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Abstract: It is very important to understand the temporal and spatial variations of land surface
temperature (LST) in Africa to determine the effects of temperature on agricultural production.
Although thermal infrared remote sensing technology can quickly obtain surface temperature
information, it is greatly affected by clouds and rainfall. To obtain a complete and continuous dataset
on the spatiotemporal variations in LST in Africa, a reconstruction model based on the moderate
resolution imaging spectroradiometer (MODIS) LST time series and ground station data was built to
refactor the LST dataset (2003–2017). The first step in the reconstruction model is to filter low-quality
LST pixels contaminated by clouds and then fill the pixels using observation data from ground
weather stations. Then, the missing pixels are interpolated using the inverse distance weighting
(IDW) method. The evaluation shows that the accuracy between reconstructed LST and ground
station data is high (root mean square er–ror (RMSE) = 0.84 ◦C, mean absolute error (MAE) = 0.75 ◦C
and correlation coefficient (R) = 0.91). The spatiotemporal analysis of the LST indicates that the
change in the annual average LST from 2003–2017 was weak and the warming trend in Africa was
remarkably uneven. Geographically, “the warming is more pronounced in the north and the west
than in the south and the east”. The most significant warming occurred near the equatorial region in
South Africa (slope > 0.05, R > 0.61, p < 0.05) and the central (slope = 0.08, R = 0.89, p < 0.05) regions,
and a nonsignificant decreasing trend occurred in Botswana. Additionally, the mid-north region
(north of Chad, north of Niger and south of Algeria) became colder (slope > −0.07, R = 0.9, p < 0.05),
with a nonsignificant trend. Seasonally, significant warming was more pronounced in winter, mostly
in the west, especially in Mauritania (slope > 0.09, R > 0.9, p < 0.5). The response of the different
types of surface to the surface temperature has shown variability at different times, which provides
important information to understand the effects of temperature changes on crop yields, which is
critical for the planning of agricultural farming systems in Africa.
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1. Introduction

Land surface temperature (LST) is an important parameter related to surface–atmosphere
interactions [1,2] and plays a key role in different scientific studies, such as monitoring drought [3] and
ecological, agricultural [4], and meteorological processes on the Earth’s surface [5]. Therefore, LST
data can be used as an input for many models at both regional and global scales to improve and refine
global hydroclimatic and meteorological prediction models [6]. Developing countries, including those
in underdeveloped regions such as Africa, are highly vulnerable to climate change [7]. The effects of
climate change in Africa have become evident due to the considerable restraints on resources [8]. LST
is the most important parameter that drives surface heat processes and the energy balance [9]. The
driving forces behind the increasing LST include heat release from anthropogenic activities, the loss of
vegetation cover, solar radiation, and drought and climate change at the local, regional and global
scales [10,11]. LST data in most remote areas are conventionally collected by meteorological stations.
However, such stations cannot provide sufficient spatial coverage due to their sparse distribution [12].
Therefore, to maintain the spatial continuity of LST data from these stations, various geostatistical
interpolation approaches, such as kriging interpolation and inverse distance weighting (IDW) modified
by digital elevation model (DEM) data, have been applied [13].

LST derived from thermal infrared (TIR) remote sensing is becoming more applicable and preferred
than ground station measurements over large-scale areas. Among the available TIR sensors, the
moderate resolution imaging spectroradiometer (MODIS) is widely used to estimate LST due to its high
observation frequency (four times per day) and accuracy [14]. The eight-day composite MODIS LST
product is preferable to the daily LST product because of its improved proportion of valid LST pixels,
which still contain considerable undetected cloud artifacts caused by patchy clouds [15]. However,
the LST data obtained from satellites are highly sensitive to and affected by unfavorable atmospheric
disturbances, which result in numerous data gaps with poor-quality values from undetected pixels
due to cloud contamination [16].

On a global scale, the annual average cloud fraction can exceed 65% [17]. Therefore, it is essential
for LST applications to reconstruct pixels contaminated by noise such as clouds. Reconstruction
techniques can effectively recover missing information and improve the usability of deteriorated LST
data. For instance, Metz et al. [18] developed a new and completely gap-free time series of LST data
from new MODIS LST data collection six products by employing emissivity and elevation as the
independent variables for temporal and spatial interpolation. These methods for estimating missing
MODIS LST data using only LST data exploit the similarity and interdependence of the characteristics
of the accessible spatiotemporally neighboring pixels. It is therefore evident that these techniques have
the benefits of simplicity and reliability. As an additional predictor, Neteler et al. [19] used DEM data
to reconstruct nine years of MODIS LST information based on temperature gradients and achieved
accurate outcomes in mountainous areas. An alternative method to reconstructing time series has also
been proposed by Metz et al. [18], who combined temporal and spatial interpolation and designated
emissivity and elevation as covariates for spatial interpolation. Fan et al. [20] used various auxiliary
maps to reconstruct LST information in flat and comparatively fragmented landscape areas, including
land cover, NDVI and MODIS band 7 maps. Other comparable methods are also supported by the use
of many variables that affect LST, such as topography and precipitation [21].

