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Abstract: The rapidly increasing use of unmanned aerial vehicles pose a significant challenge to
no-fly zone management. The vehicle state in flight should be available for the whole mission,
enabling an alert to be issued to the relevant users and entities at an appropriate time and location
before intrusion into a no-fly zone. In addition to spatial databases and other control mechanisms,
the navigation system used must have the required accuracy, integrity, continuity, and availability.
In this paper, the accuracy and integrity requirements, and the positioning system for no-fly zone
unmanned aerial vehicle management are specified. The proposed positioning system integrates
global navigation satellite systems (GNSS) and inertial navigation system (INS) in the measurement
domain. An integrity monitoring layer is incorporated for fault detection and exclusion as well
as real-time horizontal protection level computation functions. Experimental results show that
the algorithm proposed is capable of delivering accuracy and integrity requirements for unmanned
aerial vehicle (UAV) no-fly zone management.
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1. Introduction

There has been a rapid increase in unmanned aerial vehicles (UAVs) for commercial activities.
However, this has been accompanied by an increasing number of reported events or incidents, including
flights at or proximate to airports and military bases. Currently, traditional technologies such as radar
and signal jamming sensors are used to detect and neutralize, respectively, suspicious incoming UAVs.
While effective to a certain extent, these methods suffer from the limitations of low performance and
high cost. Therefore, in order to reliably manage UAVs, it is recommended that every UAV should have
an effective control and management system [1]. The system is required to alert registered UAV users
or operators when they are about to enter a no-fly zone or when to avoid certain areas, such as where
emergency responders are active. The registered users or operators could also be required to report
the trajectory to the authorities after completing the flight mission to determine any violations [2].
Therefore, a crucial part of the management system is that the navigation system used must have
the required navigation performance (RNP) to offer the right level of protection of restricted areas.

Advanced technologies, including global navigation satellite systems (GNSS), sensor networks,
and communication devices, are widely applied for UAV position determination. These technologies
and their outputs of vehicle state (position, velocity and timing) are used, albeit without an agreed
set of performance requirements to support aspects of no-fly zone management [3]. Hence, it is
paramount to firstly, specify the RNP and then the corresponding positioning and navigation system.
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In this process, the level of criticality of each mission or application must be considered, usually
categorized into: (1) high, for missions related to safety-of-life and military activities; (2) medium, for
commercial/liability critical missions (e.g., UAVs for delivery applications); and (3) low, for non-mission
critical applications (e.g., private UAVs for domestic use). Hence, to cater for different levels of
criticality, navigation systems must meet the targets for the RNP parameters of accuracy, integrity,
continuity, and availability [4].

Accuracy measures the nominal performance of a system in the absence of failure through
conformality between the estimated position to the true position at the 95th percentile. This means that
the probability of position errors that meet the accuracy requirements should be at least 95%. Integrity
is defined as a measure of the trust that can be placed on the correctness of the information provided
by a navigation system. Integrity, focuses on the “tail” of the error density with the goal of protection
against hazardously misleading information (HMI). Continuity defines the capability of the navigation
system to provide a navigation solution with the specified level of accuracy and integrity during
the intended period of operation (POP), given that the system was usable for the operation at the start.
Availability is the percentage of time during which the service of a navigation system is usable with
the required accuracy, integrity, and continuity requirements satisfied simultaneously [5]. UAV no-fly
zone management is mission critical, and therefore, accuracy and integrity are key parameters that are
addressed in this paper.

In terms of characteristics, GNSS measurements are have a long stability but are inherently
noisy, while the INS measurements have less noise but with short term stability. Hence, integrating
GNSS with INS, delivers improved performance by exploiting the complementary features of long
stability and low noise [6]. The integration of GNSS and INS not only avoids positioning outage
and/or inaccuracy caused by GNSS signal jamming and/or interference but also provides redundant
measurements for integrity monitoring. Although GNSS integration has been widely applied in UAV
state estimation [7], there has been very limited research on UAV no-fly zone management. In addition,
for the purpose of designing a navigation system that can be used onboard a UAV for no-fly zone
management, the service level requirements (and hence system requirements) of the corresponding
navigation system are still to be specified.

In order to bridge the current research gap on the concept and framework for GNSS-based
UAV no-fly zone management, this paper clarifies the definitions of service level and system level
requirements focusing on accuracy and integrity. In addition, an algorithm for GNSS/INS integration
incorporating integrity monitoring is developed to underpin the application for no-fly zone management.
In particular, fault detection and exclusion and horizontal protection level computation are incorporated
into the designed algorithm for integrity monitoring to enhance the robustness of the on-board
navigation system. The contributions are summarized below.

(1) Clarification of service and system requirements of accuracy and integrity in the context of
UAV no-fly zone based management;

(2) Proposal of an improved positioning system with an integrity monitoring algorithm for
an integrated GNSS/INS system in the measurement domain to support UAV no-fly zone management;

(3) Development of a novel hybrid fault detection and exclusion method. A dual-mode detector is
generated by combing historical and real-time innovation sequences to allow fast detection of both
step and ramp errors. The detection threshold is determined by imposing chi-square distribution
assumption of the constructed detector. In addition, a W-test statisticsbased algorithm is proposed to
map the test statistic errors to the measurement for the fault exclusion.

