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Abstract: Unmanned aerial vehicles using light detection and ranging (UAV LiDAR) with high
spatial resolution have shown great potential in forest applications because they can capture vertical
structures of forests. Individual tree segmentation is the foundation of many forest research works
and applications. The tradition fixed bandwidth mean shift has been applied to individual tree
segmentation and proved to be robust in tree segmentation. However, the fixed bandwidth-based
segmentation methods are not suitable for various crown sizes, resulting in omission or commission
errors. Therefore, to increase tree-segmentation accuracy, we propose a self-adaptive bandwidth
estimation method to estimate the optimal kernel bandwidth automatically without any prior
knowledge of crown size. First, from the global maximum point, we divide the three-dimensional (3D)
space into a set of angular sectors, for each of which a canopy surface is simulated and the potential
tree crown boundaries are identified to estimate average crown width as the kernel bandwidth.
Afterwards, we use a mean shift with the automatically estimated kernel bandwidth to extract
individual tree points. The method is iteratively implemented within a given area until all trees are
segmented. The proposed method was tested on the 7 plots acquired by a Velodyne 16E LiDAR system,
including 3 simple plots and 4 complex plots, and 95% and 80% of trees were correctly segmented,
respectively. Comparative experiments show that our method contributes to the improvement of
both segmentation accuracy and computational efficiency.

Keywords: tree segmentation; mean shift; self-adaptive kernel bandwidth; UAV LiDAR

1. Introduction

Conventionally, forest inventory has been implemented by field survey which is time-consuming
and labor-intensive [1,2]. Moreover, because forest attribute information is affected by topography and
the environment, the parameters that can be measured manually are very limited [3]. Over the poast
three decades, airborne light detection and ranging (LiDAR) technology has been increasingly used to
estimate forest structural attributes [4–6]. Airborne LiDAR data provide detailed three-dimensional
(3D) information of vertical forest structures to estimate forestry parameters at both individual and
stand tree levels [7]. With the technology development, compared to airborne LiDAR, unmanned

Remote Sens. 2020, 12, 515; doi:10.3390/rs12030515 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-5195-0477
http://dx.doi.org/10.3390/rs12030515
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/12/3/515?type=check_update&version=3


Remote Sens. 2020, 12, 515 2 of 14

aerial vehicles (UAV LiDAR) have gained a reputation in forest inventory surveying because of their
increased data resolution, lower costs, flight flexibility, and simple operation [6,8–10].

Forest inventory requires accurate individual tree structures to directly obtain forest structural
attributes (i.e., crown width and tree height) or estimate height-related attributes by establishing
regression models (such as diameter at breast height (DBH), volume, and aboveground biomass
(AGB)) [11–14]. Thus, the segmentation of individual trees becomes the key step to highly accurate
forestry parameter estimation. However, the existing problems of individual tree segmentation using
LiDAR data are mainly caused by: (1) adjacent, overlapped tree crowns, and various tree sizes, which
result in serious omission errors in multi-layered forest stands [15]; (2) irregular tree shapes (such as a
branch of a tree extending outward widely and resembling a small tree), which lead to commission
errors [7]; (3) suppressed or small trees located below tall trees, which are difficult detected because
LiDAR systems are less likely to penetrate the dense forest canopy and have less information of
suppressed trees.

To solve the aforementioned issues, many methods have been developed. Some studies make use
of height variation of canopy height model (CHM) to find treetops by local maxima (LM) filtering [16]
or moving variable window [17,18]. Then, tree crowns are mainly delineated by image-processing
algorithms designed for edge detection and feature extraction, such as region growing [19], watershed
analysis [17,20], spatial wavelet analysis [21], and template matching [22,23]. The CHM-based tree
detection algorithms are fast and efficient but easy to produce omission and commission errors [24].
The tree detection accuracy is sensitive to the resolution of CHM and the noise caused by irregular
tree shapes and overlapped trees. In addition, because of a variety of canopy sizes, it is difficult to
select the optimal resolution and smoothing factor suitable for the whole scene [7,25,26]. To improve
the detection rate, the vertical and horizontal structures of point clouds are analyzed. Liu et al. [7]
integrated a multiscale CHM-based algorithm and a point-based vertical profile analysis algorithm to
improve individual tree segmentation accuracy. Paris et al. [24] improved the segmentation accuracies
of dominant trees by combining CHM data and horizontal profiles of point clouds and extracted
subdominant trees by analyzing vertical profiles. By using a marker-controlled watershed segmentation
method, Harikumar et al. [27] first segmented a point cloud into a set of segments, each of which was
projected onto a novel 3D space to separate subdominant from dominant trees.