Furthermore, geostatistical methods that depend on spatial correlations of neighboring cloud-free
pixels, such as the kriging method [19,22], were used for LST reconstruction. In fact, these interpolation
methods have limitations for large scales covered by clouds with a large number of pixels without
data. For this reason, additional spatial methods have been developed to reconstruct the missing pixel
values, using regression models and a network-based IDW [23,24]. Meanwhile, cloudy areas often
become unclear through the use of spatial and temporal interpolation methods were discovered to
resort to the multi-temporal information. In addition, some spatio-temporal methods were developed
to optimally use spatial and temporal information and to overcome the conditions of a dense cloud
layer [25–27]. For instance, Pede and Mountrakis [25], report that the spatiotemporal method rebuilt
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the cloudy LST in the MODST LST more effectively than the temporary interpolation, even with an
extremely dense cloud layer (>80%), regardless of the time of day or season.

Africa covers a large area with a heterogeneous landscape and complex climatic conditions. The
number of meteorological observation stations is small, so remote sensing data is more suitable for
understanding the variation in LST in Africa over the last 15 years. To analyze the spatiotemporal
changes in the LST over Africa, the reconstruction model was developed to eliminate poor-quality
pixels and generate a continuous MODIS surface temperature dataset. The dataset was built based
on neighboring pixels have significant similarities combined with ground weather observation site
data that are proportional to the distance between them under the help of air temperature from
Climatic Research Unit (CRU). The land surface temperature data from ground stations combined with
assimilation data from CRU were applied to validate the surface temperature data after reconstruction.
The long-term sequence dataset was used to analyze the spatiotemporal variations in LST over Africa
at the interannual, seasonal, and monthly scales, which can reflect changes in surface temperature and
be useful for drought studies and food safety analyses.

2. Materials and Methods

2.1. Study Area

Africa ranks among the largest continents in the world in terms of geographical vastness.
Specifically, Africa has an area of approximately 30.3 million km2 and covers 6% of the Earth’s total
surface area and 20% of the Earth’s land area. Africa has a variety of climatic conditions, ranging from
tropical humid to arid climates. The desert/arid region covers half of the northern and savanna plains,
and rainforest regions cover the central and southern areas. Of all continents, Africa is the warmest,
and the Sahara Desert covers approximately 60% of the total land area in Africa [28]. With increases
in climate variability and a warming trend in sub-Saharan Africa, an increase in the seasonal mean
temperature has been recorded [29]. Temperature change is a major driver of vegetation dynamics and
influences the distribution of crop species and vegetation [30,31].

According to the United Nations geographic classification scheme, Africa was classified into five
subregions (northern, western, central or middle, eastern and southern). The southern subregion
is the smallest, and this subregion (10%) is very small compared to the northern region, which
covers 27% of the total area [32]. To obtain more detail about the characteristics of LST in Africa, we
classified North Africa into two regions (North Africa and northeastern Africa); thus, in this study, six
subregions were used for the analysis of the LST (Figure 1). Subregion I represents northeastern Africa,
where a desert-type climate is predominant across the areas south of the Mediterranean. The climate
characteristics of northeastern Africa are arid, and temperatures often surpass 38 ◦C in Egypt; in Sudan,
the mean annual temperature is approximately 26.7 ◦C, and annual rainfall events occur between
June and September, with a total precipitation of 254 mm. The variation in climate is very conducive
to the growth of crops, making the northeast region one of Africa’s most important grain- and cash
crop-producing areas. Subregion II represents North Africa and spans from south of Sudan to east of
the Atlas Mountains. The region is dominated by a temperate monsoon climate and high temperatures
in Sahara countries such as Libya. In this region, most countries (e.g., Algeria) depend on irrigation
agriculture because of limited rainfall. In Algeria, agriculture contributes to 25% of the economy, and
less than 14% of the total land area there is suitable for agriculture. Subregion III represents West
Africa, which includes 16 countries from Mauritania to Togo, where dry and hot continental air masses
and wet equatorial air masses strongly impact the climate. Monsoon rain in summer is affected by
the transport of equatorial wet air across the Atlantic Ocean [33]. The Guinean Highlands have more
precipitation than the lowlands at the same latitude, ranging from 1600 mm to 165 mm. However,
maximum temperatures can reach above 40 ◦C. Deforestation is the most prominent environmental
issue that dominates West Africa, where the rate of deforestation is the highest. Subregion IV represents
East Africa, which is a typical equatorial region. The topography is represented by high land, and
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the metrological conditions are typical of rainy conditions in equatorial regions, where the Rwenzori
Mountains and Ethiopian Highlands create strong winds. Surprisingly, East Africa is cool and dry
across its latitudes. Notably, the coast of Somalia has experienced drought for many years. In East
Africa, rainfall and temperature are influenced by El Niño events, except for the areas in the humid
coastal belt, which have a moderate maximum temperature of approximately 25 ◦C. Subregion V
represents South Africa, where the conditions are dominated by temperatures below 20 ◦C because
the area is located between the Atlantic Ocean and the Indian Ocean. The weather during the warm
season in this subregion is influenced by the El Niño–Southern Oscillation (ENSO). During an El Niño
phase, the weather in South Africa is hot and dry, and La Niña phases are accompanied by cool and
wet conditions. Subregion VI represents Central Africa, which has rainforest conditions (along the
equator) with climate conditions ranging from warm to hot with very high humidity. Notably, the
heaviest rainfall in Africa is recorded in this area, which contains 89.3% of the total swamp forest
and lowland humid areas in Africa. This region has dense vegetation that is key to Africa’s climate
and environment.
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Figure 1. The study area is divided into six subregions (I, II, III, IV, V, VI), and the red stars represent
the meteorological sites used for validation in six critical countries (a: Sudan, b: Algeria, c: Mauritania
d: Ethiopia, e: Congo, and f: South Africa).

