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Abstract: Surface soil moisture (SSM) plays a critical role in many hydrological, biological and
biogeochemical processes. It is relevant to farmers, scientists, and policymakers for making effective
land management decisions. However, coarse spatial resolution and complex interactions of
microwave radiation with surface roughness and vegetation structure present limitations within
active remote sensing products to directly monitor soil moisture variations with sufficient detail.
This paper discusses a strategy to use vegetation indices (VI) such as greenness, water stress, coverage,
vigor, and growth dynamics, derived from Earth Observation (EO) data for an indirect characterization
of SSM conditions. In this regional-scale study of a wetland environment, correlations between
the coarse Advanced SCATterometer-Soil Water Index (ASCAT-SWI or SWI) product and statistical
measurements of four vegetation indices from higher resolution Sentinel-2 data were analyzed.
The results indicate that the mean value of Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR) correlates most strongly to the SWI and that the wet season vegetation traits show stronger
linear relation to the SWI than during the dry season. The correlation between VIs and SWI was
found to be independent of the underlying dominant vegetation classes which are not derived in
real-time. Therefore, fine-scale vegetation information from optical satellite data convey the spatial
heterogeneity missed by coarse synthetic aperture radar (SAR)-derived SSM products and is linked
to the SSM condition underneath for regionalization purposes.

Keywords: surface soil moisture; regional scale; vegetation traits; multi-sensor approach; wetland;
environmental monitoring

1. Introduction

Detecting surface soil moisture (SSM) is a key challenge in EO and of great interest in
environmental monitoring at all spatial scales [1–5]. Advancements are available for SSM remote
sensing and algorithms with a focus on large-scale (continental/global) applications [1–5]. Regional,
intermediate-to-small-catchment scale soil-moisture monitoring can be performed without or
independently of satellite remote sensing observations using techniques such as low-energy cosmic-ray
neutrons and Proximal Gamma-Ray (PGR) spectroscopy [6,7]. However, it is of increasing importance
for governmental agencies, scientists, and farmers to monitor SSM change in relations with climate and
weather with fine spatial and temporal resolution remote sensing products [1–5], due to the fact that
SSM tightly links to many hydrological, biological and biogeochemical processes at these finer scales.
Thus, the mismatch between the availability and need of fine spatial resolution remote-sensing-based
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SSM presents a clear gap for many environmental monitoring and applications on the one hand, and on
the other hand, it highlights the importance of such information for local adaption efforts to mitigate
the effects of climate change.

Due to its high significance in the Earth system, SSM has always solicited much attention in its
measurement and monitoring using remote sensing techniques. SSM observations are retrieved from
instruments sensing at microwave and optical/thermal infrared wavelength. Some key soil moisture
products include the well-known ESA SMOS (Soil Moisture Ocean Salinity), SMAP (Soil Moisture
Active Passive), and ASCAT-SWI [8–13]. However, most publicly available SSM datasets have coarse
spatial resolutions ranging from 25–50 km [8–13]. A recent breakthrough is the 1 km Sentinel-1/ASCAT
fusion product [13], which is currently available across Europe. Moreover, microwave radiation of
soil water content is sensitive to surface roughness, as induced by a dynamic vegetation structure,
for instance. As surface roughness increases or the vegetation canopy gets higher, the backscatter
from differently polarized signals converges, whilst the noise level is getting higher [14,15]. Thus,
in addition to the scale issue, traditional active remote-sensing-based SSM products cannot easily
account for high variability in the terrain parameters and are affected by such noise when sensing
landscapes with complex land cover and water patterns, for example, in the case of wetland areas.

Many efforts are currently taking place to explore the use of vegetation traits derived from passive
remote sensing products for SSM monitoring. Alexandridis et al. (2016) adopted an integrated approach
to derive evaporative fraction and saturated water content with the thermal infrared data from MODIS,
in combination with ancillary soil and meteorology data, to produce 250m resolution soil moisture map
over sites in Europe [16]. Torres-Rua et al. (2016) combined Normalized Difference Vegetation Index
(NDVI), Leaf Area Index (LAI), energy balance product from Landsat 7, and weather data, and used
Relevance Vector Machine (RVM) to relate these potential predictors to SSM [17]. Pause et al. (2012)
combined L-band brightness temperature observations and hyperspectral vegetation indices to estimate
and improve SSM patterns at the field scale [18]. Qiu et al. (2018) explored the parameterization of SAR
vegetation scattering model for high-resolution SSM retrieval with VIs (NDVI, EVI, LAI) and surface
roughness derived from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat
using both the Advanced Integral Equation Model (AIEM) and the Water Cloud Model (WCM) [19].
Klinke et al. (2018) used plant characteristics and temperature as indicators from Sentinel (1, 2) and
Landsat archives to derive a high spatial resolution soil moisture product for wetlands in northeastern
Germany [20]; same potential of coupling Sentinel 1 and 2 for soil moisture downscaling has also been
examined by El Hajj et al. (2017) [21]. Dabrowska-Zielinska et al. (2018) estimated wetland SSM using
Sentinel-1 data and addressed the vegetation effect on Radar backscattering change under different
SSM and NDVI conditions. In her study, she pointed out that vegetation has a different influence on
the backscattering of different polarizations, depending on measurements under dry (soil moisture <

30 vol. %) or moist conditions (soil moisture > 60 vol. %) [22]. Additionally, Samaniego et al. (2010)
highlighted the issue of over parameterization and ineffectiveness in integrating spatial heterogeneity
in multiscale hydrological models and proposed a multiscale parameter regionalization technique
(MPR) to link the dominant process parameter with the finer resolution input data through upscaling
operators such as the harmonic mean [23]. Therefore, the work discussed in this paper is based on these
critical efforts and aims to address the current SSM monitoring challenges with innovative approaches.