Because of the increased spatial resolution of UAV LiDAR data, some studies, to improve
segmentation accuracy, segmented individual trees directly from point clouds. The existing point-based
clustering methods (such as region growing [17], k-means clustering [26], normalized cut [28], and mean
shift [29,30]) have been widely used for individual tree segmentation in terms of 3D data characteristics,
geometric structures, and height variation of trees [31–33]. Compared with other clustering methods,
mean shift does not require seed points or number of clusters before clustering. It proves to be robust
to segment various kinds of trees [34,35]. Mean shift aims to move each data point to the densest area
within a certain neighborhood by iteratively performing shift operations based on a kernel density
function. The kernel function determines the weights of neighboring points for re-estimating the local
maximum. Eventually, the points will converge to the local maxima of density [29]. Ferraz et al. [30]
developed a fixed bandwidth mean shift method, in which a horizontal and a vertical kernel functions
were designed to shift data points to a denser and higher region until it converged to the treetop.
Ferraz et al. [36] further improved it by establishing a self-calibrated bandwidth model, which relates
tree heights to crown widths and depths by extracting easily recognized individual trees. The method
required complicated pre-processing and the established allometric model might not be suitable for all
tree species [29]. Hu et al. [29] proposed an adaptive mean shift-based clustering approach, in which
the key parameter—kernel size—was automatically changed to reduce over- and under-segmentations
according to the estimated crown diameters of distinct trees, and nearly 30% more suppressed trees
are identified compared to the fixed bandwidth-based methods. However, point-based methods
are generally highly computational when having been directly applied to the whole scene [7,33].
Hamraz et al. [35], to improve computational efficiency, generated vertical profiles of point clouds in
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different directions within a local region, then detected crown boundary for each profile. This method
greatly improved computational efficiency and required no prior knowledge of the shapes and sizes of
tree crowns [35].

In summary, in mean shift methods, the kernel bandwidth is a major factor, which has a strong
impact on the segmentation accuracy and clustering speed. The fixed kernel bandwidth was widely
used in segmentation, but it cannot adapt to heterogeneous crown sizes, and thereby might result
in omission errors or commission errors. For example, if a small kernel bandwidth is applied to
large objects, commission errors will occur (that is, a single tree might be segmented into several
clusters); whereas if a large kernel bandwidth is applied to small objects, omission errors will greatly
appear (that is, more than two trees are clustered into one segment). Our previous research in [37]
used fixed bandwidth mean shift method to segment individual trees and reduced omission errors
by normalized Cut algorithm (NCut). The method improved tree segmentation accuracy and also
increased computational complexity.

Therefore, in this paper, to reduce omission and commission errors, we propose a self-adaptive
mean shift method, where an adaptive kernel bandwidth is used according to local tree structure
information for individual tree segmentation. Moreover, because mean shift methods are generally
highly computational when directly applied to LiDAR data, a 3D space division strategy is used to
improve tree segmentation efficiency. In addition, point density is another important factor affecting
individual tree detection, we also evaluate the effects of point density on individual tree detection.
The remainder of the paper is organized as follows: Section 2 details the proposed self-adaptive mean
shift segmentation method. Section 3 describes the study area and the test data including UAV LiDAR
data and field survey data, and then analyzes the segmentation results. Concluding remarks are given
in Section 4.

2. Methodology

In this paper, the proposed method segments individual trees by the following steps. Ground points
are separated from non-ground points, and then non-ground points are normalized for the data
pre-processing. Then, the optimal kernel bandwidth for mean shift is automatically estimated without
any prior knowledge of crown size to extract individual tree points. The proposed self-adaptive mean
shift method is iteratively implemented within a given area until all trees are segmented.