2.2. MODIS Data

MODIS data are used worldwide to support scientific studies of a broad range of land and ocean
phenomena [34,35]. MODIS LST data produced from two satellites, Terra and Aqua that were launched
in 1999 and 2002 respectively, are available twice daily. Terra passes over the equator at 10:30 and 22:30
from north to south, and Aqua passes the equator at 13:30 and at 1:30 from south to north. The satellites
are maneuvered in a near-polar, sun-synchronous orbit at an altitude of 705 km, each providing global
surface temperature data with high accuracy and quality [36].

In this study, monthly data (MOD11C3/MYD11C3) from the Terra and Aqua satellites that were
available for the period of 2003–2017 were used, and quality control (QC) layers were used to ensure
the reliability of each LST pixel. The National Aeronautics and Space Administration (NASA) provided
the daytime and nighttime surface temperatures in the collection 6 data series provided in 2017 [37].
The cloud-contaminated LST pixels in collection 6 were removed from the level 2 swath product
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(geophysical product that remains in latitude and longitude orientation) and level 3 daily and eight-day
products (geophysical product that has been temporally and or spatially manipulated). Additionally,
pixels influenced by other variables (e.g., particles, aerosols, and varying sun angles) that affected
the accuracy of the data at a spatial resolution of 0.05◦ × 0.05◦ (more than 5000 m at the equator)
were removed.

The MODIS products were re-projected to the WGS-84 datum and geographic coordinate system
using the MODIS Projection Tool (MRT) for nearest neighbor resampling, and the data format was
transformed to TIFF format. For the day and night LST data layers that were selected using ArcGIS
(10.2), the LST was converted from Kelvin to Celsius.

2.3. Ground Observation Data

Meteorological observation sites data in Africa is very scarce, because of that we have to use
temperature data from CRU time series dataset version 4.03 from 2003 to 2017 (https://crudata.uea.ac.
uk/cru/data/temperature). We calculate the difference between the MODIS land surface temperature
product and the air temperature from CRU in the vicinity of the weather in clear day conditions, and
use the difference as a correction for air temperature data from CRU under cloud condition, and then
interpolate it into the remote sensing temperature product. These enhanced CRU datasets used as
inputs in the reconstruction model to fill the gaps associated with MODIS LST data missing values
and enhance the data quality. Furthermore, we extracted the LST values by using a similar previous
method at the locations of meteorological stations to validate the MODIS LST data (Figure 1). The 24
meteorological stations selected for verification were located in the most critical countries based on
cooling and warming trends (Figure 1), which were not used in the reconstruction procedure. Elevation
data at a 1-km spatial resolution were available from the NASA Space Shuttle Radar Terrain Mission
V4.1 (SRTM) for the reconstruction of cloud-contaminated data.

2.4. LST Data Reconstruction Method

In this study, we present a reconstruction model that is dependent on meteorological station data
(Figure 2). The procedures used in this model include four main steps. First, to obtain valid data, we
used the QC layer for filtering to determine the null and contaminated pixel values (i.e., the missing
and poor-quality pixels) and applied the enhanced ground station data including modified ground
surface temperature by using air temperature from CRU (see Section 2.3) at the same longitude and
latitude to fill the null pixels. Then, the IDW method was used to interpolate contaminated pixels
using valid pixels from the direct filling gaps. Finally, after interpolation, we used linear regression to
fill the data in the invalid pixels.

2.5. LST Pixel Filtering

LST time series data retrieved from thermal infrared bands often contain invalid data due to
contamination from various types of noise. Therefore, these values must be identified and filtered. To
remedy this issue, a reliable method for removing low-quality pixels was applied using the data QC
information for each MODIS LST product. All pixels with an LST error <3 ◦C were filtered using the
appropriate MODIS LST QC level (quality indicator levels in the MODIS LST HDF files) [38,39]. To
ensure high data quality, we filtered and eliminated inferior pixels using QC labels. After filtering
using the QC layer, the spatial distribution pattern of invalid data was displayed after the quality of the
Terra and Aqua satellite LST data were filtered, as shown in Figure 3. The data are shown in Figure 3.
These LST data for February 2017 and August 2017 represent the missing night time values during
autumn months, day time values during summer months and the distribution of some low-quality
pixel values. As shown in Figure 3a,c, the coverage of low-quality pixels was 18.14% for Terra and
8.1% for Aqua. There are many missing values in North Africa in summer, and in winter, the rain
forest zones in Central Africa, South Africa, and Ethiopia have many missing values, as these areas are
affected by extensive rainfall during these seasons.

https://crudata.uea.ac.uk/cru/data/temperature
https://crudata.uea.ac.uk/cru/data/temperature
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2.6. LST Data Recovery

First, a traditional method was employed using ground station data to fill the null pixels in
MODIS LST data at the same location. The mean values for the valid ground-based LST data were
used to fill the pixels with null LST values influenced by cloud cover, and these filled pixels were
marked. Then, because of weather station data were not enough the IDW method based on neighboring
pixels was applied to interpolate contaminated pixels using valid pixels from the direct areas around
gaps, which is the underlying assumption of IDW. IDW is very flexible and most common spatial
interpolation method than other interpolation methods, if there are ridges in a different elevation profile
and climate zone, then this is the appropriate method. The value at a non-sampled point is a weighted
average of the values at the nearby measured points, the weights are generally the inverse distance
squared, the nearest measured points are defined as those located within a given distance or the nearest
n-points [40,41]. This method assumes that the neighboring pixels have significant similarities that are
proportional to the distance between each pixel and the target pixel (reverse function), and we used
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weighted average of three surrounding pixels. The accuracy of this method mainly depends on the
number and quality of neighboring pixels.