This work mainly focuses on obtaining vegetation information from fine spatial resolution optical
EO data and using this information to understand the influence of vegetation on the estimation
of spatially varying SSM. The downscaling efforts allow a closer examination of SSM variations
over the wetland ecosystem. Specifically, the paper addresses the research question of whether the
spatial-temporal heterogeneity in vegetation traits as observed by Sentinel-2 data can be an indicator
for SSM as represented by the ASCAT-SWI product. The results illustrate a link between fine-resolution
vegetation traits and the soil humidity conditions in wetland environments and demonstrate the
potential of using vegetation as sensors for SSM. The work also highlights the commonly used
vegetation indices (VIs) and their usability in uncovering the spatial and seasonal relationships between
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vegetation and SSM on a regional scale. The paper first describes the current progress and gaps in SSM
remote sensing, characterizes the study site selection and experiment workflow, highlights the results,
provides a discussion on the results, ecological relevance, and limitation, and then concludes the study
for future implications.

2. Materials and Methods

2.1. Study Areas

The study area is the Okavango Delta, located in northern Botswana between −18.23 and −18.51
◦S, 21.84 and 23.81 ◦E, shown in Figure 1a. The size of the delta is approximately 16,000 km2,
varying between dry and wet seasons. The climate of the surrounding area is semi-arid; the annual
average precipitation ranges from approximately 400 to 500 mm, and the mean annual temperature
ranges from 15~20 ◦C. The wet season usually begins in December, peaks in January and February,
and finishes by March. Water infiltrates the Okavango Delta through the Okavango River from the
Angolan Plateau in the Northwest. In Figure 1a, the locations of the in-situ water level stations
Mohembo (North) and Guma (South) are marked.

Figure 1. Study area and the regional flow dynamics: (a) Extent of the Okavango Delta and the locations
of the in-situ water stations (yellow); the locations of five experimental sites (red) and the extended
sites (cyan) are indicated; (b) Water level records from 2016-06 to 2018-06 measured at Mohembo (red
line) and Guma (yellow line) stations, and blue vertical lines indicate the dates of Sentinel-2 imagery
and ASCAT-SWI data retrieval.

2.2. Data and Pre-Processing

The Sentinel-2A Level-1C products used in this research were obtained from the United States
Geological Survey (USGS) EarthExplorer [24]. This cloud-free multispectral imagery corresponds to
ten dates (2016-11-22, 2016-12-02, 2017-04-01, 2017-04-11, 2017-04-21, 2017-11-07, 2018-01-06, 2018-04-26,
2018-05-16, 2018-06-05), and they represent the regional dry and wet seasons (Figure 1 b). For each
date, six 100 km × 100 km tiles were retrieved for the study area. The Level 1C Top-of-Atmosphere
(TOA) reflectance data were first resampled to the spatial resolution of Band 2 (Table 1), and then
corrected for atmosphere and cirrus in the Sen2Cor processor (version 2.8.0) distributed by the Sentinel
Toolbox Exploitation Platform (STEP) with its Graph Processing Tool (GPT) [25]. The corrected results
were reformatted to Level 2A Top-of-Canopy (TOC) reflectance data and subset to spatial extents of
the sample sites illustrated in Figure 1a.
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Table 1. Overview of primary and ancillary datasets used in the research.

Data Spatial Resolution Temporal Coverage Source

Sentinel-2A
Level-1C

10 m (Band 2,3,4,8)
20 m (Band 5,6,7,8a,11,12) 11/22/2016~06/05/2018 Earth Explorer

ASCAT-SWI 25 km 11/22/2016~06/05/2018 CGLS
PROBA-Vegetation (PROBA-V)

Land Cover 100 m 2015 CGLS

In-situ Water Level Site-based 06/01/2016~06/01/2018 Okavango Delta Monitoring and Forecasting

The daily ASCAT-SWI data or simply SWI data, along with the quality flag and metadata,
were retrieved from Copernicus Global Land Service (CGLS) as Network Common Data Form
(NetCDF) files for the same dates as Sentinel-2 data [9,10]. The spatial resolution of the SWI product
matches the SSM by ASCAT [9,10,26]. On board the MetOp satellite series, ASCAT is a real aperture
radar instrument, and the scatterometer radar signals can penetrate the surface, thus allowing the
detection the subsurface climate feature such as soil wetness [26–28]. The instrument operates during
day and night, under all weather conditions, hence the rapid global coverage. The processing of the
NetCDF files was done in RStudio.

The in-situ water level records measured at two stations, Mohembo (Latitude: −18.275733,
Longitude: 21.787312) and Guma (Latitude: −18.96266, Longitude: 22.373213), were retrieved from
the Okavango Delta Monitoring & Forecasting service at daily resolution [29]. The missing data
were interpolated with the Kriging method in RStudio. The water level records at both gauges in
Figure 1b show clear seasonality. As previously discussed, the Delta region receives a low amount of
precipitation; thus, the majority of the water supplied to the Delta is largely related to the Okavango
River runoff measured at the two inlet stations. Hence, the wet season in the scope of this research is
defined as the time of the year at which high water levels occur at both stations in April through June;
dry season is when the water level is low at both gauges in November through January.

