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Abstract: Modern elevation-determining remote sensing technologies such as light-detection and
ranging (LiDAR) produce a wealth of topographic information that is increasingly being used in a
wide range of disciplines, including archaeology and geomorphology. However, automated methods
for mapping topographic features have remained a significant challenge. Deep learning (DL) mask
regional-convolutional neural networks (Mask R-CNN), which provides context-based instance
mapping, offers the potential to overcome many of the difficulties of previous approaches to
topographic mapping. We therefore explore the application of Mask R-CNN to extract valley fill faces
(VFFs), which are a product of mountaintop removal (MTR) coal mining in the Appalachian region of
the eastern United States. LiDAR-derived slopeshades are provided as the only predictor variable in
the model. Model generalization is evaluated by mapping multiple study sites outside the training
data region. A range of assessment methods, including precision, recall, and F1 score, all based on
VFF counts, as well as area- and a fuzzy area-based user’s and producer’s accuracy, indicate that the
model was successful in mapping VFFs in new geographic regions, using elevation data derived from
different LiDAR sensors. Precision, recall, and F1-score values were above 0.85 using VFF counts
while user’s and producer’s accuracy were above 0.75 and 0.85 when using the area- and fuzzy
area-based methods, respectively, when averaged across all study areas characterized with LiDAR
data. Due to the limited availability of LiDAR data until relatively recently, we also assessed how
well the model generalizes to terrain data created using photogrammetric methods that characterize
past terrain conditions. Unfortunately, the model was not sufficiently general to allow successful
mapping of VFFs using photogrammetrically-derived slopeshades, as all assessment metrics were
lower than 0.60; however, this may partially be attributed to the quality of the photogrammetric data.
The overall results suggest that the combination of Mask R-CNN and LiDAR has great potential for
mapping anthropogenic and natural landscape features. To realize this vision, however, research on
the mapping of other topographic features is needed, as well as the development of large topographic
training datasets including a variety of features for calibrating and testing new methods.

Keywords: light detection and ranging; LiDAR; deep learning; convolutional neural networks;
CNNs; mask regional-convolutional neural networks; mask R-CNN; digital terrain analysis;
resource extraction

1. Introduction

Light detection and ranging (LiDAR) data provide high spatial resolution, detailed representations
of bare earth landscapes, and have been shown to be valuable for mapping features of geomorphic
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and archeological interest. For example, Joboyedoff et al. [1] suggest that LiDAR is an essential
tool for detecting, characterizing, monitoring, and modelling landslides and other forms of mass
movement. Chase et al. [2] argue that LiDAR technologies have resulted in a paradigm shift in
archeological research, as they allow for the mapping of ancient anthropogenic features and landscapes
even under dense canopy cover. For example, LiDAR has recently improved our understanding
of ancient Mesoamerican cultures by mapping ancient cities now obscured by dense forest cover,
a mapping task that is too labor intensive for field-based survey methods alone [2]. Further,
LiDAR data are becoming increasingly available for public download, especially in Europe and
North America. For example, the United States has implemented the 3D Elevation Program (3DEP)
(https://www.usgs.gov/core-science-systems/ngp/3dep) with a goal of providing LiDAR coverage for
the entire country, excluding Alaska [3]. In this spirit, The Earth Archive project has argued for the
need for 3D data of the entire Earth surface to create a historic record for future generations, and is
currently soliciting donations to support this project [4].

Despite the increasing availability of high spatial resolution digital terrain data, and the wealth
of information that can be derived from such data, the extraction of features from these data to
support archeological, geomorphic, and landscape change research is in many cases dominated by
manual interpretation, as previously noted by [5,6]. With the exception of some notable studies
(e.g., [6–9]), generic and automated mapping of topographic features from digital elevation data has
proved to be a particularly challenging task. However, deep learning (DL), and in particular mask
regional-convolutional neural networks (Mask R-CNN), may make it possible to realize the potential
of digital elevation data for automated mapping of topographic features.

Therefore, this study explores the use of Mask R-CNN for mapping valley fill faces (VFFs) resulting
from mountaintop removal (MTR) surface coal mining in the Appalachian region of the eastern United
States. MTR is a common mining method in this region which results in extensive modifications
to the landscape, and therefore mapping VFFs is of significant interest for environmental modelers.
From our findings, we comment on the application of this DL method for extracting anthropogenic and
natural terrain features from LiDAR-derived data based on distinct topographic and spatial patterns.
Since LiDAR data are not commonly available to represent historic terrain conditions due to only recent
development of this technology for mapping large spatial extents, we also explore the transferability
of the models to older, photogrammetrically-derived elevation data. This study therefore has two
objectives:

1. Assess the Mask R-CNN DL algorithm for mapping VFFs using LiDAR-derived digital
elevation data.

2. Investigate model performance and generalization by applying the model to LiDAR-derived data
in new geographic regions and acquired with differing LiDAR sensors and acquisition parameters,
as well as a photogrammetrically-derived digital terrain dataset.

1.1. LiDAR and Digital Terrain Mapping

LiDAR is an active remote sensing method that relies on laser range finding. A laser pulse
is emitted by a sensor. When the emitted photons strike an object, a portion of the energy is
reflected back to the sensor. Using the two-way travel time of reflected laser pulses detected by the
sensor, global position system (GPS) locations, and aircraft orientation and motion from an inertial
measurement unit (IMU), horizontal and elevation coordinates of the reflecting surface can be estimated
at a high spatial resolution. Further, a single laser pulse can potentially result in multiple returns,
allowing for vegetation canopy penetration and the mapping of subcanopy terrain, in contrast to other
elevation mapping methods [10].

LiDAR data have been applied to a variety of terrain mapping and analysis tasks. For example,
many studies have investigated the mapping of slope failures, such as landslides, using terrain
variables derived from LiDAR [1,8,11–13]. Another common application is modeling the likelihood of
slope failure occurrence or landslide risk [14–17]. In a 2012 review of the use of LiDAR in landslide
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investigations, Jaboyedoff et al. [1] suggest that LiDAR is an essential tool for landslide risk management
and that there is a need to develop methods to extract useful information from such data. Older,
photogrammetrically-derived elevation data have also been used for terrain mapping and analysis tasks
and offer a means to characterize historic terrain conditions. For surface mine mapping specifically,
Maxwell and Warner [18] found that historic, photogrammetric elevation data were of great value
for differentiating grasslands resulting from mine reclamation from other grasslands while DeWitt et
al. [19] provided a comparison of different digital elevation data sources for mapping terrain change
resulting from surface mining.

