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Abstract: Masking of cirrus clouds in optical satellite imagery is an important step in automated
processing chains. Firstly, it is a prerequisite to a subsequent removal of cirrus effects, and secondly,
it affects the atmospheric correction, i.e., aerosol and surface reflectance retrievals. Cirrus clouds can
be detected with a narrow bandwidth channel near 1.38 pm and operational detection algorithms
have been developed for Landsat-8 and Sentinel-2 images. However, concerning cirrus removal in
the case of elevated surfaces, current methods do not separate the ground reflected signal from the
cirrus signal in the 1.38 um channel when performing an atmospheric correction, often resulting in
an overcorrection of the cirrus influence. We propose a new operational algorithm using a Digital
Elevation Model (DEM) to estimate the surface and cirrus cloud contributions in the 1.38 pm channel
and to remove cirrus effects during the surface reflectance retrieval. Due to the highly variable nature
of cirrus clouds and terrain conditions, no generic quantitative results could be derived. However,
results for typical cases and the achieved improvement in cirrus removal are given for selected scenes
and critical issues and limitations of the approach are discussed.
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1. Introduction

Satellite imagery is frequently contaminated by high-altitude cirrus clouds in the upper
troposphere and in the stratosphere. The occurrence of cirrus clouds is larger than 50% over the
midlatitude and tropical regions [1]. Thin cirrus is difficult to detect with visible /near infrared (NIR)
bands because land surfaces show a high degree of spatial nonuniformity. Nevertheless, the additive
cirrus signal has an adverse effect on the aerosol and surface reflectance retrievals. Therefore, the
detection and removal of cirrus, which may strongly vary in a scene, is of particular interest for an
improved quantitative processing, and it also helps in the interpretation of data. Hence, it is of scientific
interest as well as of practical importance.

Cirrus detection with a narrow bandwidth channel near 1.38 um was first demonstrated with
high-altitude (20 km) AVIRIS data [2], prompting a recommendation to include a dedicated cirrus
channel in the MODIS instrument [3]. Later, a cirrus removal algorithm for aircraft and satellite data
was published [4-7] and this method of cirrus removal has become a standard process in atmospheric
compensation [8]. The 1.38 um region is characterized by very strong atmospheric water vapor
absorption, which blocks the surface reflected solar radiation almost completely but transmits the
reflected high altitude cirrus signal.

The frequent occurrence of cirrus clouds and the successful operation of the MODIS cirrus channel
are reasons why a dedicated cirrus band has been added to advanced multispectral instruments such
as Landsat-8 (L8) [9] and Sentinel-2 (52) [10]. Additionally, the original cirrus removal method for
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visible/near infrared channels in atmospheric window regions was enhanced for 52 type sensors to
include a water vapor channel near 0.94 pm [11].

As pointed out by reference [12], cirrus detection with the 1.38 pm band can fail in certain
situations (e.g., high elevation, low water vapor content, bright surface) and a narrow band at 1.88 um
is more suitable because of its stronger atmospheric water vapor absorption. However, a 1.88 pm band
is currently only implemented in a small number of hyperspectral instruments. The cirrus removal
method using multi-angular observations is a further approach which has been successfully applied to
GOCI (Geostationary Ocean Color Imager) data [13] but which cannot be applied to single-observation
standard satellite imagery.

The availability of cost-free Landsat and Sentinel-2 data and the possibility of processing large
time series for monitoring, change detection, and global studies, set new demands on the preprocessing
algorithms (e.g., masking of cloud, water, shadow, snow/ice) and surface reflectance retrievals. Among
other things it fostered the development of improved automated masking algorithms for Landsat and
Sentinel-2 imagery such as the Fmask method [14-16]. Additionally, it fueled the ESA /NASA initiative
ACIX (Atmospheric Correction Intercomparison Exercise) [17] to compare various state-of-the-art
atmospheric correction processors. This initiative was recently expanded (CMIX—Cloud Masking
Intercomparison Exercise) to compare cloud masking algorithms available for L8 and S2 data [18].
Here we present an enhanced cirrus removal algorithm, which uses the per-pixel scene elevation
of a DEM to separate the surface and cirrus radiance contributions to the top-of-atmosphere (TOA)
radiance in the 1.38 um channel. It is also an improvement over the approach of [19], because the
elevation-dependent cirrus signal was not treated there. This paper presents the main idea and
demonstrates the performance with four case studies of L8 and S2 images. The method is fully
operational, integrated in the ATCOR (Atmospheric Correction) code [20-23], and applied during the
atmospheric correction of L8 and S2 imagery. Table 1 contains the spectral bands and spatial resolution
of these sensors.