2. Related Work

The related literature is summarized in two parts: (1) UAV monitoring and air traffic management,
and (2) sensor fusion based positioning and integrity monitoring.
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2.1. UAV Monitoring and Air Traffic Management

UAV monitoring and management involves three main elements: pilots, UAVs, and airspace.
The operation of UAVs includes application of flight plan, real time monitoring of flight data, and
issuance of alert and countering of illegal flights. In recent years, several methods have been developed
to address the problem of monitoring and managing UAVs to ensure the safety of low altitude airspace.
Mason et al. [8] proposed a cloud-based web application that provides real-time flight monitoring and
management for UAVs. The system reads the flight data from UAV sensors and transfers them onto
maps, allowing users or operators to dynamically monitor aircraft on a user interface. The United
States National Aeronautics and Space Administration (NASA) has implemented a cloud-based
unmanned aircraft traffic management (UTM) system that provides a way for civilian pilots to reserve
airspace [2,9]. This system maintains a database of reserved and active flights, providing information
to pilots about adverse weather conditions and restricted airspace. The UTM project consists of
four technical capability levels, the ultimate goal of which is to enable the management of UAVs in
high-density urban areas with large-scale contingency mitigation. Damilano et al. [10] developed
a flight mission planning methodology based on the use of a ground control station to create and verify
a flight mission. Geng et al. [11] also presented a mission planning system that generates mission plans
for a group of UAVs to provide continuous surveillance over an urban area. Torens and Adolf [12]
proposed a method to validate a sampling-based mission planner for autonomous UAV.

The current UAV monitoring and management systems above do no account for the mission
criticality of no-fly zone management. In order to do this, research on service level and hence system
level requirements are required, which in turn drive the specification of the positioning and navigation
system architecture. This paper addresses these issues.

2.2. Sensor Fusion Based Positioning and Integrity Monitoring

To implement a an GNSS/INS navigation system, the first concern should be the coupling scheme
selection. There are three mainstream schemes: loosely coupled scheme, tightly coupled scheme, and
ultra-tightly coupled scheme [13]. It is worth noting that the loosely coupled scheme (also referred
to as position domain integration), although with the simplest structure, cannot provide redundant
measurements, and the ultra-tightly coupled scheme with the most complex structure cannot ensure
the mutual independence of measurements. Obviously, the tightly coupled scheme (also referred
to as position domain integration) with medium complexity is the best choice, since measurement
redundancy and inter-independence of measurements, which are key requirements for integrity
monitoring, can be obtained at the same time [14]. The carrier and code phase measurements are
two types of raw GNSS measurements. Positioning with code phase measurements can provide
meter-level accuracy with a higher reliability and lower computation cost than carrier phase and
therefore, when used together with INS measurements, has the potential to provide the required
accuracy and integrity for UAV no-fly zone management. Therefore, a tightly coupled GNSS/INS
integrated system incorporating an integrity monitor is selected for further development in this paper.

The existing integrity monitoring methods are reviewed and summarized as follows. In
the context of state-of-the-art integrity monitoring technique, there are two major categories: (1) receiver
autonomous integrity monitoring (RAIM) and its variations, and (2) special augmentation mechanisms.
The latter consists of the ground based augmentation system (GBAS), satellite based augmentation
system (SBAS), and aircraft based augmentation system (ABAS) [15]. In particular, RAIM is a satellite
navigation integrity monitoring scheme within the receiver for detecting significant measurement errors
arising from satellite malfunctions, propagation environment, and others by the use of information
including redundant measurements, geometrical configuration of satellites relative to the users, and
knowledge of nominal error behavior [14]. There are four basic RAIM methods: (1) range and position
comparison method [16]; (2) least squares residuals method [17]; (3) parity space method [18]; and
(4) maximum slope (MS) method [19]. Various methods are further developed based on these basic
methods. Brown [20] applied the improved MS method, denoted as slope-max-max method, by
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imposing a worst-case hypothetical two-failure requirement on RAIM to handle dual satellite failures.
As the traditional RAIM algorithms are designed only for horizontal position monitoring, advanced
RAIM (ARAIM) emerged along with the prospect of handling any number of simultaneous significant
measurement errors and providing vertical integrity monitoring [21]. In order to handle the limitations
caused by the Gaussian assumptions, Blanch et al. [22] characterized the range error distribution by
a mixture of Gaussian modes, which helps account for heavy tails without losing the advantage of
Gaussian distributions. Results show that the computed vertical protection levels are reduced by 50%
without degrading integrity. Panagiotakopoulos et al. [23] applied extreme value theory to the tails of
position errors, and the generalized extreme value (GEV) distribution is derived to capture residual
navigation errors. The results indicated that GEV is more powerful in characterizing the tails than
Gaussian models when “blunder” errors are present.

