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Abstract: In remote sensing, active learning (AL) is considered to be an effective solution to the
problem of producing sufficient classification accuracy with a limited number of training samples.
Though this field has been extensively studied, most papers exist in the pixel-based paradigm.
In object-based image analysis (OBIA), AL has been comparatively less studied. This paper aims to
propose a new AL method for selecting object-based samples. The proposed AL method solves the
problem of how to identify the most informative segment-samples so that classification performance
can be optimized. The advantage of this algorithm is that informativeness can be estimated by
using various object-based features. The new approach has three key steps. First, a series of
one-against-one binary random forest (RF) classifiers are initialized by using a small initial training
set. This strategy allows for the estimation of the classification uncertainty in great detail. Second,
each tested sample is processed by using the binary RFs, and a classification uncertainty value that
can reflect informativeness is derived. Third, the samples with high uncertainty values are selected
and then labeled by a supervisor. They are subsequently added into the training set, based on which
the binary RFs are re-trained for the next iteration. The whole procedure is iterated until a stopping
criterion is met. To validate the proposed method, three pairs of multi-spectral remote sensing
images with different landscape patterns were used in this experiment. The results indicate that the
proposed method can outperform other state-of-the-art AL methods. To be more specific, the highest
overall accuracies for the three datasets were all obtained by using the proposed AL method, and the
values were 88.32%, 85.77%, and 93.12% for “T1,” “T2,” and “T3,” respectively. Furthermore, since
object-based features have a serious impact on the performance of AL, eight combinations of four
feature types are investigated. The results show that the best feature combination is different for the
three datasets due to the variation of the feature separability.
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1. Introduction

The number of remote sensing platforms is continually increasing, and they are producing a
tremendous amount of earth-observation image data. However, it is challenging to extract essential
information from these images [1–3]. Image classification plays a fundamental role in this task, and
there have been great efforts dedicated to the development of image classification methods, such as
data mining, deep learning [4,5], and object-based image analysis (OBIA). Among these techniques,
OBIA has been widely applied to high spatial resolution image classification [6–8] because it can
take high advantage of the spatial information that is captured within these images. Besides, many
researchers consider OBIA to be an interesting and evolving paradigm for various applications, e.g.,
agricultural mapping [9,10], forest management [11,12], and urban monitoring [13,14].
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Recent studies have frequently reported that OBIA can achieve good performance in remote
sensing applications [7,15–17], mainly due to two reasons. For one thing, OBIA-based classification
algorithms can reduce or even eliminate salt-and-pepper noises, which often exist in the classification
results of pixel-based strategies [18]. This is because image segmentation is generally the first step in
OBIA. This procedure partitions an image into several non-overlapping and homogeneous parcels (or
segments, objects) so that noisy pixels do not cause errors in classification results [19]. Lv et al. [20]
developed an object-based filter technique that can reduce image noise and accordingly improve
classification performance. Additionally, compared with pixel-based classification approaches, OBIA
is capable of utilizing various image features. This is because the processing unit in OBIA is an object
instead of the pixel, so this paradigm can effectively employ object-level information [21,22]. At the
object level, it is convenient to extract geometric and spatial contextual features which may enhance
the discriminative power of the feature space. Driven by Tobler’s first law of geography, Lv et al. [23]
extracted object-based spatial–spectral features to enhance the classification accuracy of aerial imagery.

Though OBIA has the mentioned above merits, its potential has not yet been fully utilized. The first
challenge originates from the step of image segmentation. When segmenting a remote sensing image,
over- or under-segmentation errors often occur, even if a state-of-the-art segmentation algorithm is
employed [24–26]. OBIA classification suffers greatly from segmentation errors, especially in the case
of under-segmentation [27,28]. The second issue is that, similarly to traditional pixel-based approaches,
the performance of OBIA is limited by the quantity and quality of its training samples. For a number of
real applications, it is required that training samples should be as few as possible to achieve sufficient
classification accuracy because in some situations, collecting samples is costly. Examples include
mapping tasks in hazardous or remote areas, such as post-earthquake cities, landslide affected zones,
and outlying agricultural fields [29–32]. The accessibility of these areas is often limited, so sample
acquisition is difficult or impossible by human on-site visits. Sending drones or purchasing satellite
images of a much higher spatial resolution may help obtain the ground truth information, but the cost
would be raised significantly. Accordingly, the real problem is how to collect the most useful samples
within a limited sample-collection budget. Active learning (AL) aims to provide a solution to this issue
by guiding the user to select samples that may optimally increase classification accuracy [33–35]. In this
way, users do not have to spend time or cost on attempting to get the information of some useless
samples, which are either redundant or produce little effects on improving classification performance.
Under the guidance of an AL method, a relatively small sample set that is capable of optimizing
the separability of a classifier can be achieved, fulfilling the objective of getting a sufficiently high
classification accuracy with a limited number of training samples. Though this seems tempting, it is
challenging to apply AL techniques to OBIA, since related studies are comparatively rare.

In the field of remote sensing, it is common to apply AL to pixel-based classification. In these
studies, AL deals with supervised classification problems when a small set of training pixels is available.
By iteratively adding new samples into the training set, AL may help raise classification performance.
Thus, it is clear that the key objective of AL is to identify the most informative samples that optimally
improve classification accuracy. In an implementation, an AL method aims to identify the sample
with the largest classification uncertainty [36–38], and there are three main ways to achieve it [39].
The first strategy uses information gain that is generally formulated by using Shannon entropy. The
name of the second category is breaking-tie (BT), and it adopts the criterion of posterior probabilistic
difference. The third one’s name is margin sampling, and it mostly combines with a support vector
machine. There are some examples, which are introduced as follows. Tuia et al. [34] constructed a
BT algorithm to enable AL to detect new classes. By fusing entropy and BT approaches, Li et al. [40]
developed a Bayesian-based AL algorithm for hyperspectral image classification. Inspired by the idea
of region-partition diversity, Huo and Tang [41] implemented a margin sampling-based AL method.
Xu et al. [39] proposed a patch-based AL algorithm by considering the BT criterion. Sun et al. [42]
designed three AL methods based on a Gaussian process classifier and three modified BT strategies.
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Compared to the above-mentioned pixel-based AL methods, there have been relatively few efforts
to document object-based AL, but there are a few examples. Liu et al. [43] proposed an AL scheme
based on information gain and the BT criterion to classify PolSAR imagery. Based on margin sampling
and multiclass level uncertainty, Xu et al. [44] implemented an object-based AL strategy for earthquake
damage mapping. Ma et al. [45] developed an object-based AL approach by considering samples with
zero and large uncertainty. These studies have made conspicuous contributions to OBIA and AL, but
some issues still exist. This article focuses on two of them.

The first issue is that when it comes to OBIA, feature space is generally much more complicated
than the counterpart of the pixel-based analysis. In the pixel-based paradigm, one generally calculates
features based on a single pixel, or a window of pixels centered at the target pixel; therefore, this process
can only capture the information of a limited spatial range. In comparison, object-based features
contain more information, such as geometric and spatial contextual cues. The more complicated feature
space brings about a new challenge to the traditional AL algorithms because AL relies on feature
variables to quantify uncertainty. Accordingly, the more complicated feature set in OBIA requires
new AL methods, a fact which motivated this work. For this purpose, this paper presents a new
strategy for uncertainty measurement based on one-against-one (OAO) binary random forest (RF)
classifiers. Though RF is a popular and successful classifier in remote sensing [46] and OBIA [47–49],
it is interesting to test the OAO binary RF for AL method construction and to see if it can fine estimate
uncertainty when using object-level features.

Secondly, to the best of our knowledge, none of the previous studies investigated the effects
of object feature types on AL performance. Though some previous studies have explored how to
determine the most discriminative features, most of them have focused on hyperspectral image
classification [50,51]. There have been even fewer similar studies on OBIA. OBIA generally provides
four types of object-based features, including geometric, spectral, textural, and contextual feature
categories [49,52]. The discriminative power of the four feature types may vary wildly in different
scenarios, and this can produce a great influence upon the AL process. However, according to previous
works, it is unclear how classification performance behaves when an object-based AL uses different
combinations of the four feature categories. In this work, the evaluation part considers the effects of
different object-feature types, and we consider this as a contribution in terms of experimental design.

According to the issues described above, this article proposes a new object-based AL algorithm
by using an OAO-based binary RF model. It combines the posterior probabilistic outputs with a
modified BT criterion to quantify classification uncertainty in a detailed way. Additionally, with the
proposed AL approach, different combinations of the four object feature categories are tested to see
which combination is the most appropriate for object-based AL.

