results. Principal 
component analysis (PCA) is a popular dimensionality reduction (DR) approach of multiple 
regression and mostly applicable in hyperspectral image analysis, but it works extremely well for 
variables that are strongly correlated [32]. PCA is very useful in data analysis using machine learning. 
Since the correlations are poor between the variables, according to the above results of simple 
regression analysis, PCA would not perform well to reduce the features in a dataset. Hence, the 
feature selection approach using the backward elimination method was tried in order to obtain a 
good correlation with multiple regression. Initially, the number of features was selected from all the 
features, based on the number of observations (n) and number of features (k = n − 2), from the best 
correlation results obtained and validated by XLMiner Analysis ToolPak. For the given observations, 
the number of features was selected accordingly, using the standard backward elimination method 
to obtain the best correlation and regression results. The importance of the features was checked 
sequentially with the help of ANOVA F/T tests for obtaining the best multiple regression model. An 
optimization was done, and the best multiple regression results for the different plant species with 
nitrogen concentrations are summarized in the following section. 

With multiple regression analysis, employing the least square method, the residuals were 
obtained for multiple observations with selected features using Residual value = actual value – 
predicted value. A random pattern of residuals supports a linear model. The sum of the residuals is 
always zero, whether the dataset is linear or nonlinear. The residuals for different observations and 
the corresponding best regression line between actual versus predicted nitrogen concentrations for 
the four different plant species are presented in Figures 4 and 5, respectively. 
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Figure 4. Residuals in different number of observations for (a) canola; (b) wheat; (c) soybeans; and (d) 
corn with nitrogen concentrations. 

The coefficient of determination is calculated using the following: 𝑅ଶ = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑆𝑆𝑅𝑆𝑆𝑇 (3) 

The adjusted R2 is calculated as 𝑅௔ௗ௝ଶ = 1 − 𝑆𝑆𝑅/(𝑛 − 𝑘 − 1)𝑆𝑆𝑇/(𝑛 − 1)  (4) 

and the root mean square error (RMSE) is calculated as follows: 

𝑅𝑀𝑆𝐸 = ඨ 𝑆𝑆𝐸𝑛 − 𝑘 − 1 (5) 

Here, 

Sum of Square Regression, 𝑆𝑆𝑅 = ∑ (𝑦ො௜ − 𝑦ത)ଶ௡௜ୀଵ  (6) 

Sum of Square Residual, 𝑆𝑆𝐸 = ∑ (𝑦௜ − 𝑦ො௜)ଶ௡௜ୀଵ  (7) 

and Sum of Square Total, 𝑆𝑆𝑇 = ∑ (𝑦௜ − 𝑦ത)ଶ௡௜ୀଵ  (8) 

where y is the actual LNC obtained by the experiment of laboratory measurement, 𝑦ത is the mean 
value of the actual LNC, and 𝑦ො is the predicted LNC obtained by multiple regression analysis using 
the least square method [33–36]. 
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Figure 5. Multiple regression analysis for (a) canola; (b) wheat; (c) soybeans; and (d) corn. The 
extracted coefficient of determination (R2) is for canola 0.98, for wheat 0.95, for soybeans 0.75, and for 
corn 0.68. 

The predicted leaf nitrogen concentrations were validated by comparison with the actual leaf 
nitrogen concentrations. The overall multiple linear regression analysis results for different plant 
species are shown in Table 2. Overall, high correlation results were obtained using multiple 
regression analysis. The number of features was further reduced to avoid overfitting, and the 
regression results for different plant species are also included in Table 2. It was found that the 
correlation coefficient, the coefficient of determination, and adjusted R2 decreased with the decrease 
of the features, and that the corresponding RMSE increased. The feature selection was done by 
positive ANOVA tests using p-value less than or equal to 0.05. 
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Table 2. Multiple linear regression analysis for four different plant species with nitrogen 
concentrations considering probability, p ≤ 0.05 (probability of rejection of null hypothesis). 