In the pre-processing process, because ground points affect segmentation results, we remove
them by a cloth simulation (CSF) algorithm [38]. Afterward, to reduce the influence of topography on
the following tree segmentation, we normalize non-ground points according to the produced digital
terrain model (DTM) interpolated by the filtered ground points. The details can be seen in [37].

2.1. Self-Adaptive Kernel Bandwidth Determination

The kernel bandwidth is a critical parameter of the mean shift method. In this study, it represents
the region where the local maximum exists, thereby we adaptively determine it according to the related
tree crown size. The kernel bandwidth is determined by the following steps.

1. 3D space division, which locates the global maximum point in a point cloud as the center point to
divide the point cloud into a set of angular sectors at multiple directions.

2. Crown surface generation, which generates a vertical profile for each sector and extracts LiDAR
canopy surface points to simulate a crown surface.

3. Kernel bandwidth determination, which, from the generated crown surface, a crown boundary is
delineated to automatically determine the kernel bandwidth according to the between-tree gap
and height variation.

The rest of this section details the delineation of the kernel bandwidth.
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2.1.1. 3D Space Division

We first locate the highest point in a point cloud as the center point, Xc = (xc, yc, zc), which is
defined as the apex of the highest tree. With the center point, Xc, we divide the 3D space into n
angular sectors within a given search radius R (R must be larger than the largest trees in the scene to be
processed) (see Figure 1). For each angular sector θj Є[2πj/n, 2π(j + 1)/n] (j = 0,1 . . . n-1), we search
for the points Xi = (xi, yi, zi) (i = 1, 2 . . . .n, n is the number of the points) belonging to. The set Xi
belonging to angular sector θj is defined as:

Xi = tan
(

yi − yc

xi − xc

)
∈ tan

[
θ j,θ j+1

]
(1)

Figure 1. An example of 8 angular sectors.

2.1.2. Crown Surface Simulation

For each angular sector (see Figure 2a), we generate a vertical profile of LiDAR points and
extract potential canopy surface points. We first calculate the distance Di (i = 1, 2 . . . .n), Di =√
(xi − xc)

2 + (yi − yc)
2 between Xc and Xi. Then, a vertical profile is generated in terms of coordinates

z and d (see Figure 2b). In this study, only LiDAR canopy surface points are kept to simulate the crown
surface. As seen in Figure 2c, in doz plane, points are divided into a set of grids with a given grid size
ε, each of which the maximum height is kept to simulate the crown surface.

Figure 2. (a) Points belong to sector θj; (b) a vertical profile; (c) light detection and ranging (LiDAR)
surface points.

2.1.3. Kernel Bandwidth Determination

After the crown surface simulation, the crown boundary can be delineated according to
between-tree gaps and height variations. In the canopy surface points, the local minimum points
always exist between adjacent tree crowns. Starting from Xc, only the first local minimum point is
remained for further analysis. The distance between center point Xc and the local minimum point is
identified as a crown radius. To smooth extended branches and reduce false local minimum points,
a Gaussian filtering is first applied to the simulated crown surface points. After estimating all crown
radii at multiple directions, the average crown radius is calculated as the kernel bandwidth.
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The determination of kernel bandwidth is completely based on the coordinate information of
LiDAR points without any prior knowledge. Moreover, the division of the 3D space decreases the
complexity of 3D forest structure and improves the computational efficiency.

2.2. Mean Shift-Based Individual Tree Segmentation

With the determined kernel bandwidth, the individual tree points are extracted by mean shift,
which gains its reputations for great performance in individual tree segmentation. In this study,
a horizontal and a vertical kernel functions (gs and gr) are designed to shift data points Xi to treetop Xc.
The offset vector is defined by:

mhs,hr(Xc) =

n∑
i=1

Xigs(||
xs

c−xs
i

hs ||
2)gr(||

xr
c−xr

i
hr ||

2)

n∑
i=1

gs(||
xs

c−xs
i

hs ||
2)gr(||

xr
c−xr

i
hr ||

2)