It is as follows to organize this paper. Section 2 details the principle of the new object-based AL.
Section 3 shows the experimental results, as well as tests on the effects of different combinations of
the four object feature types on AL performance. Additionally, there are comparisons between the
proposed algorithm and other competitive AL approaches. Sections 4 and 5 provide discussion and
conclusion, respectively.

2. Methodology

In this part, we first introduce the basic concepts of AL in Section 2.1, for the convenience of
describing the proposed algorithm. Then, Section 2.2 discusses the implementation of an object-based
AL, followed by a detailed description of the proposed AL approach in Sections 2.3 and 2.4. The last
sub-section introduces the object-based features used in this study.

2.1. Basics of Active Learning

An AL method consists of 5 parts, including a training set T, a classifier C, a pool of unlabeled
samples U, a query function Q, and a supervisor S. Table 1 describes a simple AL process. Step 2 and 3
make up an iterative process in which the most important component should be Q since it determines
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whether the process can select good samples. Generally speaking, for successful AL, the classification
accuracy of the output T should be evidently higher than that produced by using the initial T. This
depends on whether the samples found by Q are beneficial to the classification performance of C. To
enhance the readability of this article, the meanings of the abbreviations and letter symbols related to
the principle of an AL approach are listed in Table A1 of the Appendix A section.

Table 1. The steps of a simple active learning (AL) algorithm.

Input: T, C, U
Output: an enlarged T

1. Train C by using T; initialize Q by using C;
2. Find sample(s) in U by using Q; let S provide label information for the sample(s); add the sample(s) into T;
remove the sample(s) from U;
3. Update Q by using C and T; Go to step 2 if the updated T meets the stopping criterion;
4. Output T.

Intuitively, a good Q can identify samples with the highest classification uncertainty, because
many hold that the uncertain samples can help raise the discriminative power of C. Accordingly, AL
related studies have all focused on the design of Q. In implementation, Q is a criterion that is used to
measure the classification uncertainty of unlabeled samples.

2.2. Object-Based Active Learning

The work-flow of an object-based AL is similar to that delineated in Table 1. However, since the
processing unit in OBIA is an object, a sample differs from that of pixel-based methods. For pixel-based
AL, a sample consists of a pixel label and a feature vector of that pixel. For object-based AL, a sample
corresponds to an object, and so does its label and feature vector. This directly results in 2 differences
between the 2 AL types.

First, the searching space of object-based AL can be much smaller than the pixel-based counterpart,
because, for the same image, the number of objects is much lower than that of pixels. This tends to
simplify the sample searching process of Q, but it may not be the case, mainly due to the next aspect.
The second difference resides in the feature vector contents because, in OBIA, there are more feature
types for a processing unit. OBIA allows for the extraction of geometric information and statistical
features (e.g., mean, median, and standard deviation values for spectral channels). Thus, the object
feature space can be bigger and more complicated, bringing a great challenge to the computation of Q.

Accordingly, Q in object-based AL should be able to finely estimate the appropriateness of
an unlabeled sample. Previous studies concerning this aspect have attempted to split a multiclass
classification problem into a set of binary classification procedures so that each class can be treated
carefully in the sub-problem. To do so, there are mainly 2 schemes: one-against-all (OAA) and
one-against-one (OAO) [42,53]. Suppose that there are L classes to be classified in an image; then, OAA
divides the L-class problem into L binary classification cases. The user trains each of these binary
classifiers by using 2 groups of samples, including the samples of one class and the samples of the
other L − 1 classes. Though OAA is a widespread scheme, it may suffer from imbalanced training due
to the allocation of the samples of L − 1 classes into one training set. In comparison, OAO can avoid
this issue, but it has to construct L·(L − 1)/2 binary classifiers, which is a little more complicated than
the OAA approach. This work adopts the OAO strategy due to the above-mentioned merit.

2.3. Random Forest-Based Query Model

Breiman proposed random forest (RF) [54], and during recent years, it has been successfully
applied to diverse remote sensing applications. As indicated by its name, the most intriguing feature
of RF is its randomness embodied in 2 aspects. First, RF is composed of a large set of decision trees
(DT), each of which is trained by using a sample subset that is randomly selected from the total
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training set. This procedure adopts a bootstrap sampling method that can enhance the generalizability
and robustness for RF. Second, each DT exploits a subset of feature variables, which can help avoid
over-fitting and further improve robustness.

This work proposes a binary RF-based query model and applies it to object-based AL. The key
component of this query model is to quantify the appropriateness of the tested samples, and then,
the model selects the most appropriate sample(s). To achieve this, we designed 3 steps in the
proposed algorithm.

Step (1): initialization. According to the OAO rule, for L (L > 2) classes, L·(L − 1)/2 binary classifiers
are built up by using the initial training sample set. In implementation, each binary RF is trained by
using the samples of only 2 classes.

Step (2): test sample processing. A test sample is classified by using the initialized binary classifiers.
Each of them can produce a label (l) and the associated probability value (p). In this way, L·(L − 1)/2
pairs of l and p can be obtained for a test sample.

Step (3): appropriateness estimation. Among the results obtained in the last step, the dominant
class can be identified. If the label of this class is ld, then there are nd binary classifiers that assign ld to
the test sample. It is easy to understand that the maximum value of nd is L − 1, because among the
L·(L − 1)/2 binary classifiers, there are L − 1 classifiers involved with each class. For the nd classifiers
(suppose they make up a set Fd), the one producing the maximum uncertainty is chosen to reflect the
degree of appropriateness for the test sample. This process can be formulated by using Equation (1),

ma = min
i∈Fd

(pi,1 − pi,2) (1)

where pi,1 and pi,2 represent the probability values of the ith binary classifier in Fd; for convenience, it
can be prescribed that pi,1 ≥ pi,2; ma represents the appropriateness measure for a test sample. This
equation implicates that the class which is the most confusing with ld yields the highest level of
classification uncertainty. Given that pi,2 = 1 − pi,1 in the case of binary classification, Equation (1) can
be rewritten as

ma = min
i∈Fd

(2∆pi,1 − 1) (2)

which is equivalent to
ma = min

i∈Fd
(pi,1 − 0.5) (3)

In implementation, Equation (3) is adopted.
Equation (3) is similar to that proposed by Sun et al. [42], except that this work derives l and p by

using RF, while Sun’s method uses the Gaussian process classifier. In this study, the RF model that is
implemented in OpenCV was adopted, and this implementation allowed for the derivation of p only
in the context of binary classification. In more detail, p is estimated here by using the ratio between the
number of DTs producing one class label and the total number of DTs.

To better understand the proposed query model, Figure 1 illustrates an example. The number of
classes (L) is 4 so that there are 6 binary classifiers that are constructed by using the initial training
set, in which there are 2 samples for each class. For an unlabeled sample ui, each of the 6 classifiers
produces a label and an associated probability value. It can be seen that 4 is the dominant class, 2 is the
most confusing with 4, and the uncertainty value can be calculated as 0.05 according to Equation (3).

In some real cases, it may occur that more than one dominant class exists after step (2). For example,
if the label predicted by classifier F(2,4) is 2 instead of 4, the classes of 1, 2, and 4 have the same number
of prediction results, and the three classes can all be considered as the dominant class. The model of
Equation (3) cannot handle this situation. To solve this problem, it is defined that among the results of
the multiple dominant classes, the minimum value of p − 0.5 is used as ma.
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2.4. The Proposed AL Algorithm

2.4.1. Details of the Proposed AL

With the query model described in the last sub-section, we can now provide the overall workflow
of the proposed AL approach. The red-solid-line box in Figure 2 illustrates the detailed process of
the proposed AL method. The most important part is query function (Q), which is an adaptation of
the 3 steps that are delineated in Section 2.3 because, in the framework of AL, samples of high-level
appropriateness should be selected and used to iteratively update T, U, and C. For illustrative purposes,
the arrows are numbered to indicate the order of the steps.

It is worth noting that the sorting procedure of Q arranges the tested samples in ascending order
because the one with the lowest ma value is considered to contain the highest uncertainty. What is
more, to enable batch mode AL, it is defined that the first q (q ≥ 1) sorted samples is/are selected in the
sample selection step. According to previous research, the batch mode can speed up the calculation
efficiency of AL, but it may compromise AL performance. Thus, q is deemed as an important parameter
and was analyzed in the experiment.