Besides satellite navigation, the integrity monitoring for GNSS-based integrated systems has
received increasing attention. Escher et al. [24] used the multiple solution separation (MSS) method
based fault detection and exclusion (FDE) for the integrated GNSS/INS systems. In particular, INS
aids in detecting GNSS faults, and the primary Kalman filter is used to estimate the state vector.
Sub-solutions offered by sub-filters are compared to their “parent” filter, and the differences are utilized
to form various test statistics with a threshold. Further developments resulted in the autonomous
integrity monitored extrapolation (AIME) method also used for integrated systems [25]. In AIME,
the historical Kalman filter innovation sequence is used to form the test statistic. It is shown that
the AIME method delivers higher availability over the MSS method, while the latter is much easier
to demonstrate analytically in terms of integrity performance [26]. Considering the various types of
failure modes in integrated GNSS/INS systems, Bhatti et al. [14] developed a rate detector algorithm
for the detection of slowly growing errors.

In summary, positioning accuracy and integrity are both critical for the reliability of navigation
sensors and therefore, to support the applications. In particular, for monitoring the integrity of
integrated GNSS/INS systems, the AIME method is more popular due to its fast detection of the slowly
growing errors with a high detection accuracy. Nevertheless, considering the application characteristics
of the UAV no-fly zone management, both ramp and step errors of the navigation system need to be
detected during the UAV operation. Therefore, in this paper, we design a tightly coupled sensor fusion
scheme with a novel integrity monitoring algorithm to enhance the reliability of the on-board GNSS/INS
integrated system. The proposed hybrid dual-mode detector-based integrity monitoring algorithm
improves the historical innovation sequence based detector in AIME by integrating the real-time
innovation sequence for the detection of step and ramp errors.

3. Concept and Requirement of No-Fly Zone Management

This section introduces the concept of no-fly zone management, and clarifies the different levels:
service, positioning and integrity for the location-based UAV no-fly zone management.

3.1. Concept of Location Based No-Fly Zone Management

A plan view of a no-fly zone is illustrated in Figure 1. The blue area is the no-fly zone created
through geo-fencing, a specific airspace restricted to specific activities such as military (e.g., bases),
commercial aviation (e.g., airports), and other secured protected areas. Therefore, unauthorized
entry of UAVs into such areas is prohibited. Considering the inevitability of navigation error and
some unforeseen circumstances, a buffer zone (the dashed area) is added to provide redundancy to
the passing air vehicles to protect the no-fly zone from being violated. There is a negative correlation
between the extent of the buffer zone and the positioning error, i.e. the smaller the position error is,
the smaller the extent of the buffer zone. In this case, we can relate the width of buffer zone with
the maximum horizontal position error, i.e., the horizontal alert limit, which is further analyzed in
Section 3.4. When the circle of uncertainty of the estimated UAV position whose radius represents
the horizontal alert limit intersects the buffer zone, an alarm is issued.
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The UAV navigation system alongside a supporting management module is designed for “friendly”
(those unintended to make trouble) UAV users or entities. The no-fly zone management module on
the management client can allow an administrator to add or delete temporary no-fly zones on a map.
The main functions of flight management systems include: application of flight plan, monitoring and
extraction of flight information, and countering unauthorized flights. In particular, prevention of UAV
violation of restricted zones is a key function of the system. If the UAV is on course to enter the buffer
zone unintentionally, the control software should correct the UAV trajectory away from the no-fly
zone and send an “intrusion alert” to the UAV operator and owner of the no-fly zone. In order to
support the violation detection, the related requirement must be clarified. Typical requirements of
the GNSS/INS integration based no-fly zone management system include the service level requirements
and the navigation or system level requirements. The service level requirements are mainly measured
by violation detection rate, false detection rate, and misdetection rate, while the navigation systems,
the underpinning technologies to support this user level requirement, include positioning level and
integrity level requirements.
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3.2. Requirements at Service Level

The UAV no-fly zone management system should only detect and collect the positioning data
for each UAV that crosses the boundary of the buffer zone. The detection technique is commonly
considered as belonging to the so-called geo-fencing techniques, in which the alarm function is referred
to as an intrusion alert. When the estimation of the location of a UAV and its intent proximate and in
the direction of the outer boundary of the buffer zone, the intrusion alert should be triggered so that
the user can maneuver the UAV away from the zone as soon as possible.

The performance of violation events detection could be illustrated in Table 1.
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Table 1. Violation detection outcomes.

System Detects a Violation Vvent

Yes No

Actual violation event
Yes Correct detection Missed detection

(True violation but not detected)
No False detection (False violation) Correct non-detection

In Table 1, there are two successful scenarios (correct detection and correct non-detection) and
two unsuccessful scenarios (missed detection and false detection). Missed detection has the potential
to result in significantly compromising the safety and security of the no-fly zone, with in some cases
those responsible not being punished. Although false detection does not pose a threat to the no-fly
zone, it may result in unfair punishment of the operators or wastage of resources by the owner of
the non-fly zone and therefore, risks eroding trust in the system. Thus, both missed detection and false
detection have a negative impact on the system, necessitating their probabilities of occurrence to be
low (typical values of 10−3 and 10−5 per hour, respectively).