This paper is organized as follows: Section 2 presents the experimental context of the L8 and S2
sensors and the employed scenes. Section 3 describes the state-of-the-art cirrus masking and removal
methods, followed by our proposed method. Section 4 presents results for four selected L8/S2 scenes,
including a discussion of the critical issues. The conclusion and possible further improvements are
given at the end of the paper.

2. Materials

The analysis in this paper is focused on Landsat-8 OLI (Ievel L1T) and Sentinel-2 MS imagery
(both S2A and S2B, level L1C) , as the data of these systems is widely used, they offer high quality
radiometric measurements and include a dedicated cirrus detection band. Landsat-8 scenes were
downloaded from the EarthExplorer (https://earthexplorer.usgs.gov/) and Sentinel-2 scenes were
downloaded from Copernicus Open Access Hub (https://scihub.copernicus.eu). Table 1 contains a
summary of the spectral bands and spatial resolution of L8 and S2. The surface reflectance retrieval of
L8 data is performed without the panchromatic band 8, and prior to the retrieval of S2 data all bands
are resampled to a common 20-m grid using bilinear interpolation. The required 1 arcsec Shuttle Radar
Topography Mission (SRTM) Digital Elevation Models (DEMs) were downloaded from the USGS web
site (https:/ /earthexplorer.usgs.gov/) and in case of S2 resampled to the common 20-m resolution.
A total number of 33 scenes from L8 and S2 were analyzed with solar zenith angles ranging from 30 to
60 degrees and ground altitudes between 500 m and 4500 m (compare Appendix Table A1). This case
study shows results of four typical scenes from the list.
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Table 1. Landsat-8 and Sentinel-2 spectral bands and spatial resolution (L8 bands 10, 11: 100 m
resolution resampled to 30 m in the L1T product, marked with "’ in list).

Landsat-8 Bands Resolution (m) Sentinel-2 Bands Resolution (m)
band 1 (0.43-0.45) 30 band 1 (0.433-0.453) 60
band 2 (0.45-0.51) 30 band 2 (0.458-0.523) 10
band 3 (0.53-0.59) 30 band 3 (0.543-0.578) 10
band 4 (0.64-0.67) 30 band 4 (0.650-0.680) 10
band 5 (0.85-0.88) 30 band 5 (0.698-0.713) 20
band 6 (1.57-1.65) 30 band 6 (0.733-0.748) 20
band 7 (2.11-2.29) 30 band 7 (0.765-0.785) 20
band 8 (0.50-0.68) 15 band 8 (0.785-0.900) 10
band 9 (1.36-1.38) 30 band 8a(0.855-0.875) 20
band 10 (10.60-11.19) 30* band 9 (0.930-0.950) 60
band 11 (11.50-12.51) 30* band 10 (1.365-1.385) 60
band 11 (1.565-1.655) 20
band 12 (2.100-2.280) 20

3. Method

The proposed method consists of two parts, (i) cirrus detection based on elevation thresholds,
and (ii) cirrus removal with the remaining 1.38 um signal component after subtracting the estimated
ground surface contribution.

3.1. Part 1: Cirrus Detection

For cirrus detection a useful quantity is the top-of-atmosphere (TOA) reflectance defined as

ey TL(A)d?
p*(A) = Eo(A) costs 1)

where A, L, E;, 05, and d are wavelength, measured radiance, extraterrestrial solar irradiance, solar
zenith angle, and Earth-Sun distance (in Astronomical Units), respectively. The extraterrestrial solar
irradiance spectrum Eg(A) is taken from reference [24] and the daily Earth-Sun distance is derived
based on an ellipsoidal excentricity of 0.01673.

Cirrus masking is conducted with the A = 1.38 um channel using a certain threshold on the TOA
reflectance, e.g., p*(1.38) > 0.01, to avoid very thin cirrus or instrument noise. Since atmospheric
absorption caused by water vapor is very strong in the 1.38 um spectral region, the signal corresponding
to p*(1.38) is usually exclusively due to cirrus clouds, as the ground reflected solar radiation is absorbed
in the lower atmosphere.