The 100m resolution Dynamic Land Cover map of Africa was also obtained from CGLS. The product
was derived from the PROBA-V time series for the year 2015 over the continental Africa [30]. The discrete
land cover classification and the cover fraction layer for seasonal inland water areas were used in this
study to identify the dominant land cover type of each sample site and to eliminate sites with a large
water extent that would pollute the SWI signals. The dominant land cover type for each site is the
discrete class that has the highest percent coverage at the site.

2.3. SWI Products and Sample Sites

SSM can be directly estimated from ASCAT observations at daily temporal resolution, but profile
soil moisture cannot be directly measured by remote sensing [26]. To gain insight into the moisture
condition beyond the surface soil layer, a relationship between surface and profile soil moisture has to
be established, and Wagner et al. (1999) developed a two-layer water balance model to describe this
relationship as a function of time [26]. The ASCAT-SWI product was developed within this framework
by using the moisture conditions for different characteristic time lengths to represent different depths.
Furthermore, the SSM over the preceding time period, T, was summed and exponentially weighted.
T determines how fast the weight becomes smaller and how strongly the SSM observations taken
in the past influence the current SWI [26]. The selection of T = 10 days was found to be suitable for
estimating the influence of recent SSM measures on the SWI [28]. Since the described model was
designed to be independent of soil texture and does not involve any vegetation information in its
calculation [9,10,26,27], a correlation analysis between the SSM product and the vegetation traits was
appropriate to conduct.

A total of 30 sample sites are selected across the Delta (Figure 1). Each site’s spatial extent
corresponds to a 25km resolution SWI cell and is referenced by the CGLS SWI product cell number [9].
Therefore, five experimental sites were selected in a first step, based on their geographical locations in
the Delta and their land cover types to serve as a proof of concept for the workflow developed. Then,
25 additional sample sites were randomly selected across the Delta and evaluated regarding their
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suitability to be analyzed with the same methods as the experimental sites. Two sites were excluded
manually due to their high cover fraction of inland seasonal water. A total of 28 sites were analyzed
in the study for all ten dates with cloud-free images. This workflow, including data preprocessing,
SWI retrieval, VI calculation, and correlation analysis, cannot be applied to every SWI pixel because
some SWI pixels crossing the Sentinel-2 tiles were cloud-covered or flooded. Therefore, an analysis of
continuous spatial coverage is not feasible.

2.4. Vegetation Indices (VIs) Retrieval

Four VIs, NDVI, NDWI, LAI, and FAPAR, were retrieved for the six tiles from the pre-processed
Sentinel-2 data over the 10 dates (Figure 1b). VIs were batch-calculated with SNAP GPT [25] using
the bands listed in Table 2. NDVI measures the photosynthetic activity of vegetation and describes
the vitality of vegetation on the Earth’s Surface [31–33]. It is included here to correlate with SWI and
analyze whether the vitality and greenness of the vegetation are related to the soil water content.
The algorithm for calculating NDVI is as below:

NDVI = (NIR−RED)/(NIR + RED), (1)

Table 2. Sentinel-2A Level-1C spectral bands and center wavelength used for VI retrieval.

Calculated VIs Spectral Bands Central Wavelength (nm) Band Width (nm)

LAI, FAPAR B3 Green 560 35
NDVI, LAI, FAPAR B4 Red 665 30

LAI, FAPAR B5 Vegetation Red Edge 705 15
LAI, FAPAR B6 Vegetation Red Edge 740 15
LAI, FAPAR B7 Vegetation Red Edge 783 20

NDWI, NDVI B8 NIR 842 115
LAI, FAPAR B8a Vegetation Red Edge 865 20

NDWI, LAI, FAPAR B11 SWIR1 1610 90
LAI, FAPAR B12 SWIR2 2190 180

NDWI is another important index that measures the liquid water content in the canopy that
interacts with the incoming solar radiation [34]. It was included in this study to analyze whether
the water content in vegetation is related to the water content in soil. NDWI generally increases as
the vegetation fractions and the leaf layer increase, while NDWI is generally negative in areas with
naked soil [34]. Gao suggested NDWI contains information independent of NDVI [34]. The equation
followed to calculate NDWI is as follow, and Band 11/ SWIR1 is used (Table 2):

NDWI = (NIR − SWIR) / (NIR + SWIR), (2)

LAI and FAPAR are both calculated with the neural networks built in the Biophysical Processor of
SNAP software [25,35]. LAI is defined as half the developed area of photosynthetically active elements
of the vegetation per unit horizontal ground area. It is used to determine the size of the interface for
energy and mass exchange between canopy and atmosphere [36,37]. FAPAR measures the fraction
of photosynthetically active radiation absorbed by the canopy, and it corresponds to the canopy’s
primary productivity of photosynthesis [37,38]. Both VIs were analyzed to understand the vegetation’s
evapotranspiration and photosynthetic primary production capacity as related to SSM. Based on SNAP
algorithm descriptions, to calculate each input biophysical variable (LAI or FAPAR), the neural network
is trained with a representative set of TOC reflectance and with prior information on the distribution
of the input variables from the training data. After adjusting the synaptic weights and neuron bias
according to a combination of tangent sigmoid and linear transfer functions, the trained neural network
can then be used in operational mode for new calculation. The network takes 11 normalized input
data including 8 Sentinel-2 TOC reflectance wavebands (B3, B4, B5, B6, B7, B8a, B11 and B12) and the
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geometry of acquisitions (cos(θs), cos(θv), and cos(θ∅)) to output targeted biophysical variable (LAI or
FAPAR) for each pixel [35].