Object-based image analysis (OBIA) has been applied to LiDAR data for the mapping of
landslides [20] and geomorphic landforms in general [9]. OBIA incorporates segmentation of
raster-based data into regions or polygons, based on measures of similarity or homogeneity.
These polygons are the spatial unit of analysis and classification [21]. Part of the interest in OBIA for
geomorphic mapping is the ability to incorporate spatial context information into the mapping process,
facilitated by the data segmentation. Nevertheless, choosing the scale of the segmentation is a major
hurdle in OBIA, and indeed some research indicates it is necessary to choose multiple scales [22,23].
In contrast, spatial context information can be included in DL by using convolutional neural networks
(CNNs) in a manner that does not require a priori specification of the scale. Thus, applying CNN-based
DL to digital terrain data holds great promise.

1.2. Deep Learning

DL algorithms are derived from, and offer an extension to, artificial neural networks (ANNs).
Traditional ANNs generally have a small number of hidden layers, whereas DL algorithms have many
hidden layers. In contrast to traditional machine learning methods, which are shallow learners, it has
been suggested that DL is able to provide a higher level of data abstraction, potentially resulting in
improved predictive power, generalization, and transferability [24–30]. Although this results in a
model that is much more complex and has many more parameters, it allows for multiple levels of data
abstraction to learn complex patterns. Like other supervised machine learning methods, DL requires
example training data with associated labels in order to build the model. A measure of error or
performance, generally termed loss, is used to guide the algorithm to improve predictions as it iterates
through the training data multiple times [24,30].

CNNs extend the deep ANN architecture to incorporate context information into the prediction.
CNNs include convolutional layers that learn filters that transform input image values, similar to
moving window kernels traditionally used in remote sensing for image edge detection and smoothing.
However, in the case of CNNs, the algorithm produces optimal filters to aid in predicting the
labels associated with the training images. The addition of this context information has offered
substantial advancements in computer vision and scene labeling problems [24,28,30]. In remote
sensing applications, CNNs allow for the analysis of spatial context information when applied to
high spatial resolution data (for example, [28]), spectral patterns when applied to hyperspectral data
(for example, [31]), and temporal patterns when applied to time series products (for example, [32]).
Thus, DL with convolution allows for the integration of contextual information in the spatial, spectral,
and temporal domains.

Traditional CNNs have primarily been used for scene labeling problems, for example, entire images
or image chips categorized by different land cover type. Traditional CNNs do not allow for pixel-level
or semantic labeling. However, the introduction of fully convolutional neural networks (FCNs)
alleviated this limitation by combining convolution and deconvolution layers with up-sampling,
which allows for the final feature map to be produced at the original image resolution with a prediction
at each cell location [27,33], similar to traditional remote sensing classification products. Example FCN
architectures include SegNet [34] and UNet [35–37].

In this study, we use instance segmentation methods, in which the goal is to distinguish each
individual instance of a feature in the scene separately. For example, each tree in a scene can be
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identified as a separate instance of the tree class. We specifically implement the Mask R-CNN method.
This method is an extension of faster R-CNN, which allows for convolution to be applied on regions
of the image as opposed to the entire scene. This involves generating convolution feature maps
that are then applied to individual subsets of the image, called regions of interest (RoI), defined by
the region proposal network (RPN). The process of RoI pooling allows convolution features to be
applied to regions of the image of different sizes and rectangular shapes [38,39]. Mask R-CNN extends
this framework to allow for polygon masks to be generated within each RoI, essentially performing
semantic segmentation within each RoI using FCNs. This requires better alignment between the RoI
pooling layers and the RoIs than is provided by faster R-CNN. So, a ROIAlign layer is applied to
improve the spatial alignment [39]. Since there are multiple components of the model, multiple loss
measures are used to assess performance. Specifically, the total loss is the sum of the loss for the
bounding box, classification, and mask predictions [38,39]. For a full discussion of Mask R-CNN,
please consult He et al. [39], who introduced this method.

DL methods have shown promise in remote sensing mapping and data processing tasks including
scene labeling, pixel-level classification, object-detection, data fusion, and image registration [24].
For example, Microsoft has recently used DL to map 125 million building footprints across the entire
US [40]. Kussul et al. [26] explored DL for differentiating crops using a time series of Landsat-8
multispectral and Sentinel-1 synthetic-aperture radar (SAR) data and documented improved overall
and class-specific classification performance in comparison to shallow learners, such as random forests
(RF). Li et al. [41] used DL and QuickBird satellite imagery to map individual oil palm trees with
precision and recall rates greater than 94%.

It should be noted that there are some complexities in implementing these methods and applying
them to remotely sensed data, such as the need for a large number of training samples, the difficulty
of model optimization and parameterization, and large computational demands [24,30]. Also,
the processes of training models and predicting to new data can differ from those used in traditional
image classification and machine learning; for example, convolution requires training on and predicting
to small rectangular image extents, or image chips, as opposed to individual pixels or image objects.
Thus, researchers and analysts must augment workflows and learn new techniques for implementing
DL algorithms [24,30].

A review of the literature suggests that the application of DL to LiDAR and digital terrain data is
still limited. There has been some research relating to using DL for extracting ground returns from
LiDAR point clouds for digital terrain model (DTM) generation (for example, [33,42–44]). Specifically,
Hu and Yuan [44] suggest that DL-based algorithms can outperform the current methods that are most
commonly used for ground return classification. Others have investigated the classification of features
in 3D space represented as point clouds [45–47].