However, in the case of very low atmospheric water vapor columns and/or high elevations, a
certain fraction of the ground reflected radiation will be included in the TOA reflectance p*(1.38).
Therefore, reference [25] recently proposed to employ an empirical elevation-dependent cirrus
threshold in the cloud detection of the MAJA (MACCS ATCOR Joint Atmospheric Correction) code:

p*(1.38) > (0.007 +0.007 - h?), @

where h is the surface elevation in km above sea level (asl.), taken from a DEM. A pixel is included in
the cloud mask if Equation (2) is fulfilled. This inequality is denoted as method “M1” in this paper.
We performed extensive MODTRAN [26,27] simulations to develop a physically-based approach.
We calculated the 1.38 um TOA reflectance as a function of surface reflectance, elevation, MODTRANS
cirrus models, and water vapor content. When the resulting detection thresholds were applied to S2
data, the radiative transfer based approach of cirrus detection was not successful. The reasons for
the failure are probably the difficulty to measure columnar water vapor contents in the presence of
cirrus clouds, the limited number of cirrus models in MODTRANS5, the unknown surface reflectance
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in the 1.38 pm band (which has to be interpolated with the neighboring bands), and bidirectional
reflectance effects in mountainous regions. In addition, since L8 does not have a water vapor band,
such an approach could not be applied to L8 data.

Therefore, we concluded that a robust empirical detection threshold function has to be found
which performs well for a broad variety of atmospheric situations. First we tested the above criterion
(Equation (2)) on the 33 L8 and S2 scenes (Table A1) and found out that it often fails to detect optically
thin cirrus (0.01 < p*(1.38) < 0.02), especially in elevated areas.

Figure 1 shows examples of the TOA reflectance in the cirrus band at 1.38 pm modeled by
MODTRANS for a flat 50% reflectance surface and variable ground elevation using the spectral
response of the Sentinel-2A instrument. The solar zenith angle was set to 30° and the standard rural
aerosol model with 23 km visibility was chosen. The cirrus cloud base altitude was set to 9 km, the top
altitude to 10 km, and an extinction coefficient of 0.4 km~! was assigned. The functions with cirrus
clouds for the midlatitude summer atmosphere (column water vapor: 2.92 cm) and the midlatitude
winter (0.87 cm) standard atmosphere as well as the function for clear sky at midlatitude summer
conditions describe the range of typical remote sensing situations. It demonstrates that the water vapor
absorption is saturating for ground altitudes up to 1-2.5 km depending on the corresponding water
vapor amounts. The impact of ground elevation increases rapidly above 2 km, especially for low water
vapor columns. Even though the modeled functions could not be used for cirrus correction directly,
they have shown that an empirical correction should consider the ground altitude for elevations greater
than about 2 km.
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£ 0.06- Threshold Method M1 ]
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Figure 1. Top-of-atmosphere (TOA) reflectance in the 1.38 pm band simulated for Sentinel-2 based on
MODTRANS5 runs, compared with the two discussed empirical cirrus detection threshold functions
(M1 and M2). The dashed line is the function used for cirrus correction.

As most data acquisitions are not taken from high elevation areas, they typically have medium
to high water vapor columns. On the other hand, high altitude mountain regions such as the Alps,
Andes, or Himalaya typically have dry atmospheres with low water vapor contents. Therefore, a
compromise between these two functions has been sought. Different elevation-dependent functions
were evaluated for 33 52 and L8 scenes (Table Al) and finally a good compromise was obtained with
the empirical inequality:

0*(1.38) > 0.01, for h <2 km, 3)

and for altitudes above approximately 2 km, the ground reflectance influence is modeled with a
second-order polynomial:

p*(1.38) > (0.0054- (h—1 km)2> > 0.01 )
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This function (last two inequalities), is denoted as method “M2”. Figure 1 shows its shape in
comparison to typical MODTRAN simulations and compares it to the graph of method M1.

Masking of the scene content is a first necessary step for the aerosol and surface reflectance
retrieval. As an example, aerosol retrieval over land uses dark reference pixels [28-30]. Therefore,
cloud, shadow, snow/ice, and water have to be excluded during this step in conjunction with the
herein described cirrus detection method.