Z0 =

∑N
i=1 Zi.d−n

i∑N
i=1 d−n

i

(1)

where Z0 = the estimated (reconstructed) LST value of a null pixel I, Zi = the weight average of three
neighboring known pixel value at target point I, i = a target pixel null value, di = the weight average
distance between the three known pixels value with unknown pixel value, n = the coefficient used to
define the weight based on distance, and N = the total number of estimations.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 25 
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2.7. Estimation of Invalid Pixel Values

Then, we used a linear regression formula between LST and elevation to retrieve unknown
LST values that did not have enough neighboring pixels with known values. The linear regression
relationships for unknown pixel values were constructed based on scanning each pixel in the image
with a sliding window to obtain empty pixel values and the neighboring pixel values. We used a small
window size

(
50× 50 Km2

)
that covered approximately 2500 km2, which is an appropriate size for

identifying cloud effects and more sensitive than larger windows [42]. If the neighbors of the target
pixel (null value) are valid and at least 15% of the LST pixels in the window are valid, the scanning and
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estimation step continues until there are no null pixel values in the image. The null pixel values were
estimated using the following equation [43]:

V = L× ρi +ϕ (2)

where V is an LST value estimated via interpolation (units: ◦C), ρ is the elevation (units: m), L is the
assessed regression coefficient of the elevation considering the LST, and ϕ is the predicted intercept.

2.8. Validation

The accuracy of the reconstructed LST was assessed based on a set of statistical metrics, including
the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE). The
equations of these statistical measures are as follows:

R =

∑n
i=1( xi − x)(yi − y)√∑
( xi − x)2

√∑
(yi − y)2

(3)

where R is the correlation coefficient, xi is reconstructed data, yi is ground station data from the ith
year, x is the overall average of the reconstructed data and y is the average of the ground station data
for the study period (15 years). In this case, R ranges from −1 to +1.

MAE =

∑n
i=1[xi − yi]

n
(4)

RMSE =

√∑n
i=1(xi − yi)

2

2
(5)

where n is the number of study period years (15 years), yi represents the reconstructed pixel values, and
xi represents the station values. The RMSE is an indicator that reflects the bias in the mean and spatial
variance. The MAE reflects the error magnitude, and low values indicate excellent performance [44].

2.9. Mean LST

After generating a high-precision monthly dataset, Africa’s LST was calculated from MODIS data
to determine the month and year that were the warmest and coldest to help estimate seasonal changes
in Africa. The mean daily temperatures at different satellite overpass times (t) (1:30, 10:30, 13:30, and
22:30) were calculated using the following equation:

Lz
mi =

1
n

p=n∑
p=1

LSz
i (6)

where Lmi represents the mean LST of pixel i at time z and p is a specific day of the year. The mean LST
in Africa at time z was calculated using the following equation.

Lz
m =

1
n

p=n∑
p=1

j=m∑
j=1

S(i)SLZ
pi (7)

where Lz
m is the mean LST at time z, i is the specific day of the month, p is the pixel index, and S(i)

is the area weighting function. SLZ
pi is the LST at a certain time (1:30, 10:30, 13:30, or 22:30) of each

month. The monthly mean LST at time t in Africa during the study period was computed using the
following equation.

Lm =
(
L1:30

m + L10:30
m + L13:30

m + L22:30
m

)
/4 (8)
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where Lm is the mean LST. The warmest and coldest months from 2003 to 2017 were May and
September, respectively. In this study, the overall Africa seasons were classified based on Northern
Hemisphere seasons, because more than about two-thirds of Africa located in Northern Hemisphere.
The classification based on three months per season as follows: spring (end of March, April, May,
and June), Summer (end of June, July, August, and September), Autumn (end of September, October,
November, and December), and Winter (end of December, January, February, and March).

2.10. Trend Analysis of Change (Slope) and the Correlation Coefficient (R)

In this study, to investigate the significant upward and downward trend of annual and monthly
LST time series the nonparametric Mann Kendall test [45,46] was used in Africa for the period 2003–2017.
In addition, the homogeneity of LST data is examined in order to identify break points in the middle
time series using the Pettit test method [47]. These two methods have been proved to be a very useful
tool to quantify the significance and magnitude of change in hydroclimatic data. The methodologies of
these statistical tests are broadly documented [48–50].