There is a need to investigate mapping anthropogenic and natural terrain features from digital
terrain data using DL, as the research on this topic is currently lacking; however, there have been
some notable studies. Tier et al. [6] investigated the identification of prehistoric structures from
LiDAR-derived raster data. From the LiDAR data, a DTM was interpolated followed by a measure
of local relief, which was then provided as input to the ResNet18 CNN algorithm as an RGB image.
They reported mixed results, with some areas predicted well and other areas suffering from many false
positives. Behrens et al. [48] explored digital soil mapping using DTM raster data and DL and obtained
a more accurate output than that produced by RF.

Interestingly, a number of studies attempt to map features that are at least partially characterized
by geomorphic and terrain characteristics using spectral data only, without using terrain data.
For example, Li et al. [49] mapped craters from image data using faster R-CNN and obtained a mean
average precision (mAP) higher than 0.90. As an example of a study that combined spectral and
terrain data, Ghorbanzadeh et al. [50] used RapidEye satellite data and measures of plan curvature,
topographic slope, and topographic aspect to detect landslides. They noted comparable performance
between CNNs and traditional shallow classifiers: ANN, SVM, and RF.
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Mask R-CNN has seen limited application in remote sensing at the time of this writing. Zhang et
al. [51] assessed the method for mapping artic ice-wedge polygons from high spatial resolution aerial
imagery and documented that 95% of individual ice-wedge polygons were correctly delineated and
classified, with an overall accuracy of 79%. Zhao et al. [37] found that Mask R-CNN outperformed
UNet for pomegranate tree canopy segmentation. Stewart et al. [52] used the method to detect lesions
on maize plants from northern leaf blight using unmanned aerial vehicle (UAV) data. Given the
small number of studies that have applied this algorithm to remotely sensed data, there is a need for
further exploration of this algorithm within the discipline. We found a lack of research associated with
mapping terrain features from digital terrain data using DL methods, and no published studies that
apply this algorithm to raster-based digital terrain data for mapping geomorphic features. We attribute
this to the only recent advancement of DL for semantic and instance segmentation, and lack of available
data to train DL models.

1.3. Mountaintop Removal Coal Mining and Valley Fills

In this study we apply Mask R-CNN to detect instances of VFFs from digital terrain data derived
from LiDAR. Valley fills are a product of MTR coal mining, which has been practiced in southern West
Virginia, eastern Kentucky, and southwestern Virginia in the Appalachian region of the eastern United
States for several decades. This surface mining process involves using heavy machinery to extract
thin interbedded coal seams. Valley fills are generated from the redistribution of overburden rock
material. Since the coal seams are interbedded with other rock types of limited commercial value,
a large volume of displaced material is produced. Due to the original steepness of the slopes, it is not
possible to reclaim the landscape to the approximate original contour. Therefore, excess overburden
material is placed in adjacent valleys, raising the valley elevation and changing the landscape.

The excavation and subsequent reclamation associated with valley fills results in substantial
alterations to land cover, soil, and the topography and contour of the landscape [53–62]. Forests are
lost and fragmented [63], mountaintop elevations are lowered by tens to hundreds of meters [53,57];
soils are compacted [58,64], and human quality of life and health is affected by exposure to chemicals,
dust, and particulates [62]. Because valley fills bury headwater streams [54,61], and the fill material
is hydrologically dissimilar to undisturbed land, hydrology is particularly affected. Valley fills tend
to increase stream conductivity and alter hydrologic regimes downstream [53,56,58,64]. Wood and
Williams [61] documented a decrease in salamander abundance in headwater streams impacted
by valley fills in comparison to reference streams. In summary, valley fills profoundly alter the
landscape, resulting in a variety of complex effects on the physical environment and its inhabitants,
making it of vital importance that these features be monitored and mapped over time to facilitate
environmental modeling.

Figure 1 provides examples of valley fills within the study area. Note that these features
are generally characterized by steep slopes, a terraced pattern to encourage stability, placement in
headwater stream valleys adjacent to mines and reclaimed mines, and drainage ditches to transport
water away from the mine site. In short, they have a unique topographic signature and are readily
observable in digital terrain data representations, such as hillshades and slopeshades. Due to this
unique signature and their potential environmental impacts, we argue that this is a valuable case study
in which to assess the use of Mask R-CNN for detecting and mapping topographic features. Here,
we are specifically attempting to map the valley fill faces (VFF; i.e., the graded slope that faces the
downstream valley not yet filled). Since the true extent of the filled area and excavated areas are not
readily observable and grade into one another, the upper extent of each fill is hard to distinguish.
Therefore, we focus exclusively on the VFF.
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Figure 1. Example of valley fill faces (VFFs) within study area extent. The images are slopeshades,
generated from the light-detection and ranging (LiDAR) data. Stars indicate the location of (a) through
(e) in the study areas (f ).

2. Methods

2.1. Study Area and Training Data Digitizing

The study areas are shown in Figure 2. The training, testing, and validation data partitions
are nonoverlapping and defined geographically. The training area (Train) has a size of 9019.6 km2

and occurs completely within West Virginia. Areas adjacent to the training area, mapped with
the same LiDAR sensor and also within West Virginia, were withheld to test model performance
during the training process (Test) and to validate the final model once obtained (Val). In order to
assess how well the model generalizes to new LiDAR-derived terrain data, we performed additional
validations over two areas in Kentucky (KY1 and KY2) and one area in Virginia (VA). Digital terrain
data produced using photogrammetric methods were also predicted including a subset of the training
area (SAMB1) and the entire validation area (SAMB2); no photogrammetric data were used in the
training dataset. In summary, the model was trained over a single large area, tested over an adjacent
smaller area, then used to make predictions in a new area collected with the same LiDAR sensor,
three additional extents in different states mapped during different LiDAR collections, and two extents
of photogrammetric data within West Virginia.
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Figure 2. (a) Study areas in West Virginia, Kentucky, and Virginia in the Appalachian region of the
eastern United States. (b) shows the extent of (a) in the eastern United States.

The extents were primarily chosen based on the availability of LiDAR data and the abundance of
VFFs. In total, 1105 VFFs were provided to train the model, 118 were used to test the model at the
end of each epoch in the training process, and 1014 were used to validate the model over different
geographic extents (Table 1). Training data were digitized by two analysts by visual interpretation of
LiDAR-derived terrain surfaces, specifically hillshades and slopeshades, and additional geospatial
data, including aerial imagery. Based on the size distribution of digitized VFFs, a minimal mapping
unit (MMU) of 0.2 ha was defined for this study and no VFFs smaller than this size were included.