After the steps of Q, q unlabeled samples {ui | i = 1, . . . , q} are selected and labeled by a
supervisor/user, and then U and T are accordingly updated: T = T∪{ui}, U = U\{ui}. Note that if
the number of the remaining samples in U is less than q, the whole process is terminated. Another
termination condition is that, if the total number of samples in T is greater than a predefined threshold,
the AL method ends. The output of the AL algorithm is an enlarged T, in which the added samples are
expected to raise classification performance.

2.4.2. Details of the Whole Processing Chain

The overall process is shown in the upper part of Figure 2. The first step is image segmentation, the
objective of which is to partition an image into several non-overlapping and homogeneous segments.
In OBIA, unsupervised segmentation algorithms are generally used, and this study also follows this
road. A frequently adopted method, called multi-resolution segmentation (MRS) [55], was used
in this work. MRS is an unsupervised region merging technique. Initially, it treats each pixel as a
single segment. Then, according to a heterogeneity change criterion based on spectral and geometric
metrics [55], an iterative region merging process is initiated. During this process, only the segments
that are mutually best fitting are merged. The mutual best fitting rule is explained in [55], and it
can effectively reduce inappropriate merging. MRS has 3 parameters, including a shape parameter,
a compactness parameter, and scale. The former two are both within the range of (0,1) and serve as
weights in spectral and geometrical heterogeneity measures [55]. Scale is generally considered as the
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most important parameter because it controls the average size of the resulted segmentation. A high
scale leads to large segments, and thus under-segmentation errors tend to occur, while a low scale
results in small segments; hence, over-segmentation errors may be produced. To avoid this issue,
the optimal scale has to be exploited. Section 3.2 provides the related details on this problem.

After segmentation, samples are then prepared for subsequent steps. As shown in Figure 2, there
are training (T) and unlabeled (U) samples. The former contains 2 parts: (1) the class label and (2)
the feature vector. The latter only has part (2). Thus, feature vector should be extracted for all of the
samples in T and U. Since the segment is the processing unit, segment-level features are computed,
the details of which are given in Section 2.5.

The next procedure is the proposed AL, which is described in the aforementioned sub-sections.
The output of AL is an enlarged T, acting as the final training set for a classifier. In this study, an RF
classifier is applied. Note that this RF is different from those mentioned in Section 2.3, since this RF is a
standard multi-class classifier, while those used in the AL query model are binary classifiers and are
used for uncertainty quantification.

Then, classification can be achieved by using the aforementioned standard RF, which takes the
feature vector of each segment as input and predicts a class label for that segment. This RF is trained
by using 5-fold cross-validation, and throughout this work, its 2 parameters (the number of decision
trees (Ntree) and the number of split variables (mtry)) are set as 300 and the square root of the total
number of features, respectively. This setting was tested to be sufficient for this study.

To output the final classification result, the pixels of a segment are rendered with the same label
as the prediction result for that segment. The result can then be used for classification evaluation
and illustration.
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2.5. Object-Based Feature Extraction

In OBIA, a processing unit is represented by several segment-level features that may contain
spatial, spectral, textural, and contextual information. This may significantly lengthen the feature vector
and complicate the feature space, and it is inclined to produce some influences on AL. To investigate
these effects, object-based features that have been frequently applied in OBIA studies are listed here
and were tested in the experiment.

There were 4 types of object-based features used in this work, including 10 geometric features, 3
× BS spectral features, 3·BT textural features, and 3·BS contextual features. BS means the number of
spectral channels of the input image, and BT represents the number of textural feature bands. Table 2
details the information on these features.

In the description of geometric features, the outer bounding box refers to a rectangle bounding
the object. The edge direction of such a rectangle is parallel to the edge of the image. Thus, such a
bounding box is generally not the minimum one for the object, but this feature is frequently used
because it is simple to compute and can reflect the relative geometric direction of an object.

To extract textural features, a grey-level co-occurrence matrix (GLCM) and principal component
analysis (PCA) is adopted. At first, 8 GLCM-based textural feature descriptors are calculated for each
spectral band. These descriptors include mean, variance, homogeneity, contrast, dissimilarity, entropy,
second moment, and correlation [56]. The grey-scale quantification level is set as 32, and 3 processing
window sizes (3 × 3, 5 × 5, and 7 × 7) are utilized to capture multi-scale texture. The co-occurrence
shifts in horizontal and vertical directions are both set as 1. This configuration leads to 3 × 8 × BS

textural feature bands that contain too much redundant information. Accordingly, PCA is used to
generate a concise set of textural feature bands. The PCA-transformed feature bands that correspond
to the first four principal components are selected to derive object-based textural features. For the
datasets used in this study, the details of the PCA results are provided in Section 3.1.

Table 2. Object-based features adopted in this study. For spectral, textural, and contextual features,
each line of this table corresponds to a feature extracted from one feature band.

Feature Type Feature Name Description

Geometric

Area (A) A is measured by using the number of pixels.

Perimeter (P) P is calculated by counting the number of edge pixels.

Roundness (Ro) Ro = P2/A

Rectangular degree (Rrec) Rrec = A/Ab. Ab means the area of the outer bounding
box of the object.

length/width ratio (Rlw) Ratio of the length and width of the outer bounding box.

Shape index (Is) Is = P/(4·Ps). Ps means the perimeter of a square that has
the same area with the object.

Border index (Ib) Ib = 0.5·P/(w + l). w and l symbolize the width and length
of the object, respectively.

Asymmetry (Ra)

Ra is defined by comparing an approximated ellipse with
the object. Variances in pixel coordinate are used to

compute this feature. Readers are referred to the
reference book of eCognition for computation details

[57].

Main/secondary direction
width ratio (Rms)

Ratio of the object widths in main and secondary
directions. It is calculated by using the ratio of the two

eigenvalues of the covariance matrix of pixel coordinates.

Density (Rd)

Rd = Ps/(1 + (Vx + Vy)0.5). Ps is similarly defined as in
the description of Is. Vx and Vy are the coordinate

variance in horizontal and vertical directions,
respectively.
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Table 2. Cont.

Feature Type Feature Name Description

Spectral

Average value (Sa) The average pixel value for a spectral channel.

Median value (Sm) The median pixel value for a spectral channel.

Standard deviation (STD)
(Ss)

The standard deviation of pixel value for a spectral
channel.

Textural

Average value (Ta)
Similarly defined as the spectral features, but textural

feature bands are used.Median value (Tm)

STD (Ts)

Contextual

Average of contrast (Ca) The mean difference between Sa of the object and the Sas
of its neighboring objects.

Median of contrast (Cm) The mean difference between Sm of the object and the
Sms of its neighboring objects.

STD of contrast (Cs) The mean difference between Ss of the object and the Sss
of its neighboring objects.

For both spectral and contextual features, average, median, and standard deviation are utilized.
The three variables can reflect the statistical pattern for an object.

Among the 4 types of object-based features, the spectral feature is the most frequently used.
Textural and contextual features are extracted based on spectral features, so the 3 types may contain
some dependence. On the other hand, geometric features are independent of the other 3 types,
but whether positive effects on classification performance are produced is dependent on the application
at hand. In the following experiment, different combinations of the 4 feature types were tested to
investigate their influences on AL performance.

3. Dataset

3.1. Satellite Image Data

Three sets of high spatial resolution multispectral images were employed to validate the proposed
approach. They can be seen in Figures 3–5. The three sets are symbolized as “T1,” “T2,” and “T3.” Note
that in each dataset, there were two scenes which had similar landscape patterns and geo-contents.
For convenience, the two images in “T1” are coded as “T1A” and “T1B.” “T1A” was used for AL
execution, while “T1B” was exploited for validation experiments (the images in “T2” and “T3” were
coded and used in the same way). To be more specific, AL was firstly applied to “T1A,” leading to
some of the samples that were selected from this image; these samples were then used for training an
RF classifier that was subsequently employed for the classification of “T1B.” The objective of such an
experimental design was to see whether samples of good generalizability could be selected by using the
proposed AL technique. If the samples selected from “T1A” could lead to high classification accuracy
for “T1B,” then we could conclude that these samples had sound generalizability, and, accordingly,
the AL method had good performance.