The changes in the trends of various time series (monthly, seasonally, and yearly) were considered
to evaluate the variations in the spatiotemporal patterns of the MODIS LST based on Equation (9).
The monthly time series were transformed into a yearly time series. The time series for each pixel
had a length of n = 15, spanning from 2003 to 2017. The rate of change was applied to estimate
the regional trend using linear regression with the effects of the constant bias inherent in the data
considered negligible [51–55]. Thus, we assessed the interannual variations in LST from the slope [51,55].
Equation (10) [56] was used to compute the LST time series correlation coefficient (R) from 2003 to 2017
at different time scale annually, monthly, seasonally, and day and night.
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where n is the range of the study period; Y is the number of years (Y = 1, 2, 3 . . . n, in this paper, where
n = 15); and WY represents the LST in year Y. Notably, WY is computed from Aqua and Terra. When
the slope value approaches 0, there are no significant changes in the trend. A slope > 0 indicates an
increasing trend, and a slope < 0 represents a decreasing trend [57]. The R-value extends from negative
to positive correlations (−1 to +1). An R-value < 0 indicates that the LST is negatively correlated with
the time series, and an R-value > 0 suggests that the LST is positively correlated with the time series.
The significance of the trend was evaluated using the F-Test (CORRCOEF- function) at each pixel, and
a p-value less than 0.05 was considered statistically significant.

3. Results

3.1. Annual Change Analysis

3.1.1. Average LST Change

To understand the overall LST trend we calculate the average of each year, Mann-Kendall test
performed to verify a significant upward or downward trend, and used the Pettitt test to demonstrate
change occurred in Africa, over the period from 2003–2017. The mean annual LST (◦C) was found
to vary across the continent during this period, as shown in Figure 4a. The coldest year was 2006
(26.73 ◦C), and the warmest year was 2016 (27.42 ◦C). The coldest and the warmest years differed by
approximately 0.69 ◦C. We show the main reasons for the decrease in the LST in 2016, which could
be due to the El Niño event [58]. The annual trends of mean temperature by the Mann–Kendall test
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are given in Table 1. In can be observed that trends for LST time series were statistically significant at
α = 0.05 level of significance. LST series show upward and downward trends throughout the study
period, while overall trend Z with positive value means the trend is increasing. However, Pettit’s
procedure (Figure 4b) shows that the significant upward shift for mean temperature has occurred since
2008. The slowdown in global warming has been greatly affected by the El Niño/Southern Oscillation
(ENSO) [59]. In recent years, one of the most important reasons for the increase in temperature and the
deceleration of climate change has been the cooling of the La Niña stage during the evolution of ENSO.
Additionally, other natural activities, such as volcanic eruptions and solar activities, have increased
the surface temperature [60]. The regional distribution of the LST trend (Figure 4c), the correlation
coefficient (Figure 4d) and the significance of the trend (Supplementary Figure S1) in each subregion
were calculated on an annual basis to determine the spatiotemporal variation. The LST displayed the
highest significant warming trend in many countries in northwestern regions, but negative trends
occurred in some eastern and southern regions; moreover, the positive trend in the mountains was
greater than that in wetland areas, such as those surrounding Lake Victoria. The increase in trends with
high significance covers 56% (from >99%*** to >90%*) of highland areas, such as the Atlas Mountains
and the Ethiopian Plate, as well as Burkina Faso.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 25 
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In contrast, the desert zone, especially the northern region (Chad and Niger) and the southern
region in Botswana, was mainly characterized by a nonsignificant decrease in LST during the study
period (Supplementary Figure S1). The LST trend was nonsignificant and reflected cooling in the
regions of Sahara countries such as Algeria and Sudan and regions around water resources such as Lake
Victoria (Figure 4c). A warming trend was observed in the Atlas Mountains near the Mediterranean
Sea, Madagascar and the tip of southern Africa near the Indian Ocean, with a significantly higher trend
than other areas. The frequency distribution of the percentage of the area in Africa that experienced a
warming trend (slope > 0.1) accounted for 76.56% of the total area in highland regions, such as the Atlas
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Mountains, Ethiopia Plateau, and Central Africa (savanna zones and forests land). In contrast, 23.44%
of countries displayed a cooling trend (slope < −0.1), and the area with a significant cooling pattern
(slope > −0.07) covered 6.17% of the total area and was mainly concentrated in mid-to-northern Africa.

Table 1. Mann–Kendall statistics for mean land surface temperature in Africa during 2003–2017.

Time Series Test Z Significate Time Series Test Z Significate

January 0.49 July 2.329 *
February 0.395 August 1.536

March 1.09 September 2.82 **
April 0.098 October 0.74
May 1.54 November 0.59
June 2.083 * December 0.099

Annual 1.68 *

** Significant at α = 0.01, * Significant at α = 0.05.

In 2016, due to a decline in precipitation during winter and early spring in northern Africa (north
of the Atlas Mountains and along the Mediterranean coast of Algeria and Tunisia), the LST experienced
significant warming. However, a nonsignificant decrease (slope > −0.08), which contributed to the
African cooling trend, was observed in the northeastern region of Africa (subregion I). We observed
widespread and relatively strong cooling and nonsignificant cooling in most of the region near the
Red Sea Mountains (slope > −0.06, R > 0.8, p < 0.05). Attention should be paid to the countries in the
northeast because they produce important commercial grain products (sorghum, wheat, millet, etc.)
and cash crops (cotton, gum arabic, and sesame). Furthermore, 24% of the land in Sudan is cultivated,
and it is the most important producing country, representing 17% of the grain production in Africa,
with sorghum accounting for 45% of the total cultivated land. Intensified low temperatures could
cause insufficient heat accumulation during the crop growing period, which would reduce the crop
yield. Moreover, if this rapid cooling continues in the northeast region, it will pose a great threat to
agricultural manufacturing and regional economic growth. The relevant agricultural sectors should be
aware of the possible effects, and suitable preventive and regulatory measures should be taken.