Table 1. Description of study areas and mapped VFFs.

Study Area Total Area Number of Image
Chips with Valley Fills

Number of Image
Chips to Predict To

Number of Valley
Fills

Train 9019.6 km2 4863 - 1105
Test 279.5 km2 282 - 118
Val 921.0 km2 - 3111 182
KY1 773.4 km2 - 2650 540
KY2 338.9 km2 - 1138 149
VA 599.3 km2 - 2093 143

SAMB1 4661.8 km2 - 17,106 581
SAMB2 921.0 km2 - 3110 108

2.2. Input Terrain Data and Pre-Processing

Descriptions of the LiDAR data and collections are provided in Table 2. The West Virginia LiDAR
data used in this study were obtained as classified point clouds from the West Virginia View/West
Virginia GIS Technical Center Elevation and LiDAR Download Tool (http://data.wvgis.wvu.edu/

elevation/). LiDAR data for the study sites in Kentucky and Virginia were downloaded from the

http://data.wvgis.wvu.edu/elevation/
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3DEP website (https://www.usgs.gov/core-science-systems/ngp/3dep) also as classified point clouds.
Data and collection information were obtained from the associated metadata files. Although all
data were collected during leaf-off conditions, they differ based on collection dates, sensor used,
sensor specifications, and flight specifications. The West Virginia and Kentucky data provide similar
point densities at an average of 1 point per square meter (ppsm) while the Virginia data offer a higher
point density at 1.7 ppsm. Collectively, the data were collected over nearly seven years. In summary,
there are many differences in these datasets to support our goal of assessing transferability of models
to new data and geographic extents.

Table 2. Description of LiDAR data.

LiDAR Dataset

Specification West Virginia Kentucky Virginia

Collection Dates
4-9-2010

to
12-31-2011

11-8-2011
to

1-19-2013

11-3-2016
to

4-17-2017
Phenology Leaf-off Leaf-off Leaf-off

Sensor Optech ALTM-3100 Leica ALS70 and Optech
Gemini Riegel 780/680i

Average Post Spacing 1 ppsm 1 ppsm 1.746 ppsm
Flight Height 1524 m AGL 1828 m AGL 1800 m AGL

Approximate Flight
Speed 135 knots 116 knots 100 knots

Scanner Pulse Rate 70 kHz 50 kHz 280 kHz
Scan Frequency 35 Hz 30.1 Hz 68 Hz

Maximum Scan Angle 36◦ 25.6◦ 60◦

AGL = above ground level, ppsm = points per square meter.

The 0.61 m (2 ft) true color stereo imagery used to derive the photogrammetric elevation data
used in this study were collected during the spring of 2003 and 2004 during leaf-off conditions as
part of a mapping project supported by the West Virginia Statewide Addressing and Mapping Board
(WVSAMB). Break lines and elevation mass points were generated using photogrammetric methods at
a 3 m interval with a vertical accuracy of ±10 ft. The final 3 m DEM has a tested vertical accuracy of
0.209 m [65].

All LiDAR point clouds were converted to raster grids as DTMs using only the points classified as
ground returns and the LAS Dataset to Raster utility in ArcGIS Pro 2 [66]. The average ground return
elevation was calculated within each cell, and linear interpolation was used to fill data gaps. Based on
data volume and visual assessment of outputs, we gridded all data to a 2 m resolution, as the VFFs and
their topographic signature were easily discernable at this spatial resolution. The photogrammetric
data were resampled from 3 m to 2 m using cubic convolution to match the LiDAR data.

Many surfaces can be derived from DEMs to characterize and visualize the terrain [67].
We experimented with multiple terrain visualization methods including hillshades,
multi-directional hillshades, hypsometrically-tinted hillshades, and slopeshades. Based on visual
inspection and initial experimentation with the Mask R-CNN algorithm, the slopeshade was selected
to represent the terrain surface because it provides a distinctive and relatively consistent representation
of VFFs, unlike hillshades, which vary in appearance based on the local angle of illumination of the
solar energy. Since data augmentation, including random rotations and flips of the data, are used
to minimize overfitting in this study, as will be discussed below, an illumination invariant terrain
representation is preferred.

Slopeshades are generated from a topographic slope surface. A grayscale color ramp is applied to
represent steep slopes with darker shades and flat areas with brighter shades [15,68–70]. To produce
these surfaces, we first calculated topographic slope in degrees using the Slope Tool from the Spatial

https://www.usgs.gov/core-science-systems/ngp/3dep
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Analyst Extension of ArcGIS Pro 2 [66]. The data were then converted to 8-bit integer data using
Equation (1). We used a maximum slope of 90◦ as opposed to the maximum value in each grid surface
so that all study sites could be rescaled consistently.

Slopeshade = (1 −
Slope

90
) × 255 (1)

2.3. Image Chip Generation

Since spatial context information is learned using filters, DL methods that include convolution
must be trained on rectangular image chips as opposed to single pixels or image objects [24,28].
Image chips were generated using the Export Training Data For Deep Learning Tool in ArcGIS Pro
2 [66]. In order to provide training and testing data for the Mask R-CNN algorithm, the geographic
extents were segmented into 512-by-512 pixel image chips. We applied a stride of 256 pixels in the
X- and Y-directions for overlap and to produce more training and testing data. Using this method,
4863 training and 282 testing chips were generated that contained at least one instance of the VFF class,
as noted in Table 1 above. Training masks were also generated for each image chip using this tool.
Background or non-VFF pixels were coded to 0, while each instance of VFFs was coded with a unique
value, from 1 to the number of VFFs in the extent, as demonstrated in Figure 3. Instance segmentation
methods, such as Mask R-CNN, require that each unique instance be differentiated whereas semantic
methods can accept a binary mask to differentiate a class from background pixels [34,35,39]. Once a
final model was obtained, it was used to predict VFFs from image chips covering the Val extent and all
other study areas. Initial results showed poor predictions near the edge of image chips. To circumvent
this issue, we made predictions using larger image chips, with dimensions of 1024-by-1024 pixels and
with a stride of 256 pixels, allowing for substantial overlap so that features were not missed and were
likely to occur near the center of at least one chip. We then cropped each chip so that only the center
50% was used in the final surface.
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2.4. Mask R-CNN Implementation

We used the Matterport implementation of Mask R-CNN in this study, which is available on
GitHub (https://github.com/matterport/Mask_RCNN). This implementation uses Python 3, Keras,
and Tensorflow. In order to load our image chips and masks, we had to generate a subclass of the
Dataset class provided by the implementation. All experiments were conducted on a workstation
equipped with an i9 7900X 3.3 GHz 10 core processor, 128 GB of RAM, and a GeForce RTX 2080 Ti 11
GB graphics card.