2.5. Statistics Retrieval

The mean value, standard deviation (SD), and coefficient of variation (CV) are calculated as
statistical parameters of the VIs over each study site and each date of analysis (Figure 1) to capture the
central tendency and spatial heterogeneity of the VIs. Second-order image entropy and homogeneity
are used to describe the image texture and to reflect vegetation structure.

Mean (µ) of the VIs is calculated using the following formula:

µ =

∑
x

n
, (3)

In (3) x denotes the VI value at each pixel; n indicates the total number of pixels in a given image.
SD (σ) describes the variation of data values in the VIs about the mean using the formula below:

σ =

√∑∣∣∣x− µ∣∣∣2
n

, (4)

In (4), x denotes VI value at each pixel; n indicates the total number of pixels in a given image.
CV is the ratio of SD to mean, and it measures the relative variability in the dataset. It adjusts the

variation for the mean so it allows comparison across data values from different datasets; in comparison
with SD, it highlights the variability in data overshadowed by low SD (5).

CV =
σ
µ

, (5)

In addition to the standard statistics, the second-order image texture, entropy and heterogeneity,
are calculated using the Grey Level Co-occurrence Matrices (GLCM). The image texture of VIs can
capture gradients in vegetation structure that may be overshadowed by the discrete land cover [39,40].
GLCM are a statistical texture analysis method that describe the spatial distribution of the observed
intensity pairs in respect to their relative distances [40]. Entropy and homogeneity are selected among
many statistical measures derivable from GLCM to represent the orderliness and contrast group within
the second-order image texture measures. Entropy mainly measures the disorderedness of the image
pixel and when GLCM has the same values, the entropy is the highest (6). Homogeneity measures the
closeness of the distribution of elements to the GLCM diagonal (7). The mean and SD for entropy and
homogeneity are calculated to summarize the texture analysis for each VI using the “glcm” package in
R. The calculations use N = 32 as the number of grey levels for all directions (0 degrees, 45 degrees,
90 degrees, and 135 degrees), and a 3 × 3 window size. This window size has the advantage of
capturing the heterogeneity of pixel values over a small distance [39,40].

entropy =
N−1∑
i, j=0

−ln
(
Pi j

)
Pi j , (6)

homogenieity =
N−1∑
i, j=0

Pi j

1 + (i− j)2 , (7)

where i is the row number and j is the column number. Pi j is the probability value recorded for the cell
i, j; N is the number of rows or columns.
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3. Results

3.1. SWI and VIs Correlation by Season

In terms of the means of most VIs, stronger positive correlations are noted for wet season
observations (Figure 2). Correlations for wet seasons are slightly higher than those for mixed
observations from both seasons but generally, they are not very distinct. However, it is obvious to see
the dry season observations show little positive linear correlation to SWI. In the case of LAI, a slightly
negative correlation can be observed but the correlation is not significant. This indicates that mean
values of four VIs are positively correlated to SWI in the wet season comparing to the dry season,
meaning dry season vegetation conditions vary greatly over these sample sites.

Figure 2. Selected scatterplots showing the distribution of observation by season, and the relationship
between SWI and key VI statistics for the 28 samples sites across the Delta. Only the top-performing
statistics (in terms of r values) are shown here. Blue indicates wet season and red for dry season.
Grey lines display the confidence interval at 0.95. In each panel: (a) Correlating NDVI, NDWI,
and FAPAR mean to SWI; (b) Correlating LAI mean, LAI entropy mean and SD to SWI.

In the SD plots for the four VIs, a moderately positive correlation (> 0.50) is observed for the wet
seasons and weak negative correlation is observed for the dry seasons (Figure 2). This indicates a
difference between the variations of vegetation conditions in different seasons and how the variation
correlates to soil humidity conditions. Moreover, this demonstrates, as expected, that higher variation
in activated vegetation cover during the wet season occurs in association with increased variance in
soil moisture conditions as captured through the ASCAT-SWI. This is also verified by the observation
that the higher the variation in vegetation’s leaf surface area or the area of photosynthetic activity
becomes, the higher the SWI.

CVs depicting relative variability indicate a stronger negative linear correlation, r = −0.4 for NDVI
SD and r = −0.21 for LAI SD. This demonstrates a higher absolute deviation of the individual values
within a cell in a high moisture saturation period, but a higher relative variability in NDVI and LAI in
a lower moisture saturation period. Because NDWI and FAPAR can get 0 or negative values, a CV
calculation for NDWI and FAPAR cannot be performed.
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Texture information (entropy and homogeneity) also contributes to the explanation of the variance
in SWI/VI relations but to a smaller extent (Figure 2, Table 3). The mean and SD values for entropy
(calculated from the GLCM) indicate the level of disorder in the VI distribution, and smooth image
values result in high entropy. The mean entropy of LAI shows a positive linear correlation with SWI
at r = 0.53; the SDs of entropy for LAI are negatively correlated to SWI at r = −0.58. The FAPAR
entropy SD (r = −0.48) for the dry season also shows a moderately negative correlation with the SWI
(r = −0.48). Therefore, moderate-to-weak correlations can be found between soil moisture condition
and the second-order texture measures of variables estimating vegetation’s evapotranspiration and
photosynthetic primary production capacity.