The two images in “T1” were acquired by Gaofen-1 satellite, while the scenes in “T2” and “T3”
were all acquired by Gaofen-2 satellite. The two Gaofen satellites are both Chinese remote sensing
platforms. They were designed to capture earth-observing imagery with high quality. The sensors
on-board Gaofen-1 and Gaofen-2 are similar, both including a multi-spectral and a panchromatic camera
device. Their spectral resolutions are the same, while the two satellites differ in spatial resolution.
Both of the multispectral sensors on-board Gaofen-1 and -2 have 4 spectral bands: near-infrared (NIR)
(770–890 nm), red (630–690 nm), green (520–590 nm), and blue (450–520 nm). Their spatial resolutions
(represented by ground sampling distance) are 8.0 and 3.24 m, respectively. In this study, the images
were all acquired by the multi-spectral sensor.



Remote Sens. 2020, 12, 504 10 of 37

“T1A” and “T1B” had the same acquisition date, which was 17 Nov 2018, but they were subsets
that were extracted from different images. The sizes of “T1A” and “T1B” were 1090 × 818 and
1158 × 831 pixels, respectively. As can be seen in Figure 3, there were 2 large coal mine open-pits in
“T1A,” while there was only one in “T1B.” The central-pixel coordinates for the two images were
(E112◦23′51′′, N39◦29′46′′) and (E112◦27′17′′, N39◦33′56′′), respectively. This indicated that the
geo-location of the two scenes was Antaibao, which is within Shuozhou city of Shanxi province,
China. This place is the largest coal mine open-pit in China, and it has experienced extensive mining
activities since 1984. It still keeps the highest daily production record, which is 79 thousand tons.
However, the operational mining has produced significant ecological and hydrological effects on the
local environment, so it is of environmental importance to monitor this area by using remote sensing
techniques. Considering that the open-pit region has a large acreage, and it is inconvenient and even
dangerous to collect field-visit data at this place. Therefore, it is meaningful to apply AL to the mapping
task of this area.
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The two images of “T2” were acquired on the same day, which was 7 May 2017. Similar to
“T1,” “T2A” and “T2B” were also subsets extracted from two different scenes. The sizes of the two
subsets were, respectively, 1010 × 683 and 942 × 564 pixels. The central pixel coordinates of “T2A” and
“T2B” were (E108◦19′6′′, N41◦7′17′′) and (E108◦4′13′′, N41◦0′4′′), respectively. According to this, both
subsets were located at a county called Wuyuan Xian, which is in western Inner Mongolia, China. “T2”
is illustrated in Figure 4, and it is evident that both subsets covered agricultural landscapes. Because
the acquisition date was at the initial stage of the local agricultural calendar, many fields do not have
vegetation cover. Instead, they are bare soil with different levels of moisture. Note that there are some
immersed fields and damp ones. This is due to the practice of immersion, which reduces the saline and
alkaline contents of local soil. In this way, farmers can grow crops such as corn, wheat, and sunflower
at this place. Though local agriculture is quite developed, transportation in this rural region is still
inconvenient, which increases the cost and difficulty of field data collection. This fact makes AL useful
for mapping this place.

“T3” was very different from “T1” and “T2” in two aspects. First, the two images in “T3” covered
urban areas. Second, the two subsets in “T1” or “T2” were quite close, while those of “T3” were very
distant. The second aspect led to relatively large differences between the two “T3” subset images,
which was conducive to testing the generalizability of the proposed AL. “T3A”/”T3B” had a size of 1069
× 674/995 × 649 pixels, and the central pixel coordinate was (E116◦4′42′′, N30◦36′55′′)/(E113◦31′20′′,
N23◦8′8′′). The acquisition date of “T3A” was 2 Dec 2015, while it was 23 Jan 2015 for the other
image. “T3A” captured an industrial area of Wuhan City, China, while “T3B” was in the economic
development area of Huangpu District, Guangzhou City, China. Figure 5 exhibits the two images of
“T3.” Though at first glance, it is conspicuous that “T3A” and “T3B” had a similar urban appearance,
their geo-objects were quite different in spatial distribution and quantity. There was more vegetation
cover and more bright buildings in “T3B” than “T3A,” and the vegetation in “T3B” was more reddish
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than the counterpart of “T3A.” Moreover, there were more light color buildings in “T3A” than “T3B.”
These differences were mainly due to the difference of geo-location and acquisition time.Remote Sens. 2020, 12, 504 14 of 37 
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For the three datasets, since the two subset images came from different scenes that differed in
solar illumination and atmosphere conditions, the spectral signatures of the same land cover type may
not have been consistent. To alleviate this effect, atmospheric correction was performed by using the
quick atmospheric correction tool in ENVI 5.0 software.

The three datasets were made publicly available through using the following link so that readers
can test other AL approaches by using the data of this work. The link is: https://pan.baidu.com/s/
1I2jjLZvVqPZG4yEOjxdiyA.

3.2. Sample Collection

The AL-based classification experiment required training and testing samples. In this study, we
determined these samples by using visual interpretation and manual digitization. For this purpose, we
hired 3 experienced remote sensing image interpreters to extract geo-objects in the three datasets. In
this process, they used polygons for digitization since this scheme can speed up sample collection. To
guarantee the correctness of the collected samples, the interpreters cross-checked the initially obtained
samples, and the polygons with high certainty and confidence were finally used in this experiment.
The right columns of Figures 3–5 demonstrate the resulted reference samples. The numbers of the
sampled polygons are listed in Tables 3–5. The following details the types of land use and land cover
in the three image datasets.

https://pan.baidu.com/s/1I2jjLZvVqPZG4yEOjxdiyA
https://pan.baidu.com/s/1I2jjLZvVqPZG4yEOjxdiyA
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Table 3. Reference samples collected for “T1.”.

Class Name Coal Mine Shadow Dark Bare Soil Bright Bare Soil

# polygons (pixels) for “T1A” 20 (47,727) 27 (18,082) 21 (49,431) 53 (67,455)

# polygons (pixels) for “T1B” 5 (13,710) 29 (10,658) 35 (39,132) 49 (31,962)

Table 4. Reference samples collected for “T2.”.

Class Name Vegetation Watered Field Bright Bare Soil Dry Bare Soil Moist Bare Soil

# polygons (pixels) for “T2A” 34 (23,766) 34 (42,043) 39 (24,037) 38 (33,769) 36 (29,412)

# polygons (pixels) for “T2B” 30 (13,317) 44 (29,569) 36 (18,509) 39 (25,486) 52 (24,835)

Table 5. Reference samples collected for “T3.”.

Class Name Bright Building Light Color Building Dark Color Building Vegetation

# polygons (pixels) for “T3A” 46 (17,587) 111 (44,094) 82 (15,601) 32 (17,886)

# polygons (pixels) for “T3B” 50 (18,665) 40 (17,610) 62 (27,841) 25 (37,116)

In “T1,” there were four major geo-object types, including coal mine (red), shadow (green), dark
bare soil (blue), and bright bare soil (yellow). The colors in brackets correspond to the sample map
displayed in the right column of Figure 3. Coal mine and shadow were both dark and blackish in
spectra, which was confusing and thus brought a great challenge to their differentiation. However,
the geometric features of the 2 object types were quite different since most shadow areas were thin and
elongated, while this pattern was not very evident for coal mine. The other 2 types were relatively
easy to discriminate, mainly due to their distinctive spectral and textural appearance, but their spectral
and textural features had a large range of variance, which may have confounded classification results.

As for “T2,” we identified 5 land cover types, namely vegetation (red), watered field (green), bright
bare soil (blue), dry bare soil (yellow), and moist bare soil (cyan). According to the local crop calendar,
the vegetation in “T2” was mostly wheat since the other crop types such as corn and sunflower were
not planted in early May. It is interesting to note that in the first half of May, the locals immerse the
crop fields with irrigation water before sowing the seeds of sunflower or some vegetables, which leads
to the dark-color fields found in “T2.” The difference between watered field and moist field is that
the former is covered by water, while the latter is merely soil with relatively high moisture. Different
from dry bare soil, the bright bare soil fields are not used for growing crops. They are adopted for
stacking harvested crops and are usually very flat, resulting in a high reflectance and, thus, a whitish
appearance. The heterogeneous fields of vegetation, dry bare soil, and moist bare soil were not easy to
discriminate, which can be recognized as a challenge for “T2”’s classification.