To train the model, we used a learning rate of 0.002 to train the head layers for 2 epochs, followed by
training all layers at a learning rate of 0.001 for 12 epochs, and lastly training all layers at a learning
are of 0.0001 for an additional 10 epochs. An initial experiment was conducted in which learning
progressed for 85 epochs. In this experiment, we observed overfitting early and found that 24 epochs
were adequate to stabilize the model. The default learning momentum and weight decay values,
0.9 and 0.0001, were used for all epochs. We also maintained the default values for the backbone
strides of the feature pyramid network (FPN), RPN anchor scales, RPN anchor scale ratios, and RoI
positive ratio. Mask R-CNN includes ROIs for training that do not contain an example of the feature of
interest so that it can also learn from negative cases. In this study an ROI positive ratio of 33% was used,
or 67% represented negative cases. All loss measures were equally weighted. We use the ResNet101
backbone [71] to learn the convolution filters. For each epoch, 1500 training and 90 validation steps
were used with a batch size of 3 image chips, allowing for 4500 training samples and 270 test samples
to be used in each epoch. The model that produced the best loss value for predicting to the test samples
was selected as the final model.

Initial experimentation with initializing the model from random weights was unsuccessful,
perhaps because we did not provide enough training samples to adequately train the complex
model [24,30,39]. As a result, we initialized the model using weights learned from the Microsoft
Common Objects in Context (MS COCO) dataset [72] (http://cocodataset.org/#home), a process known
as transfer learning. Many studies have noted the value of initializing models using pre-trained weights
learned from other data and problems, even if the data and classes are different [6,24,30,38,51,73–75].
For example, Tier et al. [6] used pre-trained weights learned from photographs to initialize a
model to extract archeological features form digital terrain data. For Mask R-CNN specifically,
Zhang et al. [51] initialized their model from the COCO weights for mapping artic ice-wedge polygons
from very high spatial resolution aerial imagery. The argument for applying transfer learning
is that low-level data abstractions learned from imagery can be valuable when applied even to
disparate data [24,30,38,39,74,75]. Since the MS COCO weights were obtained relative to RGB images,
the slopeshade data were loaded in as 3-band images by replicating the grayscale values to each band.
Although not computationally efficient, this allowed us to make use of transfer learning.

Data augmentation has been shown to minimize overfitting by expanding the number and
characteristics of the training samples [24,29,30,50]. Therefore, we implemented random augmentations
of the original image chips including rotations at 0◦, 90◦, 180◦, and 270◦; left/right flips; up/down flips,
brightness and contrast alterations, and blurring and sharpening. We attempted to avoid extreme
augmentations of the original data. These augmentations were applied using the imgaug Python
library [76]. Example augmentations for the image chip shown in Figure 3 are provided as an example
in Figure 4.

https://github.com/matterport/Mask_RCNN
http://cocodataset.org/#home
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2.5. Prediction and Post-Processing

Once a final model was obtained, it was used to detect features in the Val extent and all other
study areas. The final chips were binary surfaces, in which all predicted VFFs were coded to 1 and the
background was coded to 0. This process was completed using the Matterport Mask R-CNN code
combined with additional Python and R [77] scripts.

Once all image chips within a dataset were processed by the model and cropped, they were
merged to a continuous raster surface using the Mosaic to New Raster utility in ArcGIS Pro [66] with
the maximum value returned at cells in overlapping area so that all predicted VFF pixels that occurred
in the center of the chips were maintained in the final model. The raster grids were then converted to
polygon vectors to represent each contiguous area of VFFs as a single feature. Any predicted features
smaller than 0.2 ha were removed to satisfy the MMU.

2.6. Accuarcy Assessment

We assessed the Matterport Mask R-CNN model based on mAP at multiple intersection of union
(IoU) threshold ranges. IoU is the area of intersection divided by the area of union between the
manually digitized and predicted masks as described in Equation (2). mAP represents the interpolated
precision at multiple IoU threshold ranges based on the area under the precision-recall curve [78].

IoU =
Area of Intersection

Area of Union
(2)

Given that the final output of the classification was vector objects occurring over a geographic
extent, assessment using overlapping image chips, where the same VFF has the potential to be mapped
and evaluated multiple times, will not yield an assessment that approximates the accuracy of the final
map product. In this study, our primary interest is the detection of VFFs across the entire dataset as
discrete spatial objects. Thus, we focus on true positives (TP), false positives (FP), and false negatives
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(FN) [79] in the map. An additional complexity is that the boundaries of VFFs are inherently fuzzy at
the fine scale of our map, which has 2 m pixels. Therefore, we assessed the predictions based on a visual
comparison with the manually digitized VFFs. If a predicted feature was judged to overwhelming
agree with the manually digitized VFF based on shared area and spatial co-occurrence, then it was
labelled as a TP. FPs represent areas mapped as VFFs but were in reality not. FNs represent VFFs that
were missed.