Figure 3. Selected scatterplots showing the distribution of observations by dominant land cover types,
and the relationship between SWI and key VI statistics for the 28 samples sites across the Delta. Only
the top-performing statistics (in terms of r values) are shown here. Green indicates observations with
DBOF as dominant vegetation and yellows are for shrubs. The grey lines display the confidence interval
at 0.95. In each panel: (a) Correlating NDVI, NDWI, and FAPAR mean to SWI; (b) Correlating LAI
mean, LAI entropy mean and SD to SWI.

Table 3. Remaining top performing statistics (in terms of r values) describe the second-order
homogeneity (mean and SD) that are not illustrated in Figures 2 and 3.

VI_Stats Total r Total
p

Wet
r

Wet
p

Dry
r

Dry
p

DBOF
r DBOF p Shrub

r Shrub p

NDVI_hom_SD −0.39 1.16 × 1011 −0.30 9.39 × 105 −0.35 0.000148 −0.36 1.09 × 107 −0.49 3.97 × 106

LAI_hom_mean −0.50 2.43 × 1019 −0.42 1.57 × 108 −0.17 0.075967 −0.55 5.20 × 1017 −0.38 0.000497
FAPAR_hom_SD −0.38 3.49 × 1011 −0.19 0.015037 −0.35 0.000176 −0.36 2.11 × 107 −0.47 9.49× 106

The observations for the two seasons do not form completely separate clusters. The lower range
of the wet season observations intermingles with part of dry season at mid to low signals. This may be
related to the contribution of other water sources, such as groundwater and precipitation, in vegetation
conditions, but they are not in the scope of the wet/dry season definition in this research.

3.2. SWI and VIs Correlation by Dominant Land Cover Type

Two land cover types, deciduous broad open forest (DBOF) and shrubs, are dominating the sites
based on the CGLS 2015 Africa Land Cover product [30]. Overall, the distribution of observations for
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both classes does not result in separate clusters (Figure 3). This indicates that these two dominant land
cover types behave similarly with respect to soil moisture dynamics.

Mean plots for all four VIs show a strong positive linear correlation with the SWI (r > 0.60).
The shrub-dominant sites indicate a strong correlation with SWI (r > 0.68) in terms of mean NDVI,
NDWI, and FAPAR; DBOF-dominant sites also show a strong correlation. Spatial variance described
by SD and CV are moderate in correlation strength with SWI for NDVI, NDWI, and FAPAR. The SD of
FAPAR shows weak to no correlation with SWI. Second-order entropy in Figure 3 and second-order
homogeneity in Table 3 both show weak-to-no correlation except for LAI, where a moderate correlation
strength can be observed. This indicates a partial significance of second-order image texture measures
in the discussion of vegetation structures relevant indices, such as LAI, over the study area.

4. Discussion

The series of correlation analyses demonstrates the possibility of using VIs to downscale SSM
in the wetland environment. Seasonal differences in using vegetation proxies for soil moisture are
obvious—in the wet season, vegetation information has a strong linkage to soil moisture condition,
while very scattered results are obtained during the dry season. Different reactions of dominant
vegetation types in respect to the soil moisture distributions exist, but they are not drastic in the
Okavango study sites—at sites with shrubs as dominant vegetation, vegetation proxies performed
generally well in estimating soil moisture; at sites with DBOF as dominant vegetation, a moderately
strong correlation could be found as well.

The mean values for all VIs correlate moderately to strongly with SWI. The FAPAR mean is
marginally stronger than the rest. An interpretation is that the vegetation’s evapotranspiration and
photosynthetic primary production capacity is well linked to SSM. LAI and FAPAR are closely linked
biophysical variables that characterize the total canopy and the photosynthetic activity of plants.,
while LAI, only accounting for the amount of foliage in the plant canopy including the understory,
FAPAR, reveals more of the amount of light absorbed by canopy at a given time. Based on the
crop-specific empirical relationship between these two indices analyzed by Kukal and Irmak (2020),
the increasing in the leaf area is accompanied with the linear increase of light absorption by the plant
but the linearity diminishes at a threshold (LAI of 2-4) and this diminishing return denotes that FAPAR
is a more direct proxy of vegetation’s light absorption capacity than the canopy area [41]. Moreover,
the vegetation’s vitality and greenness, conveyed through the NDVI, and NDWI, which measures the
liquid water content in vegetation, both correlate moderately to strongly with SWI.

SD and CV measure first-order spatial variation in the four VIs. They are moderately correlated
with SWI (Figure 2, Figure 3). CVs are generally negatively correlated to SWI while SDs are positively
correlated to SWI. This indicates that spatial variability in the VIs could be meaningful in understanding
VIs’ relations with SWI. The texture information, homogeneity, and entropy, correlated weakly to
moderately to SWI. These second-order texture measures describe properties of the horizontal vegetation
structure through the relationship comparison of directly neighboring pixels. They are mathematically
more complex than the first-order statistics discussed above but can reveal particular patterns. In the
wet season where foliage is abundant, textural information is more distinct since the original signals
are more dynamic. Correlation strength with SWI is, therefore, stronger in comparison to the dry
season. In comparing the four selected VIs, textural information for LAI is consistently more relevant
in its correlation with SWI.