By carefully observing the two images of “T3,” we determined 4 major land cover categories,
which are bright building, light color building, dark color building, and vegetation. The 3 building
types have different spectral appearances because their materials are not the same. The bright buildings
mostly have flat cement roofs, while metal makes up the counterparts of the light color buildings.
The dark color buildings correspond to brick-roofs, and their appearance is dark gray. Though there is
a small lake and a thin river in “T3B,” we did not consider this type since water objects do not exist in
“T3A.” Note that the vegetation in “T3A” consists mainly of bushes, meadows, or low trees, with small
areas and light red color. In the other image, forests dominate the vegetation class, leading to a very
reddish color. Such an inconsistency of spectra may have contributed to some classification errors for
this dataset.

Note that in this experiment, for each dataset, we used the first image (“T1A,” “T2A,” or “T3A”) to
run AL, resulting in an enlarged set of training samples. The resulted sample set was then adopted to
train an RF classifier, aiming to finish the classification task of the second image (“T1B,” “T2B,” or “T3B”).
The ground truth samples of the second image were employed to evaluate classification performance,
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while we exploited the samples of the first image for the labeling step of AL, which corresponds to the
component S in Table 1. To be more specific, when running the AL method, some unlabeled samples
were selected, which means that their labels were unknown to the AL algorithm. The ground truth
samples were used for labeling these samples so that they could be added to the training set.

The aforementioned experimental process generally requires a large number of human–computer
interactions, especially when many iterations in AL exist. To automate this procedure, we extracted the
samples with labels in the first image and made their labels initially unknown to an AL approach (note
that at the beginning of an AL, only a very small training set is inputted). When the AL determined
some samples with good appropriateness, their labels were then inputted to the AL to enable the
following AL steps. By doing so, we could automatically test an AL method with many repetitions,
each of which was initialized by using a different initial training sample set. In this way, the effects of
the initial sample configuration on AL performance could be investigated, and we hold that this plays
a significant part in the validation of an AL algorithm.

Note that the AL method and the subsequent classification are all based on objects, i.e.,
the processing unit used in this study was a segment/object. However, the ground truth samples
presented in Figures 3–5 are polygons containing non-overlapping pixels. To deal with this inconsistency,
we needed to select the objects that match the ground truth samples. Considering that the object
boundaries did not often align with those of sample polygons, we designed a matching criterion that is
expressed by Equation (4),

H =

{
1 if nm

no
> Ts

0 otherwise
(4)

where H is a test value for an object, and the object is selected only when it equals 1, nm represents the
maximum number of object pixels overlapped with the sample polygon(s) of one class, no means the
number of pixels of the object under consideration, Ts is a user-defined threshold, and its numerical
scope is (0,1). In this study, 0.7 was found to be sufficient for “T1A” and “T2A.” While for “T3A,” a
small value, 0.3, was chosen because larger values led to too few selected objects. For a selected object,
its label was identical to that of the nm pixels.

This criterion guarantees that only the objects with relatively high homogeneity were adopted in
AL execution. Because when an object is too heterogeneous, it tends to be inherently under-segmented,
and this produces negative effects on the classifier’s performance.

In the experiment, a small portion of the selected objects were used as the training set (T),
and the rest of them were treated as the unlabeled set (U). When a query function (Q) computed the
appropriateness measure for a sample in U, the label information of U was made unknown to the
AL algorithm. Only when the AL selected some samples were the labels of them loaded into the AL,
mimicking the human–computer interaction conducted by the supervisor S.

4. Experimental Results

4.1. Results of Image Segmentation

To produce segmentation results, we adopted the multi-resolution segmentation (MRS) [55]
algorithm because many previous OBIA studies have reported that this method can produce satisfactory
segmentation for high-resolution remote sensing imagery [19,58]. MRS is a bottom-up region merging
technique, and it has three parameters: a shape coefficient, a compactness coefficient, and scale.
The former two parameters affect the relative contribution of geometric and compactness heterogeneity
in the merging criterion, and they were tuned and, respectively, set as 0.1 and 0.5 throughout this
work. It is generally considered that scale is the most influential parameter for MRS because it
controls the average size of the resulted objects. A large or small value of scale may lead to under-
or over-segmentation error, which is not beneficial to classification performance. Therefore, how to
optimally set scale is a key issue.
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To objectively determine the optimal scale value for the six images in the three datasets, an
unsupervised scheme proposed by Johnson and Xie [59] (JX) was used in this paper. The JX method
employs weighted variance (WV) and Moran’s index (MI) to reflect the relative quality for a series of
segmentation results, which are produced by using a queue of scale values. In greater detail, WV and
MI values are firstly normalized, and their sum, which is called the global score (GS), is used to measure
the relative goodness for a scale value. The scale with the lowest GS is considered optimal. In this
work, 20 values of scale, ranging from 10 to 200 with 10 being the incremental step, were used for
JX analysis.

The analytical results of the JX method for the three datasets are presented in Figure 6. According
to the lowest GS values marked by the black circles, 60 and 50 were chosen as the optimal scale for
“T1A” and “T1B,” respectively. For “T2A” and “T2B,” the selected scales were both 80. As for “T3A”
and “T3B,” 50 and 60 were, respectively, determined. These values were used for the segmentation of
the corresponding image. The segmentation results can be seen in Figures 7–9. The sub-figures (b)
in the three figures demonstrate the objects that were selected by using the criterion of Equation (4).
Visual observation can indicate that the selected objects agreed well with real geo-object boundaries.
The quantities of the selected objects for different classes are listed in Tables 6–8. Note that since the
processing unit is an object instead of a pixel in OBIA, the differences in the number of objects do not
reflect spatial dominance for different classes, because objects may vary greatly in size so that if a class
has a large number of the selected objects that have a relatively small average size, this class may not
be spatially dominant.
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Figure 7. “T1”’s segmentation results and the selected samples used for the AL method. (a,d) are the
segmentation results of “T1A” and “T1B,” respectively. (b) shows the sample objects selected from
“T1A,” and (c) illustrates the class labels of the samples exhibited in (b).
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Figure 9. “T3”’s segmentation results and the selected samples used for AL method. (a,d) are the
segmentation results of “T3A” and “T3B,” respectively. (b) shows the sample objects selected from
“T3A,” and (c) illustrates the class labels of the samples exhibited in (b).
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Table 6. Numbers of the selected objects for different classes in “T1A.”.

Class Name Coal Mine Shadow Dark Bare Soil Bright Bare Soil

# selected objects 37 21 22 75

Table 7. Numbers of the selected objects for different classes in “T2A.”.

Class Name Vegetation Watered Field Bright Bare Soil Dry Bare Soil Moist Bare Soil

# selected
objects 28 39 50 20 14

Table 8. Numbers of the selected objects for different classes in “T3A.”.

Class Name Bright Building Light Color Building Dark Color Building Vegetation

# selected objects 51 56 10 10

4.2. Results of AL Experiment

With the selected objects mentioned in the last sub-section, AL can be initiated by choosing a
portion of them as the training set T and the left of them as the unlabeled set U. Different configurations
of T and U can produce a great influence on classification accuracy, which affects the analysis of AL
performance. To solve this issue, bootstrap analysis was used to generate several different Ts and Us by
using the entire selected objects. In doing so, 20 different bootstrap-acquired Ts and 20 corresponding
Us were repeatedly used for AL experiments. Each T for “T1A” had 20 samples, and each class had
five samples. For “T2A,” the number of total samples in T was 25, and the number of per-class samples
was also five. There are 12 samples in each T of “T3A,” with three samples for each class. The number
of per-class samples for “T3A” was comparatively lower than those of the other two datasets because
if a higher number was used, the increase of classification accuracy resulting from AL would have
been very small, which was not conducive to analyzing the effects of AL.

To conduct classification by using the AL-selected training samples, RF was adopted, with the
number of trees set as 300 and with the number of active features (also named as m parameter in
many previous studies [60,61]) set as the square root of the feature dimension. The aforementioned
parameter configuration was used for the three datasets throughout the experiment, which was tested
to be sufficient in this work.