3.3. Requirements at Positioning Level

Accuracy is the basic element in positioning techniques and is of great importance to violation
event detection for UAV no-fly zone management. Based on the RNP approach applied in our previous
work on UAV, 5 m (95%) accuracy was specified. In particular, the spatial requirements for UAV landing
were considered, as a UAV could be hijacked for malicious purposes [27]. Therefore, considering
the importance of UAV no-fly zone management and the relationship to other applications, such as
that discussed above, this paper adopts 5 m at the 95th percentile for the accuracy requirement, which
means that the probability of position errors larger than 5 m should be at most 5%.

3.4. Requirements at Integrity Level

Navigation system integrity monitoring is critical to no-fly zone management, as it is the parameter
most directly related to mission (e.g., safety) criticality. The definition of related indicators for integrity,
including horizontal alert limit (HAL), target integrity risk (TIR), and horizontal protection level (HPL),
are described as follows.

• Horizontal alert limit (HAL): this is the maximum horizontal position error (HPE) that must not
be exceeded without issuing an alert to the user. A horizontal position failure (HPF) occurs when
the HPE exceeds the HAL.

• Target integrity risk (TIR): this is calculated by multiplying the probability of position failure PPF

and the probability of missed detection PMD in Equation (1). TIR is typically very low (e.g., 1E−7)
for mission critical (e.g., safety of life) applications.

TIR = PPF·PMD (1)

• Horizontal protection level (HPL): the threshold value of the HPE that satisfies the TIR. Thus,
HPL should bound the position error in line with the TIR. The probabilistic relationship is
expressed as:

P(HPE ≥ HPL) = TIR (2)

The HPL should be computed in real time to examine the availability of integrity algorithm and to
provide a position-domain check if the final solutions could be used for navigation. Only the horizontal
condition is considered because it is enough for the intrusion detection of the no-fly zone management.
An integrity alert is triggered when the HPL exceeds HAL, indicating the unavailability of the integrity
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monitoring of the system. When the integrity alert is issued, the user should also give a resolution
order to the UAV if the UAV location is around the no-fly zone.

When determining the target integrity risk, we follow the assumption made in traditional
RAIM on the basis of a nominal eight-satellite-in-view situation: the position failure rate is chosen
as 10−4 per hour, and the missed detection rate is chosen as 10−3 per hour. Hence, TIR will be
10−7 per hour. Thus, we have the worst-case violation rate for UAV no-fly zone management:
10−7

× 24× 365 = 0.000876 per year, which is fairly tolerable.
The required HAL is correlated with the required horizontal accuracy and HPE distribution.

The required accuracy, 5 m as we determined, is specified at 95th percentile. When the HPE goes
beyond 5 m but still within the HAL, the system is degrading but still available. Once the HPE exceeds
the HAL, the maximum allowable value, the system exhibits loss of integrity. Given that the empirical
distribution usually tends to have much heavier tails than Gaussian, we specify the value of HAL as
50 m. The specification of HAL seems to be generous on account that: (1) we are more pessimistic in
the “tails” of error distribution; (2) the overbounding value, i.e., HPL, should be between HPE and
HAL, thus the HAL should not be too tight to ensure the basic availability of the system.

The determination of HAL can be an important reference when we designate the buffer zone
(see Figure 2), while the navigation system integrity is available, i.e., HPL ≤ HAL, the circle with
the estimated UAV position at the center and the radius of HAL should be outside of the buffer zone.
Once the circle overlaps the buffer zone, a risky event happens, and an intrusion alert must be issued
at once. We can conclude that the minimum width of buffer zone should be the value of HAL in case of
intrusion into a no-fly zone.

Remote Sens. 2020, 12, 524 7 of 22 

of the integrity monitoring of the system. When the integrity alert is issued, the user should also give 
a resolution order to the UAV if the UAV location is around the no-fly zone. 

When determining the target integrity risk, we follow the assumption made in traditional RAIM 
on the basis of a nominal eight-satellite-in-view situation: the position failure rate is chosen as 10−4 
per hour, and the missed detection rate is chosen as 10−3 per hour. Hence, 𝑇𝐼𝑅 will be 10−7 per hour. 
Thus, we have the worst-case violation rate for UAV no-fly zone management: 10ି଻ × 24 × 365 =0.000876 per year, which is fairly tolerable. 