In the North Africa region (subregion II), the mean slope value was 0.03, and the spatial variations
in LST exhibited interesting characteristics: the trend was opposite on either side of the Atlas Mountains
and in North Africa (slope > −0.07, R > −0.8, p < 0.05, Figure 4c,d), except in the highlands of the Atlas
Mountains where the slope was high and change was significant at >99%** (slope > 0.085, R > 0.8,
p < 0.05). Furthermore, Mount Toubkal to the east of the Atlas Mountains has a high elevation and
exhibited an upward trend (Figure 4).

In West Africa (subregion III), the climate was similar in the northwest African part of the Sahara
and the savanna zones. A slight but significant LST trend was observed in southern West Africa (slope
< −0.16, R < −0.88 P > 0.05, Figure 4c,d), which suffered from a decline in vegetation in the last half of
the 20th century, especially in Senegal [61]. Deforestation along the southern coast of West Africa can
cause a significant reduction in rainfall and affect monsoon circulation. This process can also increase
the frequency and intensity of drought, resulting in the degradation of fragile local vegetation, the
shrinking of oasis areas and an increase in the vulnerability of the ecological environment. Finally,
due to the sparse vegetation south of the West region, such as in Nigeria, there is a need for increased
ecological engineering, such as the Three-North Shelterbelt Program. Furthermore, an increase in
vegetation cover is conducive to increasing the soil water content, which can improve local land
desertification and ever-expanding soil erosion. Additionally, in terms of vegetation, the regulation of
greenhouse gases and evapotranspiration at the local scale could generate positive feedback on the
stability of surface temperatures.

In the eastern Africa region (subregion IV), we observed significant warming in coastal areas
such as Somalia, and Madagascar is of great interest (slope > 0.06 R > 0.8, p < 0.05, Figure 4b–d; high
significance of >99%***, Supplementary Figure S1). The significant warming trend in East Africa in
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recent years may be related to increasing global sea surface temperatures [62]. East Africa is considered
the main region for African water resources. For instance, Dutra et al. [63] indicated that a strong
La Niña event was the main cause of the 2010–2011 drought in Horn Africa. Tierney et al. [64] also
suggested that the recent drought experienced in the Horn of Africa was partly due to the prevailing La
Niña conditions in the tropical Pacific, and the authors noted that rainfall variability in eastern Africa
was driven by the Indian Ocean through the alteration of the local Walker circulation. Moreover, many
problems, such as forest fires, deforestation, urban expansion, mining activities, and land degradation,
have occurred in these areas.

The trend in Central Africa (subregion VI, Figure 4c,d) exhibited almost no change (slope >

0.07, R > 0.8, p = 0.05) and low significance > 90*, which may be due to deforestation and increased
greenhouse gases. Forests are capable of decreasing the LST [65–67]. The forests in Central Africa
are the second-largest rainforest block on the planet and the key to the global environment. In South
Africa (subregion V) (Figure 4c,d), the trend in the southwest significantly increased (slope > 0.08,
R > 0.89, p < 0.05, Figure 4c,d), and a nonsignificant decreasing trend was observed in Botswana.
Therefore, surface warming has mainly occurred in the Sahara in Africa, as urbanization has influenced
the regional temperature [68].

3.1.2. Daytime and Night Time Change Analysis

To further investigate the LST variations in detail over Africa, the daytime and nighttime LST
trends were analyzed, as shown in Figure 5, along with the significance of outputs (Figure S2). The
results in Figure S2 show that the night time trend is more significant (>99% ***) than the daytime
trend, with highly significant increasing trends of 8.14% and 3.23%, respectively. However, during
the day, the nonsignificant cooling trends were concentrated in East Africa near the Red Sea, Horn of
Africa, Nile, African lakes and rainforest zone in Central Africa (Figure 5, Supplementary Figure S2).
The frequency distribution of significant warming trends during the day with slopes > 0.076 covered
22.5% of the entire region, especially in Sierra Leone and Liberia, with a significance of >99%***. At
night, the warming trends were highly significant (slope < −0.07, R < 0.8, significant trend > 99%**) in
areas close to the Atlas Mountains, near the outlet of the Nile River basin, in the Namibian Desert and
in Madagascar.

However, at night, the heat released by the surface is absorbed while most heat is radiated back to
space by the atmosphere. In the highlands during the warm period, the trend decreased during the
day and increased at night, which suggests that the warmest temperature occurred at night [69]. This
variation in LST from day to night is indicative of human activities and solar characteristics during the
daytime [70].