To fully analyze the proposed method, five other AL strategies were implemented and used for
comparison. The abbreviations of these approaches are provided in Table A2 of the Appendix A section.
The details of M2, M3, and M4 are listed in Table 9. M1 is not included in Table 9 because it was
introduced in Section 2. Note that in M2 and M3, the probability values of the unlabeled samples needed
to be estimated, which was achieved by using the expectation-maximization method. To measure
classification uncertainty, these two algorithms, respectively, used employ entropy and breaking tie
criteria, which are frequently applied in AL research; thus, they can be recognized as state-of-the-art AL
approaches. M4 randomly selects samples and acted as a baseline for the comparative study. M5 and
M6 are both competitive methods and are constructed based on multinomial logistic regression. They
were used in this experiment for comparison to further validate the proposed AL technique. M5 is a
recently proposed method for hyperspectral imaging [62]. We modified this approach to enable it to
process object-based samples. The novelty of M5 in terms of AL is its selective variance criterion. It has
a parameter V, as described in [62]. In our experiment, this parameter was tuned and set as 0.1, which
is consistent with the suggestion of the authors [62]. M6 is specifically designed for object-based AL,
and its work-flow is very similar to M3 since M6 also uses a breaking tie criterion. The major difference
between M2 and M6 is that the latter employs a multinomial logistic regression classifier to quantify
probability values. Details of M6 can be found in [63,64]. We do not provide the working flow of M5
and M6 in Table 9 to save space. Interested readers can refer to the original articles for more details.
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Table 9. Detailed processes of M2, M3, and M4.

Input: T, C, U, S, a threshold Titer (Titer works as a stopping criterion), and a parameter q (q determines how
many samples are selected in each AL iteration)
Output: an enlarged T

Process of M2 Process of M3 Process of M4

1. Let Niter = 1; train an EM
classifier (C) by using T;
2. Find q sample(s) in U by using
the entropy query metric
(Equation (17) of [39]); let S
provide label information for the q
sample(s); add the sample(s) into
T; remove the sample(s) from U;
Niter = Niter + 1;
3. Retrain C by using the updated
T; Go to step 2 if Niter < Titer;
4. Output T.

1. Let Niter = 1; train an EM
classifier (C) by using T;
2. Find q sample(s) in U by using
the entropy query metric
(Equation (1) of [34]); let S provide
label information for the q
sample(s); add the sample(s) into
T; remove the sample(s) from U;
Niter = Niter + 1;
3. Retrain C by using the updated
T; Go to step 2 if Niter < Titer;
4. Output T.

1. Let Niter = 1;
2. Randomly select q sample(s)
from U; let S provide label
information for the q sample(s);
add the sample(s) into T; remove
the sample(s) from U; Niter = Niter
+ 1;
3. Go to step 2 if Niter < Titer;
4. Output T.

In the process of the six AL methods, q unlabeled samples were iteratively selected and added
to T. After each iterative step, the updated T was used to classify “T1B,” “T2B,” or “T3B.” An RF
classification model was utilized for the classification task. The classification result was then assessed
by using the reference samples shown in Figure 3d, Figure 4d, or Figure 5d. Overall accuracy (OA)
calculated in a per-pixel fashion was adopted as the primary metric to reflect classification performance.
Note that the OA that is obtained in the aforementioned way can only indicate the accuracy of the
sampled area delimited by the polygons in Figure 3d, Figure 4d, or Figure 5d, not of the whole areas in
“T1B,” “T2B,” or “T3B.” This accuracy evaluation scheme was sufficient because the main objective of
this work was to test AL performance instead of mapping the whole region of “T1B,” “T2B,” or “T3B.”

The second objective of this work was to investigate the effects of different object-feature categories
on the performance of object-based AL. For this purpose, eight different combinations of object feature
sets were tested in the experiment. The eight cases are listed in Table A3 in the Appendix A. It can be
seen that spectral features existed in all of the eight situations because this feature type is the most
basic and most frequently used in OBIA. To the best of our knowledge, the fact that geometric features,
textural features or contextual features are solely adopted for classification has never been encountered
in previous studies, so the cases of G, T, and C are not presented in this work. For the convenience of
analysis, the eight cases are divided into two groups, which are simple situations (including S, GS, ST,
and SC) and complex situations (GST, GSC, STC, and GSTC). The former reveals whether geometric,
textural, or contextual features can benefit the accuracy of object-based AL, while the latter indicates if
the complex combination of different feature categories can produce a superior performance.

Note that for the six AL approaches, batch-mode was enabled. This means different numbers
of samples (represented by q, as symbolized in Section 2.4) could be selected in each AL iteration.
The effects of q were thus investigated in the experiment to see how q affects AL performance in OBIA.

4.2.1. Effects of Feature Combinations on AL Performance

The key aspect of AL is whether the selected training samples can increase classification
accuracy. Figure 10 illustrates such effects of the four AL methods for “T1.” As introduced above,
20 bootstrap-derived Ts and Us extracted from “T1A” were used, leading to 20 different overall
accuracies of “T1B” for each AL method in each iteration, and the average value was employed to plot
Figure 10. q was set as 5, as can be observed in the horizontal axis in Figure 10.

Among the eight situations of feature combinations, the proposed technique had better
performance than the other five methods in the cases of S, GS, SC, GTS, GSC, and STC. Though
the advantage of M1 was not very evident when GSTC was used, the proposed method led to a
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higher average overall accuracy tan the other approaches when the number of training samples was
between 40 and 55. Note that in the case of ST, M1’s performance was not the best, and M3 had the
most superior accuracy curve, followed by M6, whose accuracy curve was similar in shape to that
of M3. It is interesting to note that for the four complex combinations, the accuracy curves of the
six approaches had larger fluctuations than the counterparts of the four simple combinations. This
implies that a complex feature space tends to bring larger challenges for an AL method. Another thing
worth mentioning is that the best average overall accuracy was obtained by using M1 in the GS feature
combination (88.32% when the number of training samples was 60), while the accuracies achieved in
the complex combinations were not very advantageous. This further indicates that for object-based
AL, it is not helpful to adopt a very complex feature space. The better accuracies of GS may have been
due to the discriminative power of geometric features since coal mine and shadow objects had similar
spectral appearances while differring in shape.
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The analytical results of “T2” in the eight situations of feature combinations are illustrated in
Figure 11. These figures were derived by using the similar experimental setup used for “T1,” except
that in the initial training set T, there were only three samples for each class. It could be seen that M1
outperformed the other approaches in the cases of S, ST, SC, GST, GSC, and STC. Unlike the results of
“T1,” where M1 had the most conspicuous advantage for the GS feature combination, the superiority of
M1 was not very evident in the case of GS for “T2,” although the proposed technique did have better
average overall accuracies when the number of training samples was in the ranges of [20,25,35,50].
As for the case of GSTC, M4 had the poorest performance, while M1, M2, M3, and M6 had similar
accuracy curves. Note that in this feature combination, the average overall accuracy of M1 was the
highest when the number of training samples was 55 and 60.
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The performance of the six AL methods in the eight-feature-combination situations for “T3” is
plotted against the number of the selected training samples, as exhibited in Figure 12. The experimental
setup was similar to those for “T1” and “T2,” while in the initial training set of “T3A,” the number
of per-class samples was two. It can be seen from Figure 12 that large variations and fluctuations
existed for different AL methods and different feature combinations. Such an unstable performance
was mostly due to the inconsistency of “T3A” and “T3B” since their geo-locations and acquisition
times were very different. Among the eight feature combinations, M1 could be deemed to perform
better in the cases of S, GS, SC, and GSC. For GSTC, although the accuracy curves of M1, M4, and M6
were quite close, the highest average accuracy value corresponded to the proposed technique when
the number of training samples equaled 53. Note that for the eight cases and the six AL schemes,
the average overall accuracies slumped when the number of the selected samples was within [23,28].
This was an interesting phenomenon, and its explanation may be that when the number of training
samples increased from 23 to 28, all of the approaches selected some highly confusing samples from
“T3A,” which contributed to the performance degradation. Though the STC feature set resulted in
poor performance, M1 still produced the best overall accuracy in this case, and it occurred in the first
iteration of AL. In other words, the optimal accuracy of “T3B” (93.12%) was achieved by using M1 and
STC when the number of training samples was 13. For this reason, the optimal classification results
derived by using the six AL approaches are further analyzed in the next sub-section.
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4.2.2. Comparison of the AL Classifications

To further compare the six AL methods for “T1,” the best classification results that were obtained
by using the six AL algorithms in the case of GS are displayed in Figure 13. The accuracy values,
including class-specific accuracy metrics (user accuracy (UA) and producer accuracy (PA)) and overall
accuracy, are provided in Table 10. For a fair comparison, the six results shown in Figure 13 were
obtained by using the same initial training sample set T. For illustrative purposes, the classification
errors are marked by using circles, and the color of a circle indicates the correct class type of the
corresponding object. From Figure 13, it can be seen that there were fewer errors for coal mine in the
results of M1, but in Figure 13d–f, many dark bare soil objects were wrongly assigned to other classes.
Note that some bright bare soils were mistakenly classified by M1, as pointed out by the yellow circles.
Similar errors could be observed in the results of M2, M3, M4, and M6. According to the classification
maps in Figure 13, the spatial distributions of the classification errors were very different for the six AL
methods, although the overall accuracies of M3 and M4 were quite similar. This was further supported
by the UAs and PAs listed in Table 10 because these values varied greatly for the six methods. M1 had
the best overall accuracy of 90.88%. This indicates that the samples that were selected by using the
proposed AL algorithm had the best generalization ability.
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Figure 13. The optimal classification results of the 4 AL methods for “T1” when the GS feature
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the erroneously classified objects, and the color of a circle represents the correct class type for the
corresponding object.