−Xc (2)

where the superscripts s and r refer to the horizontal and vertical directions, respectively. hs and hr

represent the horizontal and vertical bandwidths. gs is the horizontal kernel function that follows
Gaussian function:

gs(||
xs

c − xs
i

hs ||
2) =

exp(− 1
2 ||

xs
c−xs

i
hs ||

2) i f ||
xs

c−xs
i

hs || ≤ 1

0 otherwise
(3)

gr is specially-designed for assigning a larger weight to the highest voxel:

gr(||
xr

c − xr
i

hr ||
2) =

1− ||1− dist(xr
c, xr

i )||
2 i f mask(xr

c, xr
i ) = 1

0 otherwise
(4)

where mask (xc
r,xi

r) represents a mask of foreground object; dist(xc
r,xi

r) is the distance between Xi and
the boundary of the mask. They are defined by,

mask(xr
c, xr

i ) =

1 i f xr
c −

hr

4 ≤ xr
i ≤ xr

c +
hr

2

0 otherwise
(5)

dist(xr
c, xr

i ) =

min(||
(xr

c−
hr
4 )−xr

i
3hr
8

||, ||
(xr

c+
hr
2 )−xr

i
3hr
8

||) i f mask(xr
c, xr

i ) = 1

0 otherwise
(6)

More details can be found in literature [31].
After detecting and extracting the tallest tree points, the method will automatically search the

tallest point in the remaining points. The method was iteratively implemented within a given area
until all individual tree points were segmented, and eliminate clusters containing less than 50 points to
reduce interference from branches.

3. Experimental Results and Discussion

3.1. Datasets

The individual tree segmentation method was applied within the forest stands in Dongtai forest
farm, located in Yancheng City, Jiangsu, China. A field survey was conducted within 7 square plots
with two main tree species (Metasequoia in plots 1–3, and Poplar in plots 4–7), and each plot was
30 m × 30 m in size. The numbers of the reference trees for Plots 1~7 were 29, 54, 54, 18, 20, 21, and
42, respectively. Accordingly, their forest densities were 0.032, 0.060, 0.060, 0.020, 0.022, 0.023, and
0.047 trees/m2, respectively. Each reference tree was located by a backpack laser scanning system,
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and its DBH was manually measured using a diameter tape and recorded in July 2017. The full
specifications of the Backpack laser-scanning system are listed in Table 1.

Table 1. Specifications of the backpack laser scanning system.

Parameters Value

Weight 5.8 kg
Working time 2.5 h each battery

Laser scanning system Velodyne 16E
Measurement distance range 100 m

Vertical field angle −15 ~+15 degrees
Data accuracy <5 cm

The UAV LiDAR data were collected by a Velodyne 16E (VLP16) laser-scanner system placed
on a GV1300 multi-rotor UAV platform in July 2017. Overall, the LiDAR data have an average point
density of 40.57 points/m2. According to the complexity of forest structure, we divided 7 plots into
3 simple plots (Plots 1–3 with regular and coned shape, see Figure 3a) and 4 complex plots (Plots 4–7
with extended and irregular branches and varied tree size, see Figure 3b). The details of UAV LiDAR
system can be seen in [37].

Figure 3. Sample plots: (a) simple plot; (b) complex plot.

3.2. Individual Tree Segmentation

The proposed method was performed using matlab 2016a on an HP Z820 eight-core-16-thread
workstation. To evaluate the performance of the proposed individual tree segmentation method,
we tested it on the UAV LiDAR data. In this study, the highest point of the detected tree is located
as the tree, and we compared it with the reference tree locations in 7 plots. The LiDAR-derived
tree is paired with a closest reference tree. If the difference between the derived tree height and the
height of the reference tree is smaller than 0.5 m and more than 80% points are extracted according to
visual inspection, we consider that the tree is correctly segmented. The results were evaluated by the
following metrics: segmentation accuracy (DET = de/ref, de is the number of trees correctly detected
and ref is the number of reference trees), omission error (OM = om/ref, om is the number of undetected
trees), and commission error (COM = com/ref, com is the number of trees falsely detected).