The main purpose of this contribution is the development of an elevation-dependent cirrus
removal and atmospheric correction. The cirrus masking methods M1 and M2 serve as templates and
the presented cirrus removal algorithm can be adapted to the specific elevation function. Therefore,
if a better function is found, it can be used in our approach.

3.2. Part 2: Cirrus Removal

The removal of cirrus effects is conducted prior to the aerosol and surface reflectance retrieval,
if the scene contained cirrus clouds. The cirrus removal is not conducted with the total signal of the
1.38 pum TOA reflectance but with the signal component remaining after subtracting the estimated
ground surface contribution.

Let us denote the above threshold functions of M1 and M2 as Ty, and Typ, but now with a
minimum value of 0.00 instead of 0.01 for M2, i.e., the dashed line in Figure 1. So the total signal
0*(1.38) consists of the ground reflected component and the remaining part due to cirrus, i.e.,

p:irrus(1'38 pm, Ml) = P*(1-38 p.m) — Tan (5)

Orirrus (1.3 8um, M2) = p*(1.38 pm) — T (6)

This means we have to employ the reduced TOA reflectance p¥ . (1.38 um,M1) or
0irus (1.38 um, M2) during cirrus removal instead of p*(1.38 um), which is currently used by standard
algorithms.

The standard procedure [5,11,31] uses a scatter plot of the TOA reflectance of dark surface pixels
in a reference band versus the 1.38 pm band to obtain a slope coefficient S(A). Then the standard cirrus
removal for band A is conducted with p*(A) by subtracting the scaled cirrus TOA reflectance [5,6,11,31].

Ororrected(A) = " (A) — p*(1.38 um) /S(A) ?)

As mentioned above, it is important to replace Equation (7) with

p:orrected(/\) = P* ()\) - pjirrus(1‘38 Hme)/S()‘)/ (8)

where M is either M1 or M2. This ensures that only the cirrus signal is subtracted. Before continuing
with the aerosol, water vapor, and surface reflectance retrievals, the corrected TOA reflectance is
converted into TOA radiance for each band, to be able to run the atmospheric correction with the
ATCOR code [20,21]. This code performs a physics-based retrieval using look-up tables calculated
with the MODTRANS5 model [26,27].

4. Results

This section presents four case studies illustrating the critical issues of cirrus masking and removal
of cirrus effects: a Sentinel-2A scene of Morocco, a Landsat-8 scene near Lake Constance, Switzerland,
a Sentinel-2A scene from the Rocky Mountains near Albuquerque (NM, USA), and two Sentinel-2A
scenes near Railroad Valley (USA). Although the scope of selection is limited due to space reasons and
somewhat arbitrary, it nevertheless covers the typical problems encountered when processing cirrus
contaminated scenes, i.e., areas with optically thin to very thick (opaque) clouds and altitudes from
sea level to about 5 km.
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4.1. Sentinel-2A Image of Atlas Mountains, Morocco

Figures 2—4 show the results of the first example, a Sentinel-2A scene from Morocco, acquired on
18/01/2016.

Figure 2. Sentinel-2A scene, Morocco, T29RPQ 18/01/2016 (oriented towards east, see also Figure 3),
(a) cirrus channel, (b) M1 cirrus mask, (c) M2 cirrus mask. Color coding of masks: orange: cirrus-free,
black: shadow, grey: water cloud, blue: water, light-to-darker yellow: increasing cirrus thickness.

© @ © S

Figure 3. Sentinel-2A scene Morocco (oriented towards east), (a): original true color radiance image,

(b): result of cirrus removal with M2. (c): subset of green box true color scene after standard atmospheric
correction, (d) de-cirrus with standard method, (e) de-cirrus with method M1, and (f) method M2,
respectively. The colored circles indicate locations of sample spectra.
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Figure 4. (a,b): spectra from center of yellow circles in Figure 3a; within cirrus (a) and outside of
cirrus (b). (c,d): spectra from center of red circles indicated in Figure 3c, within thin cirrus area (c) and
outside of cirrus (d).