Table 10. Class-specific and overall accuracies of the 6 methods for “T1.” The values of this table
correspond to the classification results in Figure 13.

Method M1 M2 M3 M4 M5 M6

UA of coal mine (%) 94.439 99.06 91.06 73.07 58.11 70.64
UA of shadow (%) 90.92 72.10 74.60 65.56 88.96 82.31

UA of dark bare soil (%) 87.45 83.52 76.27 83.43 91.20 81.03
UA of bright bare soil (%) 94.21 94.17 95.79 95.78 94.31 95.53

PA of coal mine (%) 84.8505 69.53 49.18 79.50 91.98 91.00
PA of shadow (%) 89.68 95.05 93.27 97.46 80.70 93.76

PA of dark bare soil (%) 94.53 91.53 94.49 80.67 77.42 81.94
PA of bright bare soil (%) 89.41 85.15 78.68 80.50 91.11 77.96

Overall accuracy (%) 90.88 86.63 82.56 82.32 84.46 83.23
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To further analyze the results of “T2,” we provide the optimal classification maps that were
obtained by using the six AL strategies in Figure 14. The feature combination was GST, since in this
case, M1 produced the highest overall accuracy for “T2” at 85.77%. Note that the six classification
results were derived by using the same initial training set so that the comparison could be considered
fair. At first glance, it could be seen that there were fewer errors in the results of M1, M2, and M6
than those of the other three methods. This agreed well with the accuracy values provided in Table 11
since the overall accuracies of M1, M2, and M6 were higher than those of others, which were all below
80%. The inferior performance of M3, M4, and M5 was partly due to some vegetation mistakenly
being assigned to the watered field. A careful examination of the six maps indicated that the confusion
between bright bare soil and dry bare soil was common for all of the six approaches. The low UAs for
dry bare soil and the low PAs for bright bare soil for the six methods, as shown in Table 11, agreed well
with this type of error. This phenomenon can be attributed to the similar spectral appearance of the
two classes.
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Figure 14. The optimal classification results of the 4 AL methods for “T2” when the GST feature
combination was used. (a) M1; (b) M2; (c) M3; (d) M4; (e) M5; and (f) M6. The circles indicate
the erroneously classified objects, and the color of a circle means the correct class type for the
corresponding object.
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Table 11. Class-specific and overall accuracies of the 6 methods for “T2.” The values of this table
correspond to the classification results in Figure 14.

Method M1 M2 M3 M4 M5 M6

UA of vegetation (%) 96.71 81.44 100.0 98.83 100.00 95.51
UA of watered field (%) 91.65 90.10 71.34 79.34 78.15 91.18

UA of bright bare soil (%) 100.0 100.0 99.08 100.0 100.00 100.00
UA of dry bare soil (%) 69.37 71.96 75.67 62.42 64.14 68.83

UA of moist bare soil (%) 88.10 91.26 86.07 79.22 84.64 80.30
PA of vegetation (%) 81.33 83.65 17.98 42.42 38.92 82.17

PA of watered field (%) 98.04 97.42 98.64 97.28 98.06 97.24
PA of bright bare soil (%) 49.95 58.71 66.89 32.30 36.09 48.30

PA of dry bare soil (%) 94.20 94.20 90.41 85.80 92.35 83.40
PA of moist bare soil (%) 88.82 80.25 88.34 91.66 88.82 93.45

Overall accuracy (%) 85.15 84.81 79.60 76.11 77.39 83.33

In Figure 15, the classification maps of “T3” mentioned in the last sub-section are displayed. To
ensure a fair comparison, the same initial training set T was used to produce these classification results.
Table 12 provides the class-specific and overall accuracy values corresponding to the six maps. It can
be seen that the maps in Figure 15a,d had comparable performances, and the spatial distributions of
their classification errors were mostly similar. In the two result maps, it could be noticed that the area
of the erroneously classified objects was small, while in the counterparts of the other four methods,
more large-area objects were wrongly classified, such as the bright building objects in the middle
and middle-bottom part of “T3B.” This may have been the primary reason for the inferior accuracies
obtained by using M2, M3, M5 and M6. The low PA values for light color building that were obtained
by using M2, M3, M5, and M6, as can be seen from Table 12, further support this statement.
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runs. To eliminate the influence of different feature combinations, GSTC was adopted. The average 
overall accuracies are plotted in Figure 16. From this graph, it can be observed that, although some 
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Figure 15. The optimal classification results of the 4 AL methods for “T3” when the STC feature
combination was used. (a) M1; (b) M2; (c) M3; (d) M4; (e) M5; and (f) M6. The circles indicate
the erroneously classified objects, and the color of a circle means the correct class type for the
corresponding object.

Table 12. Class-specific and overall accuracies of the 6 methods for “T3.” The values of this table
correspond to the classification results in Figure 15.

Method M1 M2 M3 M4 M5 M6

UA of bright building (%) 95.67 68.50 65.87 95.73 76.09 73.60
UA of light color building (%) 88.56 92.74 91.12 94.59 94.32 93.09
UA of dark color building (%) 89.93 88.76 86.84 86.98 86.16 86.32

UA of vegetation (%) 96.55 97.32 97.51 95.61 97.72 97.61
PA of bright building (%) 93.38 96.68 96.88 94.82 96.24 96.24

PA of light color building (%) 89.74 45.21 39.64 87.05 59.74 55.61
PA of dark color building (%) 91.71 95.11 95.41 93.42 96.02 95.57

PA of vegetation (%) 95.66 95.63 93.35 94.38 93.31 93.31
Overall accuracy (%) 93.12 86.91 85.22 92.92 88.76 87.91

4.2.3. Analysis of Parameter q

To investigate how q affected the proposed AL approach, a series of q values (q = 1,3,5,7,9) were
tested for “T1.” For each q, 20 different bootstrap-derived Ts and Us were employed for repetitive
runs. To eliminate the influence of different feature combinations, GSTC was adopted. The average
overall accuracies are plotted in Figure 16. From this graph, it can be observed that, although some
fluctuations existed, all of the accuracy curves had a similar trend, which was that more training
samples led to higher accuracies. However, there were some inconsistencies for different qs when the
number of training samples was larger than 45. Such a phenomenon may be ascribed to the differences
of “T1A” and “T1B” since they were obtained from different Gaofen-1 scenes.
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The effects of q on the proposed AL scheme were also analyzed by using “T2,” and the results
are shown in Figure 17. Similar to what is displayed in Figure 16, the accuracy curves of different q
values had a similar trend. Contrary to the results of “T1,” in which the average accuracy values of
different qs had large discrepancies when the number of training samples was high, Figure 17 shows
that the accuracy values became very close when the number of training samples was greater than 35.
This indicates that q had a little influence on M1’s performance for “T2” when a certain number of
samples were selected. It is interesting to note that when the number of training samples was between
25 and 35, the highest accuracy values were achieved, and this pattern was the most conspicuous when
q = 5,7,9. However, as the number of training samples increased, all of the accuracy curves became
steady, which implies that the proposed technique was relatively robust in the batch AL mode for “T2.”

Remote Sens. 2020, 12, 504 29 of 37 

 

 
Figure 16. Effects of parameter q for the proposed AL algorithm in “T1”’s experiment. The feature 
combination was GSTC. 

The effects of q on the proposed AL scheme were also analyzed by using “T2,” and the results 
are shown in Figure 17. Similar to what is displayed in Figure 16, the accuracy curves of different q 
values had a similar trend. Contrary to the results of “T1,” in which the average accuracy values of 
different qs had large discrepancies when the number of training samples was high, Figure 17 shows 
that the accuracy values became very close when the number of training samples was greater than 
35. This indicates that q had a little influence on M1’s performance for “T2” when a certain number 
of samples were selected. It is interesting to note that when the number of training samples was 
between 25 and 35, the highest accuracy values were achieved, and this pattern was the most 
conspicuous when q = 5,7,9. However, as the number of training samples increased, all of the accuracy 
curves became steady, which implies that the proposed technique was relatively robust in the batch 
AL mode for “T2.” 