From the TP, FP, and FN counts of VFFs within each study area extent, we calculated precision,
recall, and the F1 score. Precision represents the portion of the predicted VFFs that were VFFs and is
equivalent to 1 - commission error. Recall represents the ratio of correctly mapped VFFs relative to the
total number of VFFs and is equivalent to 1 - omission error. The F1 score is the harmonic mean of
precision and recall. The equations for these metrics are provided below in Equations (3) through (5).
We also assessed the TP, FN, and recall for VFFs that were larger than 1 ha in the manually digitized
data to explore the performance for only larger features.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 Score = 2 ×
Recall × Precision
Recall + Precision

(5)

In addition to evaluating the numbers of correctly mapped VFFs, we also assessed the accuracy
based on the delineation of VFFs, by focusing on the intersection and union of the derived polygons to
estimate area-based producer’s and user’s accuracy. Using area based measures, larger VFFs have
a larger weight in the assessment. Producer’s accuracy is similar to recall, while user’s accuracy is
similar to precision [80–82].

Due to the indeterminate nature of VFF boundaries at the 2 m scale of this project, small differences
between the location of the boundary in the reference and map data have little significance. Therefore,
we also assessed producer’s and user’s accuracy for the VFF class using a fuzzy accuracy method
modified from Brandtberg et al. [83]. The aim of this approach is to weight the disagreement between
predicted and reference polygons, based on distance from the center of the polygon. Thus, a larger
weighting is assigned to pixels near the center, and a lower weighting for pixels at the boundary.
The fuzzy accuracy was implemented by first creating raster-based Euclidean distance surfaces at a
2 m spatial resolution using ArcGIS Pro [66] for each reference and predicted VFF polygon to represent
the straight-line distance of each cell from the feature boundary. We divided each pixel in the VFF
feature by the sum of the distances within the polygon, then multiplied the pixel by the area of the
polygon, thus achieving our aim of weighting the entire area of the feature higher in the center in
comparison to the edges, but keeping the data on a scale that is equivalent to area. We then summed
the pixel values in the union and intersecting extents to obtain fuzzy estimates of producer’s and user’s
accuracy for the VFF class from these totals.

3. Results

3.1. Mask R-CNN Model and Visual Assessment

Figure 5 shows loss measures for different components of the Mask R-CNN model as a function
of epoch. The lowest overall loss calculated from the withheld test data was obtained after 12 epochs
(0.773), so the result from this epoch was chosen for the final model. The graphs suggest some
overfitting after 12 epochs; however, the dominant pattern is variability in the test loss measures and
no substantial increase in performance. Other authors have noted optimal performance after few
epochs, especially when pre-trained weights are used. For example, Zhang et al. [51] note optimal
performance after eight epochs when using Mask R-CNN to predict artic ice wedge extents from high
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spatial resolution aerial imagery, and Stewart al. [52] used only six epochs to map northern leaf blight
lesions from UAV data.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 23 
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Figure 5. Loss values for training and test data across all epochs. (b) region proposal network (RPN)
class loss measures how well the Region Proposal Network separates the background from the objects
of interest. (c) RPN bounding box loss assesses how well the RPN localizes objects. (d) Mask R-CNN
class loss assesses how well Mask R-CNN recognizes each class of object. (e) Mask R-CNN bounding
box loss measures how well Mask R-CNN localizes objects. (f ) Mask R-CNN mask loss measures how
well Mask R-CNN segments objects. (a) Overall loss is an addition of all other loss measures. For a
complete explanation of these metrics see [38,39].

Table 3 shows the mAP results for different IoU threshold ranges calculate from image chips
covering the Val area. Performance decreased as the threshold was adjusted to incorporate higher IoU
values, as expected. When only IoU thresholds between 0.50 and 0.55 were used, the mAP was 0.596.
This generally suggests that with this narrow threshold range, VFFs were detected, but the boundaries
did not match well, due to the indeterminate and complex nature of the VFFs.

Table 3. mAP results for validation data using different intersection of union (IoU) ranges.

Start (IoU) End (IoU) mAP

0.50 0.95 0.389
0.50 0.90 0.433
0.50 0.85 0.475
0.50 0.80 0.475
0.50 0.75 0.535
0.50 0.70 0.557
0.50 0.65 0.557
0.50 0.60 0.596
0.50 0.55 0.596

Figure 6 shows some predicted VFFs in comparison to those manually digitized in the Val, KY1, KY2,
and VA study areas. The figure suggests that VFFs were generally detected with few FPs. Although the
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overall shapes of the VFFs are similar in the automated and reference (i.e., manually digitized) datasets,
the boundaries do not overlay exactly due to their fuzzy nature, as previously discussed.
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Figure 7 provides some examples of common FP issues. Some reclaimed mine sites, coal and
overburden piles in mine sites, and artificially re-contoured landscapes associated with residential
or transportation development, were occasionally misclassified as VFFs (Figure 7b–d). Slopes with
timber-harvest roads (Figure 7a), which result in a pattern similar to terracing, especially within
valley-head areas, were sometimes falsely mapped as VFFs. Figure 7e shows a misclassified slope
that is characterized by deep channeling, which has potentially been confused as the drainage ditches
installed on the VFFs. Mapped VFFs that were most often missed (FNs), were those that covered
a smaller area and/or lacked the characteristic terracing pattern or drainage ditches. In contrast,
VFFs that were larger and had well defined terracing where seldom missed.

3.2. Validation

Table 4 shows the validation based on the manual inspection of TP, FP, and FN VFF counts in
all areas that were predicted. For predictions made using the LiDAR-derived data, precision, recall,
and F1 score values were all higher than 0.73. The highest precision was obtained for the KY1 area
while the highest recall was obtained for the Val area. In general, we documented similar precision,
recall, and F1 scores for the LiDAR-derived data, suggesting that the model generalizes well to other
geographic regions, collected using different LiDAR sensors. Further, a higher precision was obtained
for the KY1 and KY2 test sites than the Val site, which was mapped using the same LiDAR sensor
as the data used to develop the model. The VA test site had the lowest precision, recall, and F1
scores of all the LiDAR-derived extents. This could potentially be a result of the higher average post
spacing in comparison to the other collections, resulting in a disparate representation of the landscape.
Another confounding factor is the characteristics of the VFFs in each area. For example, a visual
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inspection of the KY1 extent suggests a large number of VFFs that are large and have well defined
terracing, which may contribute to comparatively high assessment metrics for this extent. The All
LiDAR column represents the pooled results for all LiDAR-derived datasets. Collectively, a precision
of 0.878, a recall of 0.858, and a F1 score of 0.868 was obtained when using LiDAR-derived data.
For VFFs larger than 1 ha, recall increased for all the study sites, which indicates that the larger fills
were generally easier to detect.