Plant Species 
 

Overall 
Correlation 
Coefficient,  

R 

Overall 
Coefficient of 
determination,  

R2 

Adjus
ted R2 

 

RMSE 
(%) 

ANOVA 
T-test/F-

test 

Canola 
(n = 26) 

 

k = 22 
(8.7–12 kHz) 

0.99 
 

0.98 
 

0.94 
 

0.54 
 

Positive 
p = 0.014 

k = 10 
(8.8–11.5 kHz) 

0.85 0.72 0.54 1.56 Positive 
p = 0.008 

k = 9 
(8.9–11.5 kHz) 

0.78 0.60 0.40 1.78 Positive 
p = 0.029 

Wheat 
(n = 36) 

 

k = 28 
(5.1–14.9 kHz) 

0.97 
 

0.95 
 

0.75 
 

0.47 
 

Positive 
p = 0.018 

k = 17 
(5.2–14.9 kHz) 

0.86 0.74 0.50 0.67 Positive 
p = 0.011 

k = 11 
(5.5–14.9 kHz) 

0.75 0.56 0.37 0.75 Positive 
p = 0.013 

Soybeans 
(n = 21) 

 

k = 7 
(7.6–9.4 kHz) 

0.86 
 

0.75 
 

0.62 0.33 Positive 
p = 0.003 

k = 5 
(7.7–9.4 kHz) 

0.75 0.56 0.42 0.40 Positive 
p = 0.016 

k = 4 
(7.7–9.4 kHz) 

0.70 0.49 0.37 0.42 Positive 
p = 0.018 

Corn 
(n = 28) 

 

k = 7 
(10.7–13.5 

kHz) 

0.82 
 

0.68 
 

0.57 
 

0.76 
 

Positive 
p = 0.0006 

k = 4 
(10.8–13.5 

kHz) 
0.73 0.53 0.46 0.85 

Positive 
p = 0.0008 

k = 3 
(10.8–11.9 

kHz) 
0.64 0.41 0.33 0.94 

Positive 
p = 0.004 

A maximum correlation coefficient of 0.99 is obtained for canola, using multiple features ranging 
from 8.7 to 12 kHz. The maximum coefficient of determination for canola is 0.98, the adjusted R2 is 
0.94, RMSE is 0.54%, and the ANOVA tests are positive; here, SSR = 133.58, SSE = 0.87, SST = 134.46, 
and p-value = 0.014 (F-test). From 101 features, only 22 were selected to obtain the best correlation 
and regression results using ANOVA tests. Overfitting was reduced by the backward elimination of 
features with p-values greater than the threshold. The chances of overfitting could also be reduced 
by minimizing the features to 10 or nine, which would also reduce the corresponding correlation 
coefficient to 0.85 or 0.78, respectively. On the basis of the maximum correlation, the proposed model 
for the predicted nitrogen concentrations in canola for multiple features is extracted as: 𝑌෠ = 16.164 − 0.0087𝑋௙ଷ଼ + 0.03614𝑋௙ଷଽ + 0.02706𝑋௙ସ଴ − 0.0794𝑋௙ସଵ + 0.02173𝑋௙ସଶ− 0.034𝑋௙ହସ + 0.05424𝑋௙ହ଺ − 0.0276𝑋௙ହ଻ − 0.036𝑋௙ହ଼+ 0.03908𝑋௙ହଽ + 0.0122𝑋௙଺଴ + 0.0339𝑋௙଺ଵ − 0.0216𝑋௙଺ଶ− 0.0128𝑋௙଺ଷ + 0.04425𝑋௙଺ସ − 0.0908𝑋௙଺ହ + 0.0483𝑋௙଺଺+ 0.02437𝑋௙଺଻ − 0.0398𝑋௙଺଼ + 0.01023𝑋௙଺ଽ + 0.01485𝑋௙଻଴− 0.0162𝑋௙଻ଵ 

(9) 
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where the 11th feature of 10.9 kHz, 13th feature of 11.1 kHz, 14th feature of 11.2 kHz, and the 20th feature 
of 11.8 kHz with p-values of 0.014, 0.02, 0.02, and 0.027, respectively, in the T-test contributed less to 
the model than the other features. 