The stratification strategy both by season and by dominant land cover type in the study of the
relationship between VIs and SWI encompasses a temporal and a spatial aspect. The observation dates
were selected firstly to reflect two states of the regional flow dynamics via measured in-situ water levels
and, secondly, to reflect the availability of cloud-free Sentinel-2 images for the target seasons. However,
analyses of the temporal behavior are limited to a comparison of peak season variation by grouping
these dates into dry and wet season data, because an evenly spaced time series could not be constructed.
Regarding the dominant land cover selection, among the 28 sample sites, 20 sites have DBOF as the
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dominant type and eight sites have shrubs. When two competing land cover types appear within one
site, the one with the higher coverage has been defined as the dominant type. The signals observed
in VIs, however, do not purely stem from one uniform type of vegetation. In a fairly heterogeneous
landscape as the Okavango Delta, it is unlikely to find one site with a uniform vegetation type to be
used as a stereotype. Such purity would have revealed a closer correlation between vegetation status
and SWI. Nevertheless, some distinction was possible in defining dominant vegetation.

The results indicated in this study align with the conclusion of Torres-Rua et al. (2016) that
one single vegetation index, such as NDVI, is insufficient to describe the internal variance of SSM
fully; the addition of other vegetation indices (such as LAI) and spatial heterogeneity parameters can
provide an improved spatial estimation of SSM [17]. In this study, different characteristics of each
investigated VI infer that the heterogeneity in the vitality and evapotranspiration of vegetation, and
the photosynthetic primary production capacity over the landscape contribute to the explanation of the
SSM patterns underneath. As Figure 2; Figure 3 indicate, the mean values of vegetation characteristics
perform best among all statistical descriptors of vegetation conditions in correlating the most strongly
with SWI. This result is consistent with Klinke et al.’s (2018) findings [20] and is responsive to
the multiscale parameter regionalization (MPR) technique proposed by Samaniego et al. (2010) to
downscale coarse resolution parameters with finer resolution input data through upscaling operators
like the harmonic mean [23]. Additionally, Klinke et al. (2018) pointed out the long-range and
intra-annual variations in SSM [20], and Dabrowska-Zielinska et al. (2018) analyzed the different
contributions of vegetation in dry and wet moist conditions of soil on backscattering [22]. Both indicate
the seasonal effect in vegetation–soil relations. This idea has been taken up through a dry/wet season
observation stratification in this study, whereas a stronger linear correlation between VI and SWI
can be found for the wet season observations. However, no obvious differences could be found with
respect to dominant vegetation types based on the 2015 PROBA-V Land Cover map of Africa [30].
This may be due to similarities in the reaction of these two dominant savanna vegetation classes.
Moreover, this demonstrates that real-time vegetation information demonstrates a stronger capability
to estimate SSM while non-real-time vegetation information from past land cover map does not
add much information to the estimation of SWI in this study. To further understand how the near
real-time vegetation traits are associated with soil moisture condition, long term time series of VIs
and time-lagged analysis should be used to interpret when the vegetation is stressed after some
accumulation in a plant’s water-limited features over time.

5. Conclusions

The remote sensing analyses in this study make use of the popular remote sensing products,
ASCAT-SWI for SSM and the Sentinel-2 images for VI retrieval. They demonstrate the relationships
between vegetation and soil moisture in a complex wetland environment and the potential of using
vegetation proxies from multispectral data for downscaling and regionalization of soil moisture.
Fine spatial resolution vegetation traits calculated from the Sentinel-2 data convey information about
the internal moisture variation within each coarse SWI pixel and indicate that both the absolute VI
values and the individual spatial variation in the vegetation structure relate to soil moisture conditions
at the time of VI retrieval. The stratification techniques, by seasons and by dominant land cover
type, also shed light on how the soil-vegetation relations change under the influence of regional flow
dynamics and dominant vegetation patterns. Finally, it can be inferred that the time when vegetation
flourishes are clearly reflected through high values in VI signals and are associated with stronger
correlations with soil humidity; low VIs, on the other hand, indicating low vegetation vitality, have a
very limited correlation with SWI. In sites with different dominant vegetation, correlations strength
does not differ much, but vegetation structures could make an influential distinction. The latter
needs further analysis. Future scientific efforts are needed to understand vegetation signals’ delayed
response to changes in soil moisture; this is hindered in this research by a limited number of cloud-free
Sentinel-2 data. Long-term and high temporal resolution time series of vegetation traits, however,
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will have great potential in uncovering the relation between coarse-scale soil moisture and fine-scale
vegetation. Therefore, the research exhibits elements in line with state-of-the-art soil monitoring in
remote sensing and informs that vegetation data should be implemented in soil moisture retrieval
algorithms to improve the estimation of spatially varying soil moisture. Further space missions
collecting hyperspectral data and terrestrial vegetation’s chlorophyll fluorescence data from the
FLuorescence EXplorer (FLEX) can also be integrated into this line of studies to provide more detailed
information on the linkage of vegetation traits and soil water availability.

Author Contributions: Conceptualization, M.L. and M.P.; Formal analysis, M.L.; Investigation, M.L.; Methodology,
M.L.; Software, M.L.; Supervision, M.P., N.P. and M.S.; Visualization, M.L.; Writing—original draft, M.L.;
Writing—review & editing, M.P., N.P. and M.S. All authors have read and agreed to the published version of
the manuscript.

Acknowledgments: Thanks are extended to the technical support this work received from the Institute of
Photogrammetry and Remote Sensing and Institute of Cartography at TU Dresden, as well as the support in
editing the written work received the University of Maryland Graduate School Writing Center.