3.2.1. Parameter Analysis

There are several parameters in our self-adaptive mean shift tree segmentation. The parameter
involved in the pre-processing can be found in the literature [37]. Our self-adaptive mean shift
individual tree segmentation method involves five parameters: hs, hr, R, n, and ε. Among the five
parameters, horizontal kernel bandwidth, hs influences the accuracy and efficiency of individual tree
segmentation. The value of hs was determined automatically according to tree structure. Vertical kernel
bandwidth, hr, controls the canopy depth to determine the presentence of treetops. According to
literature [30], hr was set to 5 m. Search radius, R controls a neighboring size to include the largest tree
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in the study area. According to our test data, R was set to 5 m. The number of angular sector, n controls
the details of a tree canopy in different directions. In each direction, the possible crown width was
analyzed along the vertical profiles of point clouds. ε, the grid size of the distance between point set Xi
and center point Xc, controls the details of a tree canopy surface.

Parameters n and ε play a significant role in the adaption of kernel bandwidths, leading to strongly
impacting on tree segmentation accuracy. Therefore, we designed two groups of experiments to
investigate the sensitivity of the proposed self-adaptive mean shift tree segmentation method to the
selection of the parameters n and ε.

In the first group, we held n = 8. To guarantee at least one LiDAR point per interval in terms of
point density, we set the maximum value of ε to 0.5 m and varied ε from 0.1 to 0.5 at intervals of 0.1.
The test results are presented in Table 2. As shown in Table 2, the DET values of the segmented trees
decrease as the grid size increases from 0.1 m to 0.5 m, correspondingly, the OM values increase from
0.13 to 0.28. Whereas, the COM values tend to be stable as parameter ε changes from 0.3 m to 0.5 m.
The reason behind this phenomenon might be that the tree details are gradually missing as the grid size
increases, leading to the increase of the OM value and finally the decrease of the overall segmentation
accuracies. As such, in our study, the best tree segmentations were obtained at interval ε = 0.2.

Table 2. Parameter sensitivity of grid size ε and number of angular sector n.

Parameter Value DET OM COM

ε

0.1 m 0.87 0.13 0.13
0.2 m 0.87 0.13 0.09
0.3 m 0.80 0.20 0.08
0.4 m 0.77 0.23 0.08
0.5 m 0.72 0.28 0.07

n

2 0.84 0.16 0.04
4 0.85 0.15 0.05
6 0.85 0.15 0.06
8 0.87 0.13 0.09
12 0.87 0.13 0.13

DET is the rate of trees correctly detected; OM is the rate of undetected trees, and COM is the rate of falsely
detected trees.

In the second group, we held ε = 0.2 m and varied n = 2, 4, 6, 8, and 12. As Table 2 shown, the‘DET
values increase and the omission errors decrease with the increase of divided 3D space sectors, which
means the smaller the angular sector, the more accurate the crown width estimates. When n = 12,
the DET value changes slightly and the commission error increases. The reason is that the more
extended branches might be included because of the smaller angular sector. In this paper, the n = 8
obtained the best tree segmentation performance.

3.2.2. Sensitivity Analysis of Point Density on Individual Tree Segmentation

To evaluate the effects of point densities on individual tree detection, we decimated original UAV
LiDAR data to lower density of 50% (20 points/m2), 25% (10 points/m2), and 10% (4 points/m2), using
BACL LiDAR Tools [39,40]. Table 3 shows the individual tree detection accuracy under different point
densities. The 100% point density achieved the highest individual tree detection accuracy, 0.87, and as
the point density decreased from 100% (40 points/m2) to 10% (4 points/m2), the accuracy decreased
from 0.87 to 0.32. Although the tree segmentation accuracy of our method decreased with a decrease
of point density, the UAV LiDAR data guarantee the satisfactory tree segmentation results due to its
high data resolution.
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Table 3. Individual tree detection accuracy under different point densities.

Density DET OM COM

100% (40 points/m2) 0.87 0.13 0.09
50% (20 points/m2) 0.72 0.28 0.07
25% (10 points/m2) 0.55 0.45 0.07
10% (4 points/m2) 0.32 0.68 0.05

DET is the rate of trees correctly detected; OM is the rate of undetected trees, and COM is the rate of falsely
detected trees.