The required 𝐻𝐴𝐿 is correlated with the required horizontal accuracy and 𝐻𝑃𝐸 distribution. The 
required accuracy, 5 m as we determined, is specified at 95th percentile. When the 𝐻𝑃𝐸 goes beyond 
5 m but still within the 𝐻𝐴𝐿 , the system is degrading but still available. Once the 𝐻𝑃𝐸 exceeds the 𝐻𝐴𝐿  , the maximum allowable value, the system exhibits loss of integrity. Given that the empirical 
distribution usually tends to have much heavier tails than Gaussian, we specify the value of 𝐻𝐴𝐿 as 
50 m. The specification of 𝐻𝐴𝐿 seems to be generous on account that: (1) we are more pessimistic in 
the “tails” of error distribution; (2) the overbounding value, i.e., 𝐻𝑃𝐿  , should be between 𝐻𝑃𝐸 and 𝐻𝐴𝐿  , thus the 𝐻𝐴𝐿 should not be too tight to ensure the basic availability of the system. 

The determination of 𝐻𝐴𝐿 can be an important reference when we designate the buffer zone (see 
Figure 2), while the navigation system integrity is available, i.e., 𝐻𝑃𝐿 ൑ 𝐻𝐴𝐿  , the circle with the 
estimated UAV position at the center and the radius of 𝐻𝐴𝐿 should be outside of the buffer zone. 
Once the circle overlaps the buffer zone, a risky event happens, and an intrusion alert must be issued 
at once. We can conclude that the minimum width of buffer zone should be the value of 𝐻𝐴𝐿 in case 
of intrusion into a no-fly zone. 

 
Figure 2. Relationship between the width of buffer zone and horizontal alert limit. 

4. Integrated Navigation with Integrity Monitoring for the UAV No-Fly Zone Management 

4.1. System Framework 

A flow chart of the designed integrated navigation system with integrity monitoring is depicted 
in Figure 3. The positioning algorithm is realized by fusing the GNSS code phase/Doppler 
measurements and INS specific force/angular rate measurements. The algorithm starts from the 
availability check by calculating 𝐻𝑃𝐿  , which is compared with 𝐻𝐴𝐿  . The computation of 𝐻𝑃𝐿 uses 
information, including satellite geometry, measurement distribution assumption etc. to determine if 
the integrity monitoring function is available. If 𝐻𝑃𝐿 is larger than 𝐻𝐴𝐿  , the integrity is considered 
as unavailable with an integrity alert issued. Otherwise, the conditions suffice to perform fault 
detection. Dual detectors were constructed based on the innovation sequence generated in the 
Kalman filter for step and ramp errors detection, respectively. If the value of the detector is larger 
than the predefined threshold, then fault exclusion is executed. After exclusion, 𝐻𝑃𝐿 is re-calculated 

Figure 2. Relationship between the width of buffer zone and horizontal alert limit.

4. Integrated Navigation with Integrity Monitoring for the UAV No-Fly Zone Management

4.1. System Framework

A flow chart of the designed integrated navigation system with integrity monitoring is depicted in
Figure 3. The positioning algorithm is realized by fusing the GNSS code phase/Doppler measurements
and INS specific force/angular rate measurements. The algorithm starts from the availability check by
calculating HPL, which is compared with HAL. The computation of HPL uses information, including
satellite geometry, measurement distribution assumption etc. to determine if the integrity monitoring
function is available. If HPL is larger than HAL, the integrity is considered as unavailable with
an integrity alert issued. Otherwise, the conditions suffice to perform fault detection. Dual detectors
were constructed based on the innovation sequence generated in the Kalman filter for step and ramp
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errors detection, respectively. If the value of the detector is larger than the predefined threshold,
then fault exclusion is executed. After exclusion, HPL is re-calculated and compared with HAL
again. The navigation solutions can be considered as trustable when computed HPL is equal or
smaller than HAL. After FDE, the system outputs the navigation solutions and the process repeated at
the next epoch. The real-time estimated UAV results with integrity are used to support the UAV no-fly
zone management.
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4.2. Tightly Coupled GNSS/INS Integration

In this section, an Extended Kalman Filter (EKF)-based, tightly coupled GNSS/INS data fusion is
designed to output the KF innovation, the basis for the integrity monitoring. The steps are as follows.

The defined state vector for the EKF is:

X =
[
δrECEF

3×1 δvECEF
3×1 φ3×1 bg3×1 ba3×1 ∇g3×1 ∇a3×1 tb δtb

]T
(3)

where X is composed of INS position error vector expressed in the Earth Centered Earth Fixed (ECEF)
coordinates δrECEF

3×1 ; INS velocity error vector expressed in the ECEF coordinates δvECEF
3×1 ; INS attitude

error vector φ3×1 (roll, yaw, and pitch error separately); gyroscope three-axis bias vector bg3×1 and
scale factor vector ∇g3×1; accelerometer three-axis bias vector ba3×1 and scale factor vector ∇a3×1; GNSS
receiver clock bias tb and GNSS receiver clock drift δtb.

The UAV system model is then formed as a first-order state equation in (4):

.
X = FX + Gw (4)

where
.