Conflicts of Interest: All authors declare no conflict of interest.

References

1. Peng, J.; Loew, A. Recent Advances in Soil Moisture Estimation from Remote Sensing. Water 2017, 9, 530.
[CrossRef]

2. Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science.
Vadose Zo. J. 2017, 16, 0. [CrossRef]

3. Wagner, W.; Dorigo, W.; De Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M. Fusion of Active and
Passive Microwave Observations to Create an Essential Climate Variable Data Record on Soil Mmoisture.
ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 1, 315–321. [CrossRef]

4. Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.;
Parinussa, R.M.; et al. Evaluation of the ESA CCI Soil Moisture Product Using Ground-Based Observations.
Remote Sens. Environ. 2015, 162, 380–395. [CrossRef]

5. Dorigo, W.; de Jeu, R.; Chung, D.; Parinussa, R.; Liu, Y.; Wagner, W.; Fernández-Prieto, D. Evaluating
Global Trends (1988-2010) in Harmonized Multi-Satellite Surface Soil Moisture. Geophys. Res. Lett. 2012, 39.
[CrossRef]

6. Filippucci, P.; Tarpanelli, A.; Massari, C.; Serafini, A.; Strati, V.; Alberi, M.; Raptis, K.G.C.; Mantovani, F.;
Brocca, L. Soil Moisture as a Potential Variable for Tracking and Quantifying Irrigation: A Case Study with
Proximal Gamma-Ray Spectroscopy Data. Adv. Water Resour 2020, 136, 103502. [CrossRef]

7. Zreda, M.; Desilets, D.; Ferré, T.P.A.; Scott, R.L. Measuring Soil Moisture Content Non-Invasively at
Intermediate Spatial Scale Using Cosmic-Ray Neutrons. Geophys. Res. Lett. 2008, 35, L21402. [CrossRef]

8. Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space:
the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735.
[CrossRef]

9. Bartalis, Z.; Naeimi, V.; Hasenauer, S.; Wagner, W. ASCAT Soil Moisture Report Series No. 15 ASCAT Soil
Moisture Product Handbook. 2008.

10. Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial
Soil Moisture Retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34.
[CrossRef]

11. Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.;
Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716.
[CrossRef]

12. Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.;
Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation
sites. Remote Sens. Environ. 2017, 191, 215–231. [CrossRef]

13. Bauer-Marschallinger, B.; Paulik, C.; Hochstöger, S.; Mistelbauer, T.; Modanesi, S.; Ciabatta, L.; Massari, C.;
Brocca, L.; Wagner, W.; Bauer-Marschallinger, B.; et al. Soil Moisture from Fusion of Scatterometer and SAR:
Closing the Scale Gap with Temporal Filtering. Remote Sens. 2018, 10, 1030. [CrossRef]

http://dx.doi.org/10.3390/w9070530
http://dx.doi.org/10.2136/vzj2016.10.0105
http://dx.doi.org/10.5194/isprsannals-I-7-315-2012
http://dx.doi.org/10.1016/j.rse.2014.07.023
http://dx.doi.org/10.1029/2012GL052988
http://dx.doi.org/10.1016/j.advwatres.2019.103502
http://dx.doi.org/10.1029/2008GL035655
http://dx.doi.org/10.1109/36.942551
http://dx.doi.org/10.1029/2007GL031088
http://dx.doi.org/10.1109/JPROC.2010.2043918
http://dx.doi.org/10.1016/j.rse.2017.01.021
http://dx.doi.org/10.3390/rs10071030


Remote Sens. 2020, 12, 551 12 of 13

14. Calvet, J.-C.; Wigneron, J.-P.; Walker, J.; Karbou, F.; Chanzy, A.; Albergel, C. Sensitivity of Passive Microwave
Observations to Soil Moisture and Vegetation Water Content: L-Band to W-Band. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 1190–1199. [CrossRef]

15. Elachi, C.; Van Zyl, J. Introduction to the Physics and Techniques of Remote Sensing. Wiley-Interscience 2006.
16. Alexandridis, T.; Cherif, I.; Bilas, G.; Almeida, W.; Hartanto, I.; van Andel, S.; Araujo, A.; Alexandridis, T.K.;

Cherif, I.; Bilas, G.; et al. Spatial and Temporal Distribution of Soil Moisture at the Catchment Scale Using
Remotely-Sensed Energy Fluxes. Water 2016, 8, 32. [CrossRef]

17. Torres-Rua, A.; Ticlavilca, A.; Bachour, R.; McKee, M. Estimation of Surface Soil Moisture in Irrigated Lands
by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector
Machines. Water 2016, 8, 167. [CrossRef]

18. Pause, M.; Zacharias, S.; Schulz, K.; Lausch, A. Near-Surface Soil Moisture Estimation by Combining Airborne
L-Band Brightness Temperature Observations and Imaging Hyperspectral Data at the Field Scale. J. Appl.
Remote Sens. 2012, 6, 063516.