The solar zenith/azimuth angles for the scene center are 54.9° and 157.8°, respectively. Elevations
range between 500 m and 4000 m, and water vapor columns calculated during the atmospheric
correction procedure range between 0.5 cm and 2.2 cm. The scene was processed using ATCOR to
bottom of atmosphere (apparent) reflectances without correcting the terrain illumination but taking
the terrain elevation into account for the path length modelling and the cirrus correction as far as
applicable. Figure 2a shows the TOA reflectance image of the 1.38 pm cirrus channel, with maximum
values around 0.19 (reflectance units). The southern part of the scene contains thin cirrus with typical
reflectance values from 0.01 to 0.04. Figure 2b shows the M1 classification: orange indicates clear areas,
shadows are in black, water clouds in grey, and different shades of yellow indicate cirrus. The same
color coding is used in the M2 classification in Figure 2c. A comparison of both classification maps
with the cirrus channel map shows that the M1 masking misses the majority of the southern cirrus
affected areas (DEM between 1500 m and 2500 m) covered by thin cirrus. A closer inspection of the
raw image in Figure 3a reveals that these areas are indeed covered by thin cirrus, and some blurred
ground features can still be seen.

Figure 3 shows the TOA reflectance data in comparison to the cirrus removal methods (with the
estimated cirrus signal component according to Equations (5), (6), and (8)) and a subsequent
atmospheric correction. A subset region was selected which contained a small cirrus cloud with
p13s < 0.05 over a ground elevation between 2.5 km and 4.0 km. The variable correction results
demonstrate that method M1 underestimates the cirrus signal and does not lead to a viable cirrus
correction. Method M2 performs better, whereas the standard method [5,11,31] overcorrects the cirrus
contribution resulting in a darker appearance of the area below cirrus cloud.

This statement is also supported by an analysis of the corresponding retrieved surface reflectance
spectra. Spectra in Figure 4 are taken as average spectra of 100 pixels each from four areas of the test
image. They represent areas of medium to high ground elevations covered by cirrus and neighbouring
cirrus-free regions of the same surface type. The correction results for the various methods are shown
in comparison to atmospheric compensation without cirrus removal. The first spectra have been taken
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in the southern image area (indicated in yellow in Figure 3a) with cirrus signatures of 0.031 and 0.005,
respectively, at a ground elevation of approximately 2.0 km.

The results as shown in Figure 4a,b are comparable between the standard method and method M2,
i.e., both methods correct the cirrus effect, while method M1 does not detect and correct the cirrus effect.
A second pair of samples was taken within the selected subset for a situation at high ground elevations
(about 2.8 km). Two spectral samples were taken from the image (indicated by red circles in Figure 3c)
with a cirrus signature of p] 33 = 0.036 and p] 55 = 0.010, respectively. The corresponding correction
results are shown in Figure 4c,d. Here, the standard method leads to a lower reflectance spectrum than
the average of the reference area, whereas method M2 is closer to the expected reflectance values. This
confirms the overcorrection effect at high ground elevations.

4.2. Landsat-8 Image of Lake Constance, Switzerland

The next example presents a small subset of a Landsat-8 scene containing Lake Constance and its
rural environment in Switzerland. The acquisition date is 19/07/2014 and the solar zenith/azimuth
angles are 30.8° and 142.5°, respectively. For reasons of space, we do not include images of the whole
scene but select a smaller region adjoining Lake Constance. Figure 5a shows a small section of this
lake in the north-eastern part of the image. The scene exhibits thin cirrus clouds in the center, which
can clearly be seen in the 1.38 pm TOA reflectance image (Figure 5b).

Figure 5. Landsat-8 subset, Lake Constance, 19/07/2014, (a) true color, (b) cirrus channel, (c¢) M1 cirrus
mask, (d) M2 mask (same color coding as in Figure 2), (e) surface reflectance product.

The elevations of the subset vary between 385 m (asl.) in the lake region and a maximum of about
700 m in the south-west scene. The cyan box in the center of the scene marks the central location of the
cirrus clouds with an average elevation of 524 m. Figure 5 shows the M1, M2 cirrus classification maps
and a comparison with the 1.38 pm TOA reflectance map indicates that method M1 does not detect thin
cirrus. Figure 5e is the level 2 (L2) product, i.e., surface reflectance (RGB = 650, 560, 443 nm) after the
M2 cirrus removal. Method M1 yields a result that is visually very similar to M2 and is not displayed.
Compared to the uncorrected product, the effects of thin cirrus clouds were successfully removed.