3.2.3. Overall Performance

After parameter sensitivity analysis, we set hr = 5 m, R = 5 m, ε= 0.2 m, and n = 8. hs was automatically
determined. Figure 4a–f shows the visualized segmentation results of our method. Table 4 lists the tree
segmentation results for seven plots (three plots for Metasequoia with simple tree structure, and four
plots for Poplar with relatively complex tree structure). As seen in Table 4, for the simple plots, the DET,
OM, and COM values obtained 0.95, 0.05 and 0.08, respectively; while for the complex plots, the DET,
OM, and COM values achieved 0.80, 0.20, and 0.10, respectively. The segmentation accuracy of the
complex plots was much lower than that of the simple plots; 20% of trees were undetected in complex
plots. That was caused by the irregular tree structure of Poplar tree and the overlapped branches which
made the treetop not distinct. The clusters containing less than 50 points were removed to reduce
interference from branches, therefore, some small trees or branches were not included; 10% trees
were falsely detected. That could be explained by the extended branches of the object trees being
misclassified to neighboring trees. Due to the irregular tree structure and extended branches of complex
plots, some individual trees failed to be detected and some branches were misclassified, resulting in
the decrease of the segmentation accuracies. It was observed that most canopy shapes tend to be round
in this study, a round search radius was defined to determine the segmented trees.

Figure 4. Results of the self-adaptive mean shift tree segmentation for seven plots: (a) Plot 1, (b) Plot 2,
(c) Plot 3, (d) Plot 4, (e) Plot 5, (f) Plot 6, and (g) Plot 7.

Table 4. Individual tree segmentation results of the simple and complex plots using our self-adaptive
mean shift method.

Plots Number Ref DET OM COM

Simple plots Plot 1-3 154 0.95 0.05 0.08
Complex plots Plot 4-7 124 0.80 0.20 0.10

DET is the rate of trees correctly detected; OM is the rate of undetected trees, and COM is the rate of falsely
detected trees.
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3.3. Comparative Tests

To evaluate the effectiveness of the proposed individual tree segmentation method, we designed
a group of experiments and compared it with other three methods, including marker-controlled
watershed segmentation [17], fixed bandwidth mean shift [30], and our previous tree segmentation
method, Yan’s method [37]. The parameters used in those comparative methods are listed in Table 5.
The visualized results of all methods are shown in Figure 5, respectively. The average segmentation
results of all sample plots are listed in Table 6. The marker-controlled watershed segmentation method
achieved a better tree detection performance with the DET, OM, and COM values of 0.87, 0.13, and 0.13,
respectively. In Figure 5, the results of the marker-controlled watershed segmentation was performed
using LiDAR360 produced by Green Valley International (https://www.lidar360.com/archives/5135.
html), green dots and black circles represent tree locations and canopy radii derived from watershed
segmentation, respectively, and black crosses represent reference tree locations. The method performed
better in the sample plots because of the prominent treetops and the circular crown shape of Metasequoia,
which made the height variation of the raster surface model—CHM distinct. However, the crown
boundaries were not delineated correctly, especially in Plots 4–7 (sample plots of Poplar). This is because
the watershed segmentation algorithm considers only height variation of interpolated data, thereby
it is incapable of dealing with extended and irregular tree shapes. The fixed bandwidth mean shift
method, which uses a single bandwidth for a whole scene, achieved a worse segmentation accuracies
with the DET, OM, and COM values of 0.84, 0.16, and 0.11, respectively. Note that the fixed kernel
bandwidth method is incapable of dealing with the existence of various canopy sizes and overlapped
canopy, which results in obvious omission errors and further decreases the DET value. Although
Yan’s method was mainly based on the fixed bandwidth mean shift, the segmentation accuracy was
improved by using NCut, which gained its reputation for segmenting multiple overlapped objects.
Yan’s method achieved the DET, OM, and COM values of 0.90, 0.10, and 0.11, respectively, whose
segmentation performance was slightly better than our method (the DET, OM, and COM values of 0.87,
0.13, and 0.09, respectively). Our method lost some small branches or trees compared to Yan’s method
because we eliminated clusters containing less than 50 points to reduce interference from branches,
e.g., Figure 5(b3,b4). However, by contrast with Yan’s method, our proposed method improved the
segmentation accuracy by automatically adjusting the kernel bandwidth according to trees’ shape
and size.

Table 5. Parameters used in different methods.