19. Qiu, J.; Crow, W.T.; Wagner, W.; Zhao, T. Effect of Vegetation Index Choice on Soil Moisture Retrievals via the
Synergistic Use of Synthetic Aperture Radar and Optical Remote Sensing. Int. J. Appl. Earth Obs. Geoinf.
2019, 80, 47–57. [CrossRef]

20. Klinke, R.; Kuechly, H.; Frick, A.; Förster, M.; Schmidt, T.; Holtgrave, A.-K.; Kleinschmit, B.; Spengler, D.;
Neumann, C. Indicator-Based Soil Moisture Monitoring of Wetlands by Utilizing Sentinel and Landsat
Remote Sensing Data. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 71–84. [CrossRef]

21. El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational
Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292.
[CrossRef]

22. Dabrowska-Zielinska, K.; Musial, J.; Malinska, A.; Budzynska, M.; Gurdak, R.; Kiryla, W.; Bartold, M.;
Grzybowski, P. Soil Moisture in the Biebrza Wetlands Retrieved from Sentinel-1 Imagery. Remote Sens. 2018,
10, 1979. [CrossRef]

23. Samaniego, L.; Kumar, R.; Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model
at the mesoscale. Water Resour. Res. 2010, 46. [CrossRef]

24. USGS EROS Archive - Sentinel-2. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-
archive-sentinel-2?qt-science_center_objects=0#qt-science_center_objects (accessed on 27 November 2019).

25. STEP | Science Toolbox Exploitation Platform. Available online: http://step.esa.int/main/ (accessed on 27
November 2019).

26. Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil
Data. Remote Sens. Environ. 1999, 70, 191–207. [CrossRef]

27. Bauer-Marschallinger, B.; Paulik, C. “CGLOPS-1” Algorithm Theoretical Basis Document Soil Water Index
Collection 1km Version 1. Copernic. Glob. Land Oper. 2019.

28. Paulik, C.; Dorigo, W.; Wagner, W.; Kidd, R. Validation of the ASCAT Soil Water Index Using in Situ Data
from the International Soil Moisture Network. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 1–8. [CrossRef]

29. Okavango Delta Monitoring & Forecasting. Available online: http://okavangodata.ub.bw/ori/monitoring/

water/ (accessed on 27 November 2019).
30. Buchhorn, M.; Smets, B.; Bertels, L.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Fritz, S. Land Cover 100m:

Collection 2: Epoch 2015. Copernic. Glob. Land Serv. 2019. [CrossRef]
31. Deering, D.W. Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors.
32. Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation.

Remote Sens. Environ. 1979, 8, 127–150. [CrossRef]
33. Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with

Erts; 1974.
34. Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from

Space. Remote Sens. Environ. 1996, 58, 257–266. [CrossRef]
35. Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER; INRA: Paris, France, 2016.
36. Garrigues, S.; Allard, D.; Baret, F.; Weiss, M. Influence of Landscape Spatial Heterogeneity on the Non-Linear

Estimation of Leaf Area Index from Moderate Spatial Resolution Remote Sensing Data. Remote Sens. Environ.
2006, 105, 286–298. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2010.2050488
http://dx.doi.org/10.3390/w8010032
http://dx.doi.org/10.3390/w8040167
http://dx.doi.org/10.1016/j.jag.2019.03.015
http://dx.doi.org/10.1007/s41064-018-0044-5
http://dx.doi.org/10.3390/rs9121292
http://dx.doi.org/10.3390/rs10121979
http://dx.doi.org/10.1029/2008WR007327
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-sentinel-2?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-sentinel-2?qt-science_center_objects=0#qt-science_center_objects
http://step.esa.int/main/
http://dx.doi.org/10.1016/S0034-4257(99)00036-X
http://dx.doi.org/10.1016/j.jag.2014.01.007
http://okavangodata.ub.bw/ori/monitoring/water/
http://okavangodata.ub.bw/ori/monitoring/water/
http://dx.doi.org/10.5281/ZENODO.3243509
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.1016/j.rse.2006.07.013


Remote Sens. 2020, 12, 551 13 of 13

37. Prince, S.D. A Model of Regional Primary Production for Use with Coarse Resolution Satellite Data. Int. J.
Remote Sens. 1991, 12, 1313–1330. [CrossRef]

38. Weiss, M.; Baret, F.; Myneni, R.; Pragnère, A.; Knyazikhin, Y.; Myneni, R.B.; Weiss, M. Investigation of
a Model Inversion Technique to Estimate Canopy Biophysical Variables from Spectral and Directional
Reflectance Data Investigation of a Model Inversion Technique to Estimate Canopy Biophysical Variables
from Spectral and Directional Reflectance Data Investigation of a Model Inversion Technique to Estimate
Canopy Biophysical Variables from Spectral and Directional Reflectance Data. Agron. EDP Sci. 2000, 20.

39. Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image Texture as a Remotely Sensed Measure of
Vegetation Structure. Remote Sens. Environ. 2012, No. 121. 516–526. [CrossRef]

40. Lu, D.; Batistella, M. Exploring TM Image Texture and Its Relationships with Biomass Estimation in Rondônia,
Brazilian Amazon. Acta Amaz. 2005, 35, 249–257. [CrossRef]

41. Kukal, M.S.; Irmak, S. Light Interactions, Use and Efficiency in Row Crop Canopies under Optimal Growth
Conditions. Agric. For. Meteorol. 2020, 284, 107887. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01431169108929728
http://dx.doi.org/10.1016/j.rse.2012.01.003
http://dx.doi.org/10.1590/S0044-59672005000200015
http://dx.doi.org/10.1016/j.agrformet.2019.107887
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Areas 
	Data and Pre-Processing 
	SWI Products and Sample Sites 
	Vegetation Indices (VIs) Retrieval 
	Statistics Retrieval 

	Results 
	SWI and VIs Correlation by Season 
	SWI and VIs Correlation by Dominant Land Cover Type 

	Discussion 
	Conclusions 
	References