X is the first derivative of the state vector X, F is the dynamic transition matrix, G is the noise
driven matrix, and w is the system noise.
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The measurement model is given by:

Z = HX + n (5)

where Z is the measurements, H is the measurement mapping matrix, and n represents the measurement
noise. In this paper, if the number of visible satellites is m, the pseudo-range error and the Doppler
measurement error are used to form measurement vector Z as:

Z =



ρINS,1 − ρGNSS,1
...

ρINS,m − ρGNSS,m
fINS,1 − fGNSS,1

...
fINS,m − fGNSS,m


2m×1

(6)

where ρINS and fINS denote INS derived pseudo-range and Doppler measurements respectively. ρGNSS
and fGNSS refer to pseudo-range and Doppler measurements decoded from GNSS observation data,
respectively. Systematic error (tropospheric, ionospheric, clock related error, etc.) corrections were
applied in advance to ρGNSS.

After discretization of (4) and (5), the discrete form of Kalman filtering procedure can be split into
two stages as follows:

Prediction stage:
X̂k,k−1 = Φk,k−1X̂k−1 (7)

Pk,k−1 = Φk,k−1Pk−1Φk,k−1
T + Qk−1 (8)

Update stage:

Kk = Pk,k−1Hk
T
(
HkPk,k−1Hk

T + Rk
)−1

(9)

Pk = (I −KkHk)Pk,k−1 (10)

X̂k = X̂k,k−1 + Kk
(
Zk −HkX̂k,k−1

)
(11)

where,
X̂k: system state vector estimates at time epoch k
Φk: system transition matrix at time epoch k
Pk: error covariance matrix at time epoch k
Qk: system noise covariance matrix at time epoch k
Rk: measurement noise covariance matrix at time epoch k
Hk: measurement matrix at time epoch k
Kk: Kalman gain matrix at time epoch k
�k,k−1: matrix/vector � propagation from time epoch k− 1 to k

4.3. Integrity Monitoring Algorithm

The process of integrity monitoring includes fault detection, exclusion, and real-time HPL
computation. The steps for the proposed integrity monitoring algorithm are as follows.

1. Dual-mode detector determination

A dual-mode detector is generated based on the EKF innovation and its covariance matrix. The first
mode of the detector is formed using the real-time measurements to detect step errors. The second
mode of the detector is generated by using both historical and current measurements. In particular,
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the averaging mechanism with windowing size of 10 (from experience) is applied in the second mode
of the detector for fast detection of ramp errors.

The innovation sequence rk in the Kalman filter is generated for fault detection and system state
monitoring:

rk = Zk −HkX̂k (12)

rk exhibits a white Gaussian sequence of mean zero and covariance Vk where Vk = HkPk,k−1Hk
T +Rk [28].

The first mode of detector D1 is expressed as:

D1 =
(
rT

k

)(
V−1

k

)
(rk) (13)

The innovation sequence accumulated by a sliding window can be effective for the detection of
ramp errors. The innovation generated during the extrapolation process is expressed as:

rk−T+i = zk−T+i −Hk−T+iX̂k−T+i (14)

where T is the length of the sliding window, and i ∈ [0, T]. Considering the changeable satellite state
in the current sliding window, we may shorten the size of the sliding window during the process
(e.g., for the cases when the number of satellites decreases/increases or the visible satellites change). In
these cases, the size of the sliding window is changed to i−1 once the changes of the satellite state are
detected at the i th epoch.

Hence, the second mode of the detector D2 is given as:

D2 =
(
rT

avg

)(
V−1

avg

)(
ravg

)
(15)

where,

ravg = (V−1
avg)

−1
m∑

i=1

V−1
k−irk−i; V−1

avg =
m∑

i−1

V−1
k−i (16)

The test statistic exhibits central chi-square distribution for fault-free cases and non-central
chi-square distributions for faulty conditions [25].

2. Detection threshold

The detection threshold TD is also determined based on the chi-square distribution and is selected
based on the false alert rate PFA, whose value is related to different phases of flight. The in-between
relationship is given by:

PFA =

∫
∞

TD
χ2(x, n)dx (17)

where χ2(x, n) denotes the probability density of the chi-square distribution, and n is the degrees of
freedom. The detection threshold can thereby be calculated accounting for the maximum allowable
PFA of 10−5/hr and the number of satellites-in-view (see Table 2).

Table 2. Values of detection threshold for different number of satellites view.

Number of Satellites-in-View 1 2 3 4 5 6 7 8

TD 19.51 23.03 25.90 28.47 30.86 33.11 35.26 37.45

3. Fault exclusion

Following fault detection, fault exclusion is proposed based on the w-test. Test statistic errors can
be mapped to the measurement for the fault exclusion based on the w-test as follows [29].



Remote Sens. 2020, 12, 524 11 of 22

Integrating the predicted state X̂k,k−1 with the measurement vector Zk, the extended measurement
model is expressed as:

lk = AkXk + vk (18)

where lk =
[

Zk
X̂k,k−1

]
; vk =

 vZk

vX̂k,k−1

; Ak =

[
Hk
I

]
.