3.1.3. Analysis of the Diurnal Temperature Difference

During the day, the distribution of LST varied with surface irradiance as a function of the solar
zenith angle [71]. Figure 6 shows the spatial distribution of the average daytime and nighttime LSTs
and the difference in LST between day and night. We found a significant spatial variation gradient in
LST. Notably, the highest LST occurred during the day (Figure 6a) in North, West, and East Africa in
desert areas (32 ◦C to more than 40 ◦C) but not in the low-latitude areas south of the tropics; however,
this trend differed at night. The Sahara in North Africa has enormous potential for generating solar
energy, as Africa is considered the warmest continent in the world. The relatively high albedo of the
Sahara Desert makes it warmer than other areas due to high solar radiation during the day. In areas
with high levels of sunlight, such as the Sahara, frequent changes in temperature often occur due to
warming and cooling when the local albedo changes [72]. In the Atlas Mountains, the nocturnal LST
at high elevations decreased from south to north, and the spatial variation approximately reflected
the five subregions. This result also suggests that the temperature changes are significantly related
to the proximity to the equator. Figure 6c shows that the largest diurnal difference in LST is mainly
concentrated in the highland areas above 25 ◦C. The high values of the daily differences between day
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and night LST are mainly concentrated in the desert areas of North Africa and South Africa to the west
above 35 ◦C, as shown in Figure 6. The lowest daily LST difference occurred at the low latitudes of
Central Africa (~29 ◦C) over lakes such as Victoria and on the southeast coast (Madagascar). The high
heat capacity of water reduces the diurnal temperature range in relation to that of the surrounding
landscape, with a counterintuitive relationship with albedo. Low heat absorption during the day due
to high albedo should reduce energy availability at night, as demonstrated in the Sahara area [73].

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 25 

areas close to the Atlas Mountains, near the outlet of the Nile River basin, in the Namibian Desert 
and in Madagascar. 

Figure 5. Spatial patterns of interannual LST changes (slope) (a) during the day and (b) at night, and 
correlation coefficients for (c) day and (d) night. 

However, at night, the heat released by the surface is absorbed while most heat is radiated back
to space by the atmosphere. In the highlands during the warm period, the trend decreased during 
the day and increased at night, which suggests that the warmest temperature occurred at night [69]. 
This variation in LST from day to night is indicative of human activities and solar characteristics 
during the daytime [70]. 

3.1.3. Analysis of the Diurnal Temperature Difference 

During the day, the distribution of LST varied with surface irradiance as a function of the solar 
zenith angle [71]. Figure 6 shows the spatial distribution of the average daytime and nighttime LSTs
and the difference in LST between day and night. We found a significant spatial variation gradient
in LST. Notably, the highest LST occurred during the day (Figure 6 a) in North, West, and East Africa 
in desert areas (32 °C to more than 40 °C) but not in the low-latitude areas south of the tropics; 
however, this trend differed at night. The Sahara in North Africa has enormous potential for 
generating solar energy, as Africa is considered the warmest continent in the world. The relatively 
high albedo of the Sahara Desert makes it warmer than other areas due to high solar radiation during 
the day. In areas with high levels of sunlight, such as the Sahara, frequent changes in temperature 
often occur due to warming and cooling when the local albedo changes [72]. In the Atlas Mountains, 
the nocturnal LST at high elevations decreased from south to north, and the spatial variation 
approximately reflected the five subregions. This result also suggests that the temperature changes 
are significantly related to the proximity to the equator. Figure 6c shows that the largest diurnal 
difference in LST is mainly concentrated in the highland areas above 25 °C. The high values of the 

a b

c d

Figure 5. Spatial patterns of interannual LST changes (slope) (a) during the day and (b) at night, and
correlation coefficients for (c) day and (d) night.

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 25 

 

daily differences between day and night LST are mainly concentrated in the desert areas of North 
Africa and South Africa to the west above 35 °C, as shown in Figure 6. The lowest daily LST difference 
occurred at the low latitudes of Central Africa (~29°C) over lakes such as Victoria and on the southeast 
coast (Madagascar). The high heat capacity of water reduces the diurnal temperature range in relation 
to that of the surrounding landscape, with a counterintuitive relationship with albedo. Low heat 
absorption during the day due to high albedo should reduce energy availability at night, as 
demonstrated in the Sahara area [73]. 

Figure 6. Spatiotemporal patterns in the average LSTs over Africa at (a) daytime, (b) nighttime, (c) 
and the difference between day and night LSTs. 

3.2. Seasonal Change Analysis 

Based on the classification of the areas in the Northern Hemisphere, seasonal variations have a 
significant effect on LST across Africa. The mean seasonal LST of the African continent changed 
significantly (see Figure 7a, Supplementary Figure S3). Overall, our results indicate the average LST 
was lowest in summer with high significance from >99%*** to >95%** over 32.5% of the continent, 
especially in southern Africa (29.54 °C); the main reason for this trend is the variation in the seasonal 
temperature. The maximum temperature of 29.47 °C was observed in the winter season in western 
Africa. 

 

Figure 6. Spatiotemporal patterns in the average LSTs over Africa at (a) daytime, (b) nighttime, (c) and
the difference between day and night LSTs.



Remote Sens. 2020, 12, 488 14 of 24

3.2. Seasonal Change Analysis

Based on the classification of the areas in the Northern Hemisphere, seasonal variations have
a significant effect on LST across Africa. The mean seasonal LST of the African continent changed
significantly (see Figure 7a, Supplementary Figure S3). Overall, our results indicate the average LST was
lowest in summer with high significance from >99%*** to >95%** over 32.5% of the continent, especially
in southern Africa (29.54 ◦C); the main reason for this trend is the variation in the seasonal temperature.
The maximum temperature of 29.47 ◦C was observed in the winter season in western Africa.
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In the winter season, the frequency distribution of the warming trend (slope > 0.05) covered 67.67%
of the areas observed to be warm, which was significantly higher than that in the other seasons (45.6%
of the total area displayed a significant trend). Therefore, winter represents an important time for the
changes in the annual average, as the LST increases during winter. The most notable warming trend
occurred in the western region (subregion III), especially in Mauritania (slope > 0.09, R > 0.58), and the
trend was significant at >99%***. In particular, these large-scale rapid warming trends in winter should
be noted. Among these trends, the LST increased in the northwest region, specifically in the central
and western areas (most of the surface slopes > 0.07, R > 0.51, and significance > 95**) and in coastal
areas near the Atlantic. In Madagascar (slope > 0.08, R > 0.72, and high significance levels ranging
from >99%*** to >95%**), the LST increased considerably due to the increase in the temperature of
the Indian Ocean. Across West Africa, the temperature increases occurred in combination with the
increase in global temperatures over the past five decades [74]. However, the effects of global warming
on precipitation in West Africa are difficult to assess in a climate that has been highly volatile over
multiple time scales.