Method Parameters Value

Marker-controlled watershed segmentation Spatial resolution of canopy height model 0.5 m

Fixed bandwidth mean shift
Search radius 2.0 m
Horizontal bandwidth 1.5 m
Vertical bandwidth 5.0 m

Yan’s in [37]

Voxel size 0.2 m
Height compression 4
Search radius 2.0 m
Horizontal bandwidth 1.5 m
Vertical bandwidth 5.0 m
Minimum distance between clusters 2.0 m
Profile size in x- and y- direction 0.5 m
Maximum horizontal distance 4.5 m

https://www.lidar360.com/archives/5135.html
https://www.lidar360.com/archives/5135.html
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Figure 5. Cont.
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Figure 5. Results of different tree segmentation methods for seven plots: (1) marker-controlled watershed
segmentation, (2) Fixed bandwidth mean shift, (3) Yan’s in [37], and (4) Self-adaptive bandwidth mean shift.

Table 6. Comparison of tree segmentation performance among different approaches.

Method DET OM COM

Self-adaptive bandwidth mean shift 0.87 0.13 0.09
Marker-controlled watershed segmentation 0.87 0.13 0.13
Fixed bandwidth mean shift 0.84 0.16 0.11
Yan’s in [37] 0.90 0.10 0.11

DET is the rate of trees correctly detected; OM is the rate of undetected trees, and COM is the rate of falsely
detected trees.

In computing performance, we compared the running time of the four methods within a sample
plot with 248,219 points. The marker-controlled watershed segmentation method presented that the
time required was less than 1 second, outperformed the other three methods. This is because, compared
to the other three methods, the marker-controlled watershed segmentation method was performed on
the two-dimensional data. For the mean shift-based methods, the time required was at the same level
(i.e., two minutes for our self-adaptive bandwidth method and nine minutes for the fixed bandwidth
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method). Among these methods, Yan’s method presented the time required was 20 minutes. The reason
behind this is that Yan’s method iteratively used NCut to segment overlapping trees, leading to an
increase of time consumption. Comparatively, our self-adaptive bandwidth method improved the
computing performance by using the strategy of 3D space division.

In summary, Yan’s method and our proposed method outperformed the other two methods in tree
segmentation accuracies, but our method is much more effective than Yan’s method in computational
efficiency. Although the marker-controlled watershed segmentation method required less time
than our proposed method for segmenting trees from the UAV LiDAR data, the tree crowns are not
delineated correctly. Comparatively, in terms of segmentation accuracies and computational complexity,
our proposed method is feasible for the individual tree segmentation from the UAV LiDAR data.

4. Conclusions

In this paper, we proposed a self-adaptive mean shift tree-segmentation method which improved
tree segmentation accuracy and computational efficiency using UAV LiDAR point clouds. The key
parameter in mean shift—the horizontal kernel bandwidth—was automatically estimated by analyzing
canopy vertical structures at multiple directions. The estimation of the kernel bandwidth was without
any prior knowledge of crown sizes or seed points. The performance was evaluated on three simple
plots and four complex plots, and achieved the overall tree segmentation accuracies of 0.95 and 0.80,
respectively. Comparative tests demonstrated that our proposed method can achieve both a better tree
segmentation performance and a higher computational efficiency. Therefore, the self-adaptive mean
shift method shows the applicability and feasibility for tree segmentation.

In this study, our method shows its superior to the severely overlapping and irregular trees in the
UAV LiDAR data. However, due to a few understory trees in this study area, in the future we will
work on the algorithm or integrate terrestrial LiDAR data to further deal with that. The tree species in
our LiDAR data are mainly planted forests, and natural mixed-species forests from tropical regions
will be considered in future studies.
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Abbreviations

The following abbreviations are used in this manuscript:

UAV unmanned aerial vehicle
LiDAR light detection and ranging
3D three-dimensional
CHM canopy height model
CSF cloth simulation
DTM digital terrain model
DBH diameter at breast height
AGB aboveground biomass
LM local maxima
GPS global positioning system
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IMU inertial measurement unit
RTK real-time kinematic
DET segmentation accuracy
OM omission error
COM commission error
de the number of trees correctly detected
ref the number of reference trees
om the number of undetected trees
com the number of trees falsely detected
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