The error covariance matrix of the extended measurement vector lk is:

Clk =

[
Rk 0
0 Pk,k−1

]
(19)

The optimal estimates for the error covariance matrix of the predicted system error states X̂k,k−1 is:

QX̂k,k−1
=

(
AT

k C−1
lk

Ak
)−1

(20)

The cofactor matrix of the filtering residuals is:

Qvk = Clk −AkQX̂k,k−1
AT

k (21)

The test statistics for fault exclusion is:

wi =

∣∣∣∣∣∣∣∣∣
eT

i Clk v̂√
eT

i Clk Qv̂Clk ei

∣∣∣∣∣∣∣∣∣ (22)

where,
vZk= residual vector of measurement vector Zk
vX̂k,k−1

= residual vector of predicted system state vector
I = identity matrix
ei = a unit vector with its i th component is 1 and other components are 0.
The measurement with the largest value wi is selected as the candidate fault and is excluded.

4. Horizontal protection level computation

Protection level computation is performed twice for integrity availability check and dependability
check of the final navigation solutions in the position domain, see Figure 3. The computation of HPL is
the combination of two limits [26]:

HPL1 is given by 5.33 σ where σ is determined from the horizontal position error covariance
matrix, and 5.33 is chosen to reflect the missed detection rate PMD of 10−3/hr.

The determination of HPL2 is similar to the traditional maximum-slope method based RAIM
given by:

Slopei =
dRi
dSi

(23)

where,

dRi =

√
(dxi1)

2 + (dxi2)
2; dxi = Kkbi; dSi = D−

1
2 bi (24)

dRi is the horizontal position error due to measurement i
bi is the bias in measurement i
dSi is the transformed residual formed by the introduction of range bias error bi
dxi1 and dxi2 are the latitude and longitude error states in the state vector respectively
D is the diagonal matrix of the eigenvalues of the covariance matrix for the innovation
HPL2 is calculated by:

HPL2 = max(Slopei)Pbias (25)
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where Pbias is the square-root of the non-centrality parameter of the chi-square distribution that would
make the probability of missed detection rate PMD equal to 10−3/hr.

Then, we can obtain HPL by:

HPL =

√
(HPL1)

2 + (HPL2)
2 (26)

5. Field Test and Results Analysis

5.1. Data Collection and Sensitivity Analysis

In order to validate the proposed positioning and integrity algorithm of the on-board GNSS/INS
integrated system for the no-fly zone based UAV management, a field test was carried out in Nantou
City, Taiwan. The UAV flight route is shown in Figure 4b. The UAV used in the test is AXH-E230
from AVIX Technology. The real-time three-axis yaw rates and accelerations were collected from
gyroscopes and accelerometers of the onboard MEMS INS, STIM-300 from Sensonor, and the raw
pseudorange and velocity measurements were collected from a dual-frequency GNSS receiver, Trimble
BD 982 with a sampling rate of 10 Hz. The experimental setup is shown in Figure 4a. In particular,
the reference trajectory used in the experiment was obtained from close range photogrammetry
providing centimeter-level positioning accuracy using the on-board VLP-16 Velodyne Lidar. With
the collected data, the designed algorithm was tested in a real-time replay mode.
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Figure 4. (a) Experimental setup; (b) unmanned aerial vehicle (UAV) flight trajectory.

The two defined fault scenarios were added to the real trajectory: (1) step errors in scenario 1 and
(2) ramp errors in scenario 2. The details for the two scenarios are described in Table 3. A sensitivity
analysis was carried out to evaluate the performance of the algorithm with different ranges and types
of error sources added to the trajectory. The eight visible satellites were SV10, SV12, SV15, SV20, SV21,
SV24, SV25, and SV32 during the flight. In Scenario 1, step errors ranging from 10 to 90 m were added
to the pseudorange measurements from SV12 at an interval of 20 m. The performance statistics of
the detector is shown in Figure 5, and the time to detection of the algorithm is shown in Table 4. From
the results, the larger the value of the errors in the pseudorange measurement, the easier it is to detect
the fault. It is worth noting that the time to detection with 30 to 90 m step faults added is 0.1 s, while
it is 1.6 s for a 10 m step error. This indicates that, in the detection of 10 m step error, the detection
mode 2, i.e., historical innovation sequence based detection, is triggered by our algorithm. Figure 6
illustrates that SV12 with a 10 m step error is effectively identified and excluded.
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Table 3. The defined scenarios.

Scenarios Fault Start
Time (s)

Fault End
Time (s) Error Types Error Sources

Scenario 1 200 300 Step error 10~90 m range error added to SV12
with an interval of 20 m

Scenario 2 500 600 Ramp error
0.1~0.5 m/s clock drift equivalent
range error added to SV10 with

an interval of 0.1 m/s

Table 4. The detection time of the step errors with error ranges from 10–90 m added at an interval of
20 m in SV12.