Figure 6 shows the comparison of averaged surface reflectance spectra of M1 and M2. The left
graphs (Figure 6a,c) compare the M1 and M2 reflectance spectra with the atmospheric correction result
without cirrus removal for the cirrus area using an average of all 9700 pixels in the M2 cirrus mask
of Figure 5d. M1 values are slightly higher because of the smaller estimate of the cirrus contribution.
The right graphs (Figure 6b,d) presents a statistical comparison of a mask of the same size in clear sky
conditions, in an area southernly adjacent to the first mask. Only minor differences in retrieved surface
reflectance spectra can be found for this area. If comparing the average spectra of the cirrus region to
the average spectra of the corresponding adjacent cirrus-free area, M2 reflectance results agree within
approximately 10% relative accuracy, while M1 deviations are significantly higher at up to 20%.
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Figure 6. Surface reflectance spectra from cirrus region of Figure 5 (a,c) and from adjacent clear sky
region (b,d) with no significant cirrus influence, using M1 and M2, respectively. Graphs (c,d): same
spectra as (a,b), enlarged for the visible part of the spectrum.

4.3. Sentinel-2A Image of Rocky Mountains Near Albuquerque, USA

The third example deals with a 52 scene of the Rocky Mountains near Albugerque containing
very low atmospheric water vapor. The acquisition date is 30/07/2017 and the solar zenith/azimuth
angles are 59.2° and 163.1°, respectively. Again, for reasons of space we do not show the complete
scene, but a smaller subset, with elevations ranging from 1800 m to 3000 m asl. Figure 7a-d present the
original true color image, the 1.38 pm TOA reflectance ranging between 0 and 0.02, the classification
map using a standard threshold of 0.01, and the new cirrus mask which is the same for methods M1
and M2. The TOA reflectance map of the 1.38 um channel clearly exhibits the mountain structure and
its surface, because of the extremely low water vapor content ranging from 0.1 cm to 0.3 cm calculated
from the S2 scene during atmospheric correction.

A comparison with the DEM map shows that the very high mountain regions (2700-3000 m asl.,
coded white) in the center usually correspond to higher values of the 1.38 pm TOA reflectance map.
The M1 and M2 maps are identical due to relatively low cirrus TOA reflectance (<0.026) and high
elevations, i.e., if the threshold Tyy; or Ty, of the TOA reflectance exceeds the measured p*(1.38), then
the cirrus contribution p*(1.38, cirrus) is set to zero. Thus, the terrain dependent functions M1 and
M2 both avoid false detection of cirrus clouds and no unnecessary cirrus correction is done for this
sample scene.
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73
(a)

(d)

Figure 7. Sentinel-2 subset, Rocky Mountains near Albuquerque, 06/12/2015, (a) true color, (b) cirrus
channel, (c¢) standard cirrus mask, (d) identical M1, M2 masks with no cirrus detected.

4.4. Sentinel-2A Image of Railroad Valley, USA

The last example illustrates two Sentinel-2A scenes from the Railroad Valley area. We tried to
find a cirrus-affected and a cirrus-free scene acquired within three days and close to nadir observation.
However, it is not an easy task to find a completely cirrus-free counterpart for a cirrus contaminated
scene. Finally, we selected the two scenes of 30/07 /2017 (solar zenith angle 25.6°, azimuth angle 136.2°),
and 02/08/2017 (solar zenith angle 25.0°, azimuth angle 141.9°). Both are partly cirrus-contaminated
but it is possible to select cirrus-free regions in the 30/07/2017 scene that are covered by cirrus in the
02/08/2017 image.

x clear 2017/07/30
0.1F ¢ M1 2017/08,/02 ]
A M2 2017/08,/02

Surface Reflectance

0.0 I . .
0.5 1.0 1.5 2.0
Wavelength (um)
(f) (8) (h)

Figure 8. Sentinel-2 Railroad Valley, CIR rendition, (a) 30/07/2017; (b) 02/08/2017; (c) white box
subset of (a); (d) white box subset of (b); (e) cirrus removal with method M2 (visually very similar
to M1); (f) subset M1 cirrus mask; (g) M2 cirrus mask (same color coding as in Figure 2); (h) subset
spectra of clear part (30/07/2017) and M1, M2 spectra from cirrus-affected scene 02/08/2017.