 
Figure 17. Effects of parameter q for the proposed AL algorithm in “T2”’s experiment. The feature 
combination was GSTC. 

  

Figure 17. Effects of parameter q for the proposed AL algorithm in “T2”’s experiment. The feature
combination was GSTC.

The effects of parameter q on the performance of the proposed algorithm were also analyzed for
“T3,” and the results are illustrated in Figure 18. Similar to what was found for “T1” and “T2,” the
accuracy curves of different qs increased as the number of samples rose. The peak values of these
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curves all occurred when the number of samples was high (≥43). The differences in the accuracy curves
became smaller with the increase of samples. These experimental results indicated that for “T3,” the
influence of q on the performance of M1 was small when the number of samples was greater than 38.
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5. Discussion

There were two objectives in this work. First, a new object-based active learning (AL) algorithm
based on a binary random forest model was developed. To deal with the multiclass classification
problem, the one-against-one strategy was adopted to better measure the classification uncertainty for
the unlabeled samples in various situations. This aimed at more accurately estimating classification
uncertainty so that more effective samples could be chosen during the AL process. Second, four
different categories of object-based features were tested in the experiment to investigate whether AL
performance could be affected by the change of feature combination. According to previous literature
on AL in remote sensing, this aspect has been rarely analyzed, but we think that it is a meaningful
research line, because feature space in OBIA is generally complex and may have a large influence on
classification accuracy and consequently, on AL performance.

According to the objectives stated above, it was necessary to discuss the experimental results
with a deeper analysis based on the information presented in Figures 10–12. This was achieved by
comparing the learning rates of different AL methods. Intuitively, the learning rate was considered
as the improvement of classification accuracy obtained by using an AL approach. In this work, the
learning rate was calculated as the difference between the AL-free average overall accuracy and the
highest average overall accuracy derived by using an AL method. Figure 19 provides the learning
rates of the six AL algorithms with eight different feature combinations. It was straightforward to see
that for the three datasets, M1 had the best learning rates in all feature-combination cases, except for
the GSTC case of “T2,” but it could be seen that the learning rates of the six AL methods were quite
similar in this case. These results prove that the proposed AL technique can effectively improve the
classification accuracy for the three high-resolution datasets used.
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Aside from the average classification performance obtained by using the 20 repetitive runs, we also
analyzed the highest overall accuracy that occurred in the 20 runs of different feature combination
cases, as revealed in Figure 20. It is interesting to find that among the eight feature combinations,
the best learning rate did not correspond to the highest overall accuracy for all of the three datasets.
This demonstrates that to achieve the best classification performance by using the proposed AL method,
it is still necessary to test different initial training sets, feature combinations, and numbers of samples.
Such a trial-and-error strategy may be time- and labor-consuming, but the results shown in Figures 19
and 20 indicate that the proposed technique has a better chance of obtaining good classification
accuracy, as compared to other AL approaches.

The patterns revealed by Figures 19 and 20 imply that the optimal object-based feature combination
varies for different scenes since the best feature combinations of the three datasets are not the same.
This is easy to understand because the discriminative power of a feature set tends to change according
to the geo-contents of the image. Some recent studies on object-based AL have had different optimal
feature combinations. Ma et al. [45] adopted three object-based feature types (shape, spectra, and
texture) in their AL experiment. Their datasets included an agricultural district and two urban
areas. Gray-level co-occurrence matrix (GLCM) features were incorporated into their AL strategy
and were found to positively affect the classification performance. Xu et al. [44] also compared
three types of features (shape, spectra, and texture) for the problem of earthquake damage mapping.
They found that geometric features were very effective, and when this feature type was combined with
spectral and textual information, the highest classification accuracy was obtained. The inconsistencies
presented in the aforementioned studies indicate that feature selection and engineering is necessary for
object-based AL methods. Additionally, it may not be optimal when all of the object-based feature
types are used. To achieve the best AL performance for different images, it is suggested to test different
feature configurations.
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As for the limitation of the proposed AL technique, we have summarized two points. For one thing,
according to the discussion presented in the last paragraph, feature selection should be performed
by the user to achieve the optimal performance for the mapping problem at hand. This is because,
for different landscape patterns, the best feature combination is not consistently the same due to the
variation of the discriminative power of diverse object-based features. We recommend that users of our
method select the features having good separability for their image. For example, when mapping an
urban-area image, if obvious geometric differences exist for two types of buildings, shape information
should be considered in the formulation of AL.

For another, there is no automatic stopping criterion for the proposed AL approach. In other
words, the user has to decide when to stop the AL process. In the experiments of this article, 9 iterations
are adopted to plot Figures 10–12. Though it sfigureeems that the number of iterations is sufficient
for the three image pairs, it may not be adequate for other datasets. For real applications, when
ground-truth validation samples are not available, it is hard for users to determine the optimal iteration
number. Developing an automatic stopping method for the proposed AL algorithm is a meaningful
research direction and will be our future work. However, for the current version of our AL method,
the user has to set the number of iterations as the stopping criterion. We recommend employing a high
value as this parameter since, in many cases, good accuracy occurs when the number of samples is
high, as pointed out by Figures 16–18.

6. Conclusions

An object-based active learning algorithm has been proposed in this article. The objective of this
method is to select the most useful segment-samples, which are to be labeled by a supervisor and then
added to the training set to improve classification accuracy. In doing so, a series of binary RF classifiers
and object-level features are used to quantify the appropriateness of a segment-sample. The sample
with a high appropriateness value is selected with a large priority. Given that the object-based feature
space is complex, it is difficult to accurately estimate sample appropriateness, but our experimental
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results indicate that the proposed approach can choose effective samples, mostly thanks to the binary
RF classifiers because they allow for a detailed description of the sample appropriateness by using
various types of object-based features.

To validate the proposed approach, three pairs of high-resolution multi-spectral images were used.
For each image pair, the first one is used for AL execution, resulting in an enlarged training set adopted
for the classification task of the second image. The experimental results indicate that our AL method
was the most effective in terms of improving classification accuracy, as compared to five other AL
strategies. Considering that the proposed AL algorithm relies on the information of feature variables for
sample selection and there are various types of object-based features, it is necessary to investigate the
influences of feature combinations on the performance of an object-based AL. Thus, in our experiment,
the AL-resulted classification improvements were compared for eight feature combinations, and the
best combination was determined for the three datasets. It was interesting to find that the optimal
feature combination varied for different datasets. This was because the discriminative power of the
four feature types that were tested in this study was not the same for different landscape patterns.
Accordingly, we suggest the users of our AL method test the effects of different feature combinations to
achieve the best accuracy.
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Appendix A

Abbreviations used in this paper. They are provided here for the convenience of reading.

Table A1. Descriptions on the abbreviations and letter symbols related to an AL approach.

Abbreviation Description

AL Active learning.

OBIA Object-based image analysis.

RF Random forest.

DT Decision tree.

OAA One-against all.

OAO One against one.

T Training sample set. Each element of this set contains a sample and its label.

C Classifier. In this paper it refers to a supervised classification algorithm.

U Unlabeled sample set. Each element of this set only contains a sample, and its label is
unknown.

Q Query function. It aims to measure the appropriateness of a sample in U.

S
Supervisor. In most cases, especially in real operational situations, the user acts as the

supervisor. S aims to provide the label information for the unlabeled samples selected by a
query function Q.
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Table A2. The 6 AL algorithms used in this experiment.

Abbreviation Description

M1 The proposed AL technique, as delineated in Section 2.

M2 An AL scheme based on entropy query metric [39].

M3 An AL approach based on breaking tie criterion. [34]

M4 An AL strategy based on random sampling.

M5 A multinomial logistic regression-based AL method based on a selective variance criterion [62].

M6 An object-based AL algorithm constructed by using multinomial logistic regression classifier
and breaking tie metric [63,64].

Table A3. The 8 combinations of different object feature categories used in the AL experiment. The 2
defined situation aims at simplifying the analysis.

Abbreviation Description 2 Defined Situations

S Spectral features only.

Simple combinationGS Geometric and spectral features.

ST Spectral and textural features.

SC Spectral and contextual features.

GST Geometric, spectral, and textural features.

Complex combinationGSC Geometric, spectral, and contextual features.

STC Spectral, textural and contextual features.

GSTC The 4 types of features are all used.
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