A maximum correlation coefficient of 0.97 is obtained for wheat, using multiple features ranging 
from 5.1 to 14.9 kHz. The maximum coefficient of determination for wheat is 0.95, the adjusted R2 is 
0.75, RMSE is 0.47%, and the ANOVA tests are positive; here, SSR = 30.67, SSE = 1.56, SST = 32.23, 
and p-value = 0.018 (F-test). From 101 features, only 28 were selected to obtain the best correlation 
and regression results using ANOVA tests. Overfitting was reduced by the backward elimination of 
features with p-values greater than the threshold. The chances of overfitting could also be reduced 
by minimizing the features to 17 or 11, which would also reduce the corresponding correlation 
coefficient to 0.86 or 0.75, respectively. On the basis of maximum correlation, the proposed model for 
the predicted nitrogen concentrations in wheat for multiple features is extracted as: Y෡ = −2.5493 − 0.0071𝑋௙ଶ − 0.0027𝑋௙ଷ + 0.01242𝑋௙ସ + 0.0225𝑋௙଺ − 0.0392𝑋௙଻+ 0.01188𝑋௙଼ − 0.0108𝑋௙ଽ + 0.01941𝑋௙ଵ଴ + 0.00297𝑋௙ଵଶ− 0.0258𝑋௙ଵଷ + 0.03884𝑋௙ଵସ − 0.0218𝑋௙ଵହ + 0.01109𝑋௙ଶଶ− 0.0049𝑋௙ଶଷ + 0.00981𝑋௙ଶହ − 0.0299𝑋௙ଶ଺ + 0.00611𝑋௙ଶ଻+ 0.02869𝑋௙ଶ଼ − 0.0145𝑋௙ଶଽ − 0.0212𝑋௙ଷ଴ + 0.01165𝑋௙ଷଵ+ 0.02851𝑋௙ଷଶ − 0.0352𝑋௙ଷଷ − 0.0178𝑋௙ଷସ + 0.03033𝑋௙ଷହ− 0.0018𝑋௙ସ଴ − 0.0072𝑋௙ଽଽ + 0.00675𝑋௙ଵ଴଴ 

(10) 

where the 2nd feature of 5.2 kHz, 7th feature of 5.8 kHz, 9th feature of 6.1 kHz, 14th feature of 7.2 kHz, 
15th feature of 7.4 kHz, 17th feature of 7.6 kHz, 21st feature of 8 kHz, 24th feature of 8.3 kHz, and the 
26th feature of 8.9 kHz with p-values of 0.021, 0.011, 0.024, 0.01, 0.015, 0.041, 0.028, 0.013, and 0.016, 
respectively, in the T-test contributed less to the model than the other features. 

A maximum correlation coefficient of 0.86 is obtained for soybeans, using multiple features 
ranging from 7.6 to 9.4 kHz. The maximum coefficient of determination for soybeans is 0.75, the 
adjusted R2 is 0.62, RMSE is 0.33%, and the ANOVA tests are positive; here, SSR = 4.41, SSE = 1.44, 
SST = 5.85, and p-value = 0.003 (F-test). From 101 features, only seven were selected to obtain the best 
correlation and regression results using ANOVA tests. Overfitting was reduced by the backward 
elimination of features with p-values greater than the threshold. The chances of overfitting could also 
be reduced by minimizing the features to five or four, which would also reduce the corresponding 
correlation coefficient to 0.75 or 0.70, respectively. On the basis of the maximum correlation, the 
proposed model for the predicted nitrogen concentrations in soybeans for multiple features is 
extracted as: Y෡ = 6.521914 − 0.00164𝑋௙ଶ଻ + 0.002375𝑋௙ଶ଼ + 0.000735𝑋௙ଷ଻ − 0.00245𝑋௙ସ଴+ 0.002303𝑋௙ସଶ + 0.00118𝑋௙ସସ − 0.0025𝑋௙ସହ (11) 

where the 3rd feature of 8.6 kHz with a p-value of 0.033 in the T-test contributed less to the model than 
the other features. 

A maximum correlation coefficient of 0.82 is obtained for corn, using multiple features ranging 
from 10.7 to 13.5 kHz. The maximum coefficient of determination for corn is 0.68, the adjusted R2 is 
0.57, RMSE is 0.76%, and the ANOVA tests are positive; here, SSR = 25.04, SSE = 11.63, SST = 36.68, 
and p-value = 0.0006 (F-test). From 101 features, only seven were selected to obtain the best correlation 
and regression results using ANOVA tests. Overfitting was reduced by the backward elimination of 
features with p-values greater than the threshold. The chances of overfitting could also be reduced 
by minimizing the features to four or three, which would also reduce the corresponding correlation 
coefficient to 0.73 or 0.64, respectively. On the basis of the maximum correlation, the proposed model 
for the predicted nitrogen concentrations in corn for multiple features is extracted as: Y෡ = 6.521914 − 0.00164𝑋௙ଶ଻ + 0.002375𝑋௙ଶ଼ + 0.000735𝑋௙ଷ଻ − 0.00245𝑋௙ସ଴+ 0.002303𝑋௙ସଶ + 0.00118𝑋௙ସସ − 0.0025𝑋௙ସହ (12) 