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 23 

 

 
Figure 7. (a) through (e) Example of false positives. 

3.2. Validation 

Table 4 shows the validation based on the manual inspection of TP, FP, and FN VFF counts in 
all areas that were predicted. For predictions made using the LiDAR-derived data, precision, recall, 
and F1 score values were all higher than 0.73. The highest precision was obtained for the KY1 area 
while the highest recall was obtained for the Val area. In general, we documented similar precision, 
recall, and F1 scores for the LiDAR-derived data, suggesting that the model generalizes well to other 
geographic regions, collected using different LiDAR sensors. Further, a higher precision was 
obtained for the KY1 and KY2 test sites than the Val site, which was mapped using the same LiDAR 
sensor as the data used to develop the model. The VA test site had the lowest precision, recall, and 
F1 scores of all the LiDAR-derived extents. This could potentially be a result of the higher average 
post spacing in comparison to the other collections, resulting in a disparate representation of the 
landscape. Another confounding factor is the characteristics of the VFFs in each area. For example, a 
visual inspection of the KY1 extent suggests a large number of VFFs that are large and have well 
defined terracing, which may contribute to comparatively high assessment metrics for this extent. 
The All LiDAR column represents the pooled results for all LiDAR-derived datasets. Collectively, a 
precision of 0.878, a recall of 0.858, and a F1 score of 0.868 was obtained when using LiDAR-derived 
data. For VFFs larger than 1 ha, recall increased for all the study sites, which indicates that the larger 
fills were generally easier to detect.  

Precision, recall, and F1 score were generally low when the model trained on the LiDAR-derived 
data was used to predict to the photogrammetrically-derived slopeshades in the SAMB1 and SAMB2 
extents. All values are lower than 0.6 due in part to the large number of FPs. A visual inspection of 
the classifications suggests that larger VFFs with well-defined terracing were generally mapped well; 
however, many VFs were missed, especially smaller features or those without well-defined terracing. 
Since the photogrammetric methods due not allow for canopy penetration, VFFs that were heavily 

Figure 7. (a) through (e) Example of false positives.

Table 4. Validation based on manual comparison of numbers of VFFs.

Study Area

Measure Val KY1 KY2 VA All LiDAR SAMB1 SAMB2

No. Mapped VFFs 182 540 149 143 1014 581 108
No. Mask R-CNN VFFs 200 546 143 149 1038 1735 321

TP 170 495 129 117 911 346 39
FP 30 51 14 32 127 1389 282
FN 13 59 37 42 151 239 69

Precision 0.850 0.907 0.902 0.785 0.878 0.199 0.121
Recall 0.929 0.894 0.777 0.736 0.858 0.591 0.361

F1-Score 0.888 0.9 0.835 0.76 0.868 0.278 0.181
No. Mask R-CNN VFFs (>1 ha) 123 463 129 111 826 527 77

TP (>1 ha) 118 418 105 89 730 315 35
FN (>1 ha) 5 48 2 25 80 217 42

Recall (>1 ha) 0.959 0.897 0.809 0.781 0.900 0.592 0.455

Precision, recall, and F1 score were generally low when the model trained on the LiDAR-derived
data was used to predict to the photogrammetrically-derived slopeshades in the SAMB1 and SAMB2
extents. All values are lower than 0.6 due in part to the large number of FPs. A visual inspection of
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the classifications suggests that larger VFFs with well-defined terracing were generally mapped well;
however, many VFs were missed, especially smaller features or those without well-defined terracing.
Since the photogrammetric methods due not allow for canopy penetration, VFFs that were heavily
vegetated with woody vegetation and shrubs generally did not show well defined terracing in the
slopeshades even if the pattern was present. Figure 8 provides examples of manually digitized VFFs as
represented in the photogrammetric data. Note that the characteristic terracing pattern is not evident
for all features. It would be interesting to assess models trained form the photogrammetric data to
assess the ability to map historic conditions from such data; however, that is outside the scope of this
study, as our goal here is to assess the transferability of the model trained on LiDAR-derived data to
disparate datasets.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 23 
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In summary, these results indicate that the model performed well using LiDAR-derived data;
however, photogrammetric data resulted in many FPs and generally poor performance based upon
precision and recall. The model was not able to adequately generalize to these very different datasets.
It should be noted that it is difficult to note whether or not the poor performance is a result of the
inability of the model to generalize to the disparate data or whether it is because the VFFs are not well
represented in the photogrammetric datasets.

Validation using area-based user’s and producer’s accuracy (Table 5) generally yielded lower
assessment values than the count-based evaluation (Table 4). For example, all producer’s and user’s
accuracies for the predictions using LiDAR-derived data were lower than the associated count-based
recall and precision values, respectively, except for KY2. The photogrammetric data resulted in user’s
and producer’s values between 0.043 and 0.388.

Using the fuzzy, center-weighted method, user’s and producer’s accuracies increased for all
LiDAR-derived results in comparison to the area-based method. This highlights that the center portions
of the VFFs were generally mapped well, and the boundaries, which are inherently indeterminate,
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had lower agreement. Notably, the aggregate All LiDAR measures indicate a fuzzy producer’s
accuracy of 0.860 and a fuzzy user’s accuracy of 0.903.

Table 5. Area- and fuzzy area-based error evaluation.