The selected scenes differ less than 1° in the solar zenith angle (25.6° and 25.0°) and less than 6°
in the view azimuth angle, and both viewing angles are close to nadir (< 5°). The selected area is flat
with an elevation of 1440 m above sea level. The results are presented in Figure 8: top left to right
show color infrared (CIR) renditions of the scenes (a) 30/07/2017, (b) 02/08/2017, (c) a cirrus-free
region of 30/07/2017 marked with a white box in the full scene, (d) the corresponding cirrus-affected
region of 02/08/2017, and (e) the cirrus removal of (d) with method M2.
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Method M1 yields very similar results as M2, and there is no visual difference. This is caused by
the similar cirrus masks of M1 and M2 presented in Figure 8f,g. A quantitative spectral comparison
in terms of surface reflectance spectra is given in Figure 8h. The M1 M2 spectra are based on
the statistics of 3700 pixels from the M2 cirrus mask and represent the average over these pixels.
The difference in standard deviation is less than 0.0015 reflectance units for all bands. Both spectra
retrieved from the contaminated scene closely agree. The shape of the retrieved spectra is very
similar to the corresponding spectrum from the cirrus-free region. Reflectance differences between
the retrieved spectrum (M1, M2) and the corresponding cirrus-free spectrum range between 0.015 to
0.025 (reflectance units) in the VNIR and 0.03 in the SWIR, with a very similar spectra. This difference
may be attributed to the presence of clouds adjacent to the measurement area (compare Figure 8a)
for the cirrus-affected subset, which may have reduced the irradiance field in a way which cannot be
modelled in the physical atmospheric compensation.

5. Discussion

The presented semi-empirical method was developed in an iterative way based on the listed
33 test scenes and in conjunction with MODTRAN based simulations. Validation was done on samples,
whereas rigorous validation of the results of cirrus removal would require a broad collection of known
ground truth reflectance spectra. The availability of such a database is very unrealistic, considering
the logistic investment, time and cost, especially in remote high mountain areas. In addition, a few
experiments would not be sufficient to obtain a statistically sound database. Under these circumstances
a practical approximation as offered by our method is a reasonable alternative.

At this point a note of caution is required: in the ideal case a cirrus abundance map should
be calculated, since there is no simple on/off for a cirrus mask. Instead, cirrus optical thickness
and its corresponding 1.38 pm TOA reflectance can take continuous values from very small to large.
In practice, this abundance map cannot be calculated from a single cirrus channel, because there are
several unknowns; the 1.38 pm TOA reflectance depends on:

e  Surface albedo and surface bidirectional reflectance distribution function (BRDF), especially for
sloped mountain regions,

e  Cirrus optical thickness and cirrus particle size,

e Aerosol content and haze below cirrus cloud, and

e  Atmospheric water vapor.

One might consider to interpolate the unknown 1.38 pum surface reflectance after atmospheric
correction from neighboring spectral bands, but in the case of L8 and S2 the corresponding bands
in the NIR and short-wave infrared are not close enough for an accurate interpolation (see Table 1).
Although atmospheric water vapor is a major influencing factor, it cannot be considered quantitatively
in the cirrus correction. Landsat-8 is not equipped with a water vapor band, so there is no possibility to
introduce a water vapor correction factor for L8 data. Even for S2 data a water vapor correction factor
to Equations (4)—(8) is not possible, because the cirrus affected parts of a scene also influence the TOA
radiance in the NIR channels used for water vapor retrieval (865 nm and 945 nm in case of S2) causing
an inaccurate value for the water vapor column. Since no quantitative relationship between water vapor
content and cirrus TOA reflectance can be derived from S2 scenes, a compromise is needed to achieve
robust results for the removal of cirrus effects in optical imagery. Our proposed Equations (4)—(8)
yields satisfying results using the continuous signal of the TOA cirrus reflectance as input.