Error Source Error Detected Time (s)

10 m 1.6 s
30 m 0.1 s
50 m 0.1 s
70 m 0.1 s
90 m 0.1 s
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Since the difficulty of detection increases when the magnitude of error becomes smaller,
the hazardousness of small and undetectable faults must be considered. The sensitivity analysis results
show that the dual-mode detector is no longer sensitive when a 3 m step error is added, see Figure 7.
The 3D positioning errors with the 3 m step error added to the pseudorange measurements are shown
in Figure 8. It can be seen that the positioning accuracy is not affected and therefore, meets the accuracy
requirement. Hence, for some non-detected errors, the final positioning accuracy was not affected
with the error included in the calculation; therefore, it is tolerable for the no-fly zone based UAV
management. The analysis results show the effectiveness of the proposed dual-mode detector with fast
detection and exclusion ability to support the UAV management application.
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In scenario 2, with the 0.1~0.5 m/s clock drift equivalent range error added to SV10 at an interval
of 0.1 m/s, the performance statistics of the detector is shown in Figure 9, and the detection time
performance of the dual-mode detector for the ramp error detection is shown in Table 5. It is shown
that the errors can be detected by the designed algorithm, and the detection time for the ramp errors
varies with the value of the error sources. The larger errors are detected earlier, e.g., the detection time
is 11.1 s for the 0.5 m/s errors, while it is 60.3 s for the 0.1 m/s errors. The 0.2 m/s ramp error added to
SV 10 during 500 s–600 s is effectively identified and excluded (see Figure 10). However, although
the 0.1 m/s ramp error could be detected within 60.3 s, it is not be excluded by our algorithm, see
Figure 11. This implies that, with the 0.1 m/s ramp error added, the intercorrelation between the w-test
statistics increased and thus invalidated the fault exclusion ability of W-test statistics.
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Table 5. The detection time of the ramp errors with the 0.1~0.5 m/s clock drift equivalent range error
added at an interval of 0.1 m/s in SV10.

Error Source Error Detected Time (s)

0.1 m/s 60.3 s
0.2 m/s 31.5 s
0.3 m/s 21.8 s
0.4 m/s 15.9 s
0.5 m/s 11.1 s
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5.2. Results Analysis of the Positioning with Integrity Monitoring

From the results of the sensitivity analysis, we combined two scenarios to design a typical test
with both type of errors, in which a step error of 90 m was added to SV32 during 200–300 s, and
a ramp error of 0.5 m/s was added to SV20 during 500–600 s. The reaction of the dual-mode detector to
the errors is depicted in Figure 13. The step error added at 200 s was detected at 200.1 s, and the ramp
error added at 500 s was detected at 511.1 s. Positioning results performance before and after FDE are
illustrated in Figure 14. This validates that our algorithm is efficient in detecting and excluding step
and ramp errors and therefore, provides the required accuracy for the UAV no-fly zone management.
The corresponding positioning accuracy after FDE is analyzed in Table 6. The 95% percentile accuracies
with FDE for the horizontal and the vertical are 2.943 m and 4.845 m, respectively, which are within 5
m and 10 m requirements for the UAV no-fly zone management. Therefore, although failure occurred,
the navigation system could still meet the accuracy requirements after applying FDE.

The integrity monitoring performance was further analyzed by the Stanford diagram (Figure 15),
in which the relationship between HPE and HPL is briefly presented. As shown, during the whole flight
mission, the UAV navigation system was in nominal operation with neither integrity risk arising nor
integrity hole appearing. The calculated real-time HPL s, overbound HPE s. Additionally, the maximum
HPL is still within 35 m, within a predefined HAL of 50 m (Section 3.4). Hence, the integrity requirements
determined in Section 3.4 are satisfied. The results indicate that the algorithm proposed is capable of
delivering the accuracy and the integrity requirements for UAV no-fly zone management.Remote Sens. 2020, 12, 524 19 of 22 
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Table 6. Positioning accuracy analysis after FDE.

Direction East North Horizontal Vertical

RMSE (m) 0.557 2.007 2.083 2.503
95% percentile (m) 1.148 2.879 2.943 4.845

MAX (m) 1.468 3.404 3.498 8.857

RMSE: root mean square error.

6. Conclusions

In this paper, UAV no-fly zone management is addressed from the perspective of the relationship
between the service level requirements and the required navigation performance (RNP) parameters
of accuracy, integrity, continuity, and availability, with particular attention paid to the first two
parameters. Based on accuracy and integrity requirements, a tightly coupled GNSS/INS integration
scheme was developed for the UAV no-fly zone management. The navigation system incorporates
an integrity monitoring algorithm failure detection and exclusion and real-time horizontal protection
level computation. Simulation and field test results show that the proposed algorithm is capable of
delivering the accuracy and integrity requirements for UAV no-fly zone management.

In future work, further improvements to positioning and navigation performance, including
the introduction of other positioning methods such as wireless local area networks (WLAN), and
aiding through map matching will be investigated for UAV no-fly zone management.
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