where the 1st feature of 10.7 kHz and the 6th feature of 13.1 kHz with p-values of 0.037 and 0.027, 
respectively, in the T-test contributed less to the model than the other features. 
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The proposed models using EIS are accurate and global for the individual plant species only. 
For each crop, different features were selected in the model based on the positive ANOVA tests 
because of different physiological properties. For canola and wheat, the individual features 
contribute less to the correlation, and thus a higher number of features are required as compared with 
soybeans and corn. The computation is complex in EIS and it is model dependent. For different plant 
species, datasets are different, and different models are required for the estimation. Appropriate 
fitting of the models shows the accuracy of the measurement using an EIS board. 

Next, all the observations of different plant species were combined, and the multiple regression 
analysis was done using PrimaXL Analysis ToolPak. For multiple regression, a linear regression line 
was found between actual leaf nitrogen concentration and the predicted leaf nitrogen concentration 
for canola + wheat + soybeans + corn, using EIS, as shown in Figure 6. The coefficient of determination 
is 0.89 and the overall correlation coefficient is 0.94. 

  

(a) (b) 

Figure 6. Plots of (a) number of observations versus value of residuals; and (b) actual versus predicted 
LNC for canola + wheat + soybeans + corn using EIS. The extracted coefficient of determination (R2) 
is 0.89 and the corresponding overall correlation coefficient (R) is 0.94. 

The SPAD leaf chlorophyll meter is a handheld, self-calibrating, and convenient device for a 
rapid and nondestructive assessment of leaf chlorophyll content in different crops. The leaf 
chlorophyll content is correlated to the leaf nitrogen concentration depending on the variety of plant 
species, locations, and growth stages [9,10,37]. For this, the measurement of leaf nitrogen 
concentration is possible using SPAD, and the relationship is curvilinear. SPAD measures the 
transmittance of red (650 nm) and infrared (940 nm) radiation through the leaf using two silicon 
photodiode detectors and has gained in popularity for its ease of use, although it is not as accurate as 
the destructive method. It utilizes the light attenuation difference between these two wavelengths to 
determine leaf greenness. Green color intensity of a crop leaf is directly related to the leaf nitrogen 
concentration and depending on the position of measurement on a leaf surface and area of the leaf, 
SPAD can have utility in predicting leaf nitrogen concentration [37]. For the combined observations, 
the performance of EIS as compared with SPAD readings is presented in Figure 7, and the 
summarized results are shown in Table 3. 
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(a) (b) 

 
(c) 

Figure 7. Plots of (a) soil-plant analyses development (SPAD) reading versus LNC; (b) number of 
observations versus value of residuals; and (c) actual LNC versus predicted LNC for 
canola+wheat+soybeans+corn using SPAD. The extracted coefficient of determination (R2) is 0.53 and 
the corresponding overall correlation coefficient (R) is 0.72. 

Using EIS, an overall maximum correlation coefficient of 0.94 and a coefficient of determination 
of 0.89 are obtained for the combined 111 observations of the plant species with nitrogen 
concentrations, where 63 features from 5.2 to 14.8 kHz were selected, and the RMSE is 1.12%. 
Overfitting is reduced by the backward elimination of features with p-values greater than the 
threshold. The chances of overfitting could also be reduced by minimizing the features from 63 to 33, 
which would also reduce the maximum correlation coefficient to 0.81. However, for the same number 
of observations using SPAD, a maximum correlation coefficient of 0.72 is obtained, where the 
coefficient of determination is 0.53 and the RMSE is 1.52%. Thus, EIS performs well as a good 
alternative to optical spectroscopy and to other nondestructive methods, such as SPAD, for the 
determination of leaf nitrogen concentrations. 
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Table 3. Comparative regression results between EIS and SPAD for the plant species with nitrogen 
concentrations using combined observations. 

 
Canola + Wheat + Soybeans 

+ Corn 

Overall 
Correlation 
Coefficient 

(R) 

Overall 
Coefficient 

of 
determinatio

n (R2) 

Adjuste
d R2 

RMSE 
(%) 

ANOV
A 

T-test/ 
F-test 

EIS 

Observations, n: 111 
Features, k: 63 (5.2–14.8 kHz) 

0.94 0.89 0.74 1.12 
Positive 
p = 1.2e-

09 

Observations, n: 111 
Features, k: 33 (5.3–14.8 kHz) 

0.81 0.66 0.52 1.53 
Positive 
p = 1.7e-

08 

SPAD Observations, n: 111 
Features, k: 1 

0.72 0.53 0.52 1.52 
Positive 
p = 1.3e-

19 

4. Summary and Discussion 

In EIS measurement, it was determined that impedance varies with the variation of frequency 
for the four different crop leaves. The leaf impedance decreases with an increase of frequency and 
also with an increase of the nitrogen fertilization level. The actual nitrogen concentrations in the 
leaves were measured by a nitrogen analyzer, the samples were trained, and the nitrogen 
concentrations for all of them were predicted by regression analysis. 