A second cross-sensitivity observed during the evaluation is the aerosol detection and correction.
Depending on the cirrus abundance, the automatic aerosol detection routines based on dark dense
vegetation approaches will lead to variable results which may add errors in the reflectance retrieval.
Minor variations in the presented spectra can mostly be attributed to this effect.
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6. Conclusions

A novel method of elevation-dependent cirrus removal is presented, which separates the ground
reflected signal from the cirrus signal in the 1.38um channel. The preprocessing step of cirrus masking
is performed by an elevation-depending function, and results are shown for two template functions
(M1, M2). Function M1 employs a conservative mask, which omits thin cirrus clouds, while function
M2 additionally masks thin cirrus. Both functions are a compromise, since M1 yields a larger omission
error of cirrus classification, while M2 has a higher commission error, especially in cases of high
mountain areas (>2 km) and dry conditions. Both template functions yield better results in high
elevation regions (>2 km) than the standard method of cirrus removal which neglects the elevation
influence, thereby often overcorrecting for cirrus.

No general quantitative figure of the improvement with respect to the current standard method
can be given since the results strongly depend on the cirrus scene content and parameters that cannot
be retrieved from L8 and S2 images. Nevertheless, the presented case studies show an improvement in
terms of visual quality and in surface reflectance spectra quality. The proposed method is suitable for
operational processing chains and has been included in the ATCOR code.

Other cirrus cloud detection methods are using the image statistics including thermal band data,
if available. Cirrus cloud masking results with the Fmask model strongly depend on the user-supplied
cloud probability threshold, which offers the possibility to optimize the processing per scene iteratively
but makes it difficult to select the best compromise for scenes all over the world.

This contribution is also intended as a note of caution concerning the masking and processing of
cirrus affected imagery. Further research is needed to overcome the limitations of current operational
methods for cirrus contaminated scenes and to improve the cirrus masking function. A promising way
could be through the use of contextual image information, the exploitation of image blurring, and the
fuzzy appearance of cirrus clouds.
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Appendix A
Table A1l. Landsat-8 level L1T and Sentinel-2 level L1C test scenes.
Scene/Sensor Location Country Date (DD/MM/YYYY) Path/Row (L8), Tile (S2)

1/8S2 Atlas Mountains Morocco 18/01/2016 T29RPQ
2/L8 Lake Constance Switzerland 19/07/2014 194/27
3/852 Railroad Valley USA, NV 30/07/2017 T11SPC
4/S2 Railroad Valley USA, NV 02/08/2017 T11SPC
5/82 Klamath N.Forest USA, CA 25/09/2016 T10TDL
6/S2 La Paz Bolivia 18/03/2016 T19KEB
7/S2 San Francisco USA, CA 17/11/2015 T10SEG
8/852 Pyrenees Spain 05/03/2015 197/31

9/L8 Kathmandu Nepal 24/01/2015 141/14
10 / L8 Lahore Pakistan 10/11/2013 149/38
11/18 Kitzbiihl, Alps Austria 17/10/2017 192/27
12 /18 Quebec Canada 24/05/2015 12/26

13 /52 Diyarbakr Turkey 20/04/2016 T37SFC
14 / S2 St. Johann, Alps Austria 09/05/2016 T32TQT
15 /852 Davos, Alps Switzerland 22/05/2016 T32TNS
16 / L8 Beijing China 13/04/2014 123/32

17 / S2 Salon-de-Provence France 15/02/2016 T31TFJ
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Table Al. Cont.

Scene / Sensor Location Country Date (DD/MM/YYYY) Path/Row (L8), Tile (S2)
18 /L8 Montelimar France 14/07/2013 196/29
19 /L8 Rio de Janeiro Brazil 18/06/2014 217/76
20 /L8 Sitten Switzerland 30/08/2015 195/28
21 /18 Basel Switzerland 25/09/2013 195/27
22 /L8 Orurillo Peru 07/02/2017 3/70
23 /L8 Murnau Germany 01/09/2015 193/27
24 / S2 Gobabeb Namibia 06/03/2019 T33KWP
25 /S2 Madrid Spain 15/11/2017 T30TVK
26 / S2 Munich Germany 16/06/2017 T32UPU
27 /L8 Munich Germany 01/09/2015 193/27
28 / S2 Railroad Valley USA, NV 23/07 /2017 T11SPC
29 / S2 Blair USA, NE 16/11/2019 T15TTG
30 /L8 Darjeeling India 15/03/2015 139/41
31/S2 Seattle USA, WA 06/04/2019 T10TET
32/8S2 Barrax Spain 11/10/2019 T30SW]
33 /852 Barrax Spain 20/11/2019 T30SWH
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