Study Area

Measure Val KY1 KY2 VA All LiDAR SAMB1 SAMB2

Producer’s Accuracy (Area) 0.787 0.797 0.831 0.735 0.793 0.129 0.263
User’s Accuracy (Area) 0.841 0.741 0.78 0.603 0.744 0.388 0.043

Fuzzy Producer’s Accuracy
(Center-Weighted) 0.851 0.866 0.899 0.802 0.860 0.137 0.046

Fuzzy User’s Accuracy
(Center -Weighted) 0.909 0.944 0.964 0.689 0.903 0.169 0.053

4. Discussion

4.1. Study Findings

Our results, as highlighted by our demonstration of mapping VFFs, suggest that Mask R-CNN
can be used to extract terrain features from digital elevation data if the features have a unique
topographic signature. Count-based precision, recall, and F1 scores were all above 0.73 across all
validation datasets when predicting to LiDAR data. When assessed based on area, producer’s and
user’s accuracies were generally lower than the associated recall and precision values. This highlights
the difficulty in mapping and assessing boundaries that are poorly defined or gradational in nature.
When center-weighting the areas to reduce the influence of boundaries, we saw increases in user’s
and producer’s accuracies, which suggests that the features were generally successfully mapped,
though the boundaries may be disparate. It is notable that this model generally had similar
performance when applied to new geographic regions, as long as LiDAR data were used, even if
the sensors and acquisition parameters differed. This provides strong evidence that the approach
is robust and can be applied to regional mapping. However, the model performed poorly when
applied to disparate, photogrammetrically-derived data, suggesting that generalization is limited to
comparable data. However, this may partially result from the poor representation of the VFFs in the
photogrammetric data, so it is difficult to differentiate the impact of the model and the input data
quality. Overall, this case study shows promise in applying instance segmentation to digital terrain
data, suggesting that CNN-based deep learning has potential for mapping other topographic classes,
for example geomorphological or soils mapping.

Since no prior studies have attempted to map VFFs using automated methods, we are not able to
relate our findings to any prior studies that have explored this specific task; however, our findings do
reinforce those of Tier et al. [6] and Behrens et al. [48], which note the value of CNNs for extracting
features from digital terrain data. More broadly, this study supports prior findings that CNNs in
general and Mask R-CNN specifically are of great value for mapping features with a unique spatial,
contextual, or textural signature and that may not be spectrally separable from other classes or
features [51,52,84,85].

4.2. Limitations and Recommendations

There were some notable limitations in this study. Although we analyzed multiple study sites
and datasets, this case study is specific to a single geomorphic feature. Therefore, it would be useful
to assess the application of instance segmentation techniques to map and differentiate additional
anthropogenic and natural terrain features. For example, these methods could be applied to mapping
glacial, fluvial, or eolian landforms. Additionally, there is a need to assess the mapping of landscape
change using multitemporal digital terrain data. This could not be pursued in this study due to
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the lack of pre-mining LiDAR data and our finding that photogrammetric data were not useful for
mapping VFFs.

Given the large training dataset requirements of deep learning, there is a need to develop
databases of training samples specific to terrain data and features, similar to those that already exist
for photographs, such as MS COCO [72] and ImageNet [86]. The remote sensing community should
consider investing in the development of large terrain- and image-based datasets to improve our ability
to apply deep learning to our data and perform more robust experiments. Trier et al. [6] made a similar
argument within the archeological research community. Transfer learning from models trained on
terrain data may prove more accurate than the application of weights learned from RGB photographs.

In this project, we specifically relied on slopeshades as a representation of the terrain surface.
There is a need to explore additional representations or combinations of representations as input to
DL techniques. With LiDAR, it is possible to obtain measures of the height of above ground features,
such as trees and buildings, by generating a normalized digital surface model (nDSM). It is also possible
to measure the intensity of the returned laser pulse [10]. There is a need to explore these additional
measures for mapping terrain features with DL. As noted by Stereńczak et al. [87], the interpolation
method used to generate a DTM from LiDAR point cloud data can have an impact on the resulting
representation of the terrain surface, so there is also a need to assess how well models perform and
transfer to DTMs generated using different interpolation methods.

Due to lengthy computational time and the large number of parameters that can be manipulated,
it was not possible to fully optimize the Mask R-CNN method for this task. Training the model for 24
epochs using a single GPU required 12 h; as a result, we could not extensively experiment with the
impact of parameter settings as would be possible with traditional, shallow machine learning methods
using grid searches combined with k-fold cross validation or bootstrapping. Instead, we had to rely on
a limited series of experiments using a small number of model parameters. This issue will need to
be addressed in order to support rigorous comparative studies of different algorithms and/or feature
spaces. Terrain feature extraction could be performed with semantic segmentation methods, such as
SegNet and UNet, so there is a need to compare different CNN methods for mapping terrain features.

It is common for landscape features to have boundaries that are gradational or inherently
indeterminate, which adds to the complexity of assessing the quality of the prediction. A review of the
remote sensing, computer vision, DL, and machine learning literature suggests a lack of research on
this topic. Our method is an extension of an approach proposed by Brandtberg et al. [83] and appears
to have potential for widespread use in applications such as mapping wetlands and soils, as well as
tree delineation from high resolution images. However, it would be useful to explore this approach
more thoroughly, as additional refinements may improve it. For example, measures of distance other
than a linear approach may be useful.

5. Conclusions

This exploration of mapping VFFs from digital terrain data suggests that the Mask R-CNN DL
instance segmentation method can be applied to map geomorphic and landscape features using
LiDAR-derived data. Further, our results suggest that models trained in one area can transfer well
to other areas if similar data are available, in this case LiDAR, providing strong evidence of the
robustness of the approach. However, the model performed poorly when applied to disparate,
photogrammetrically-derive data.

Here we focused on features that have distinctive topographic and geomorphic characteristics,
and we suggest that there is a need for further experimentation relating to mapping additional
terrain features of variable complexities. Future studies should explore the mapping of additional
anthropogenic, fluvial, glacial, and eolian terrain features and landforms. There is also a need to further
explore optimization methods for deep learning to foster more rigorous comparisons and develop
standardized techniques to assess gradational or uncertain boundaries. As CNN-based semantic and
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instance segmentation methods mature, there is a need to further explore these techniques for mapping
and extracting features from geospatial and remotely sensed data.

The recent developments in CNNs, semantic segmentation, and instance segmentation are
providing new opportunities to extract and map digital terrain features. Our hope is that this case
study will encourage additional research and data development relating to automated terrain mapping
using LiDAR and DL. Further, with the increasing availability of LiDAR data, such methods will likely
prove to be of great importance for studying our anthropogenic and natural landscapes and monitoring
landscape change.
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