The correlation between actual nitrogen concentrations and the measured impedances of the 
leaves was found with simple regression analysis, but the obtained correlation with a single feature 
was not satisfactory. Therefore, multiple linear regression was also utilized to obtain better 
correlation results with the help of PrimaXL Toolpak. The selection of the number of features was 
challenging, but, along with the observations, played an important role in regression analysis. 
Removal of features using backward elimination had to be done very carefully, otherwise, the wrong 
selection may have affected the correlation and regression results. The overall correlation coefficient 
(R), coefficient of determination (R2) and its adjusted value, and RMSE were calculated for the four 
different crops using Equations (3) to (8). After various experiments, it was found that the correlation 
coefficient and the coefficient of determination increased with an increase in the number of features 
for a given number of observations, and the corresponding RMSE decreased. The optimized selected 
features create a suitable model for good predictions. 

The residuals were obtained from the difference between actual and predicted nitrogen 
concentrations. The lower residuals helped to achieve a good regression model for different 
observations. Multiple linear regression results, presented in Table 2, show that the highest 
correlation coefficient of 0.99 is obtained for canola, while 0.97 is obtained for wheat, 0.86 for 
soybeans, and 0.82 for corn. The corresponding RMSE values are 0.54%, 0.47%, 0.33%, and 0.76%, 
respectively. After training, the predicted results were tested and validated with the resulting 
positive ANOVA F-test and T-test, using p-values less than or equal to 0.05. The obtained results are 
satisfactory in comparison with previously published works [16–19]. The proposed models show that 
a large number of features are required for canola and wheat because the individual feature 
correlation is not very strong, a few features in the models contributed less to the correlation. The 
proposed models for soybeans and corn required a lower number of features because of strong 
individual feature correlation. However, a few features still contributed less to the correlation. 

The performance of EIS was also compared with the SPAD measurement. A maximum 
correlation coefficient of 0.94 is obtained with a minimum RMSE of 1.12%, using EIS measurements 
for 111 observations, whereas, for the same observations and using SPAD, a maximum correlation 
coefficient of 0.72 is obtained, and the RMSE is 1.52%. Overall, satisfactory results are presented in 
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this work in comparison with previously published works on optical spectroscopy [4], [7], and on 
electrical impedance spectroscopy [21,22]. A strong correlation was found between nitrogen 
concentrations and impedances of the crop leaves measured by EIS with multiple features, and the 
nitrogen concentrations of the leaves were also determined accurately with the best multiple 
regression results. 

5. Conclusions 

In this work, a simple, inexpensive, rapid, and noninvasive EIS method is proposed for the 
prediction of the leaf nitrogen concentrations of canola, wheat, soybeans, and corn. The impedances 
of the plant leaves were measured with a variation of frequency from 5 to 15 kHz, using the EVAL-
AD5933EBZ evaluation board. A correlation between leaf nitrogen concentrations and leaf 
impedances was found with the help of simple and multiple linear regression using the least square 
method. A comparative analysis among the four different crops was done, and the optimized 
regression results were obtained using ANOVA tests. With the use of multiple linear regression, of 
all the crops, the highest correlation of 0.99 is obtained for canola between 8.7 and 12 kHz, the 
corresponding coefficient of determination is 0.98, and the RMSE is 0.54%. New multiple linear 
regression models are proposed in this work for the determination of leaf nitrogen concentrations of 
the four crops. The overall prediction of nitrogen concentrations based on all the observations of the 
crops is better using EIS as compared with SPAD. The obtained correlation coefficient using EIS is 
0.94 and the corresponding RMSE is 1.12%, whereas a maximum correlation coefficient of 0.72 and 
corresponding RMSE of 1.52% are obtained using SPAD for the same number of combined 
observations. The proposed models based on the portable EIS measurements are significantly 
sensitive to the nitrogen concentrations of the plant leaves. 
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