In the spring, a nonsignificant trend covered most of Africa (49.15%) (Figure S3), and a warming
trend dominated in subregions I, III, and VI. Additionally, in northern Africa (subregion II), limited
cooling was noted, with the exception of the warming of the Atlas Mountains. In the central region
(subregion VI), the Atlas Mountains and Madagascar showed dramatic warming trends, where the
slope was greater than 0.05 (see Figure 7b), which explains why the temperature changes in the Indian
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Ocean are still unclear [75]. In addition, in eastern Africa (IV), spring was noted to be the most warmed
season, with a nonsignificant trend, and a negative and highly significant trend was detected in other
seasons. There was rapid warming in the western Horn of Africa (slope > 0.06, R = 0.68, and mostly
nonsignificant). Temperature increases have an effect on forest growth and productivity and can alter
the LST, increase the drought risk, aggravate seasonal degradation, and reduce water availability.
Moreover, the risk of forest fire is increased by drought, which is fueled by shrubs and dry trees.

As indicated in Figure 7 and Supplementary Figure S3, in the summer season across the country, a
significant warming trend was noted. In Northeast Africa (subregion I), the trend decreased and was
nonsignificant, including in south Egypt and south Sudan (slope < −0.09 and R < 0.8), and increased
near the coast of the Red Sea (slope < 0.09 and R < 0.8, and with a significant trend > 99%***). In these
areas, the months from December to February correspond to the end of the growing season. In North
Africa (subregion II), the connection between climate change and rising temperatures may reduce the
coverage of arable land, shorten vegetation periods and reduce crop yields. In the autumn season, the
trend in West Africa (subregion III) increased slightly (slope > 0.07, R > 0.59, and highly significant
trend from >99%*** and >95%**) and decreased in Mauritania with a nonsignificant trend. Significant
trends were observed in southern countries in the Sahel Belt, such as Nigeria. Nigeria, however, is in a
region with a high risk of drought, and as the temperature across Nigeria increased from 1971–2012 [76],
precipitation decreased by 20% from 1901–2000 [77]. The lack of reports of devastating droughts over
the past few decades underscores the need to understand how recent climate changes have affected
droughts in Africa.

3.3. Monthly Average Change Analysis

An analysis of the overall monthly trend and average monthly changes in LST from 2003 to
2017 is presented in Table 1 and Figure 8, respectively, and the significance of the trend is shown in
Figure S4. The Mann Kendall test used to investigate a significant upward or downward monthly
trend throughout the study period was varied, within different levels of significance. It can be seen
that all the 12 months showed an increasing trend for monthly mean temperature, with a total of two
months having statistical significance α = 0.05 (June* and July*), and 0.01 of September**.

The warming trend was significant, especially in the months of April, May, August, and September.
The maximum warming trend and significance level were observed in May (slope > 0.07, significance
was >99%***), and 83% and 64% of the areas exhibited warming and significant trends, respectively.
Relatively significant warming (slope > 0.08, significant trend > 99%***) occurred in the highlands of
North Africa, the coastal areas and the northeast. In September, the temperatures were relatively high,
with a warming trend in 69% of the study area and a significant trend in 72% of the area. The mountains
in Africa are concentrated in the northwest, and the Atlas Mountains experienced significant warming.
In the warmer months with significant trends; however, there was no significant cooling trend. The
broadest cooling trend was widespread close to the water resource and coastal areas of Africa, with a
nonsignificant trend. In the northeast, the cooling trend began in November, December, and January in
South and Central Africa. The monthly changes in LST from 2003 to 2017, which were recorded in
May and September, showed a strong upward and significant trend. In West Africa and the highlands,
the trend was obviously increasing and highly significant at >99%***. The results are consistent with
those of Sylla et al., and such extreme increases are mainly due to intense variations in the local water
cycle [78]. In addition, the lack of rainfall and increasing drought have significantly influenced the
temperature changes in West Africa [79]. The warmest temperatures have had a major negative impact
on the major crops in Africa, such as corn and sorghum [80].
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3.4. Validation

Different methods have been used to reconstruct LST and exhibited good performance in filling
missing pixels, as has been validated by various studies [42,56,81]. In this study, the dataset was
verified using independent in situ measurements that were not used in the reconstruction model
(Figure 1 in Section 2.1). Therefore, all ground-based LST data were used to check the accuracy of
the rebuilt data in regions with drastic changes (see Figure 9 for more information). Six countries
were selected based on warming and cooling trends as critical zones. These countries include the
four most important warming countries (Figure 9a–d) and the two most important cooling countries
(Figure 9e,f). We used the correlation coefficient (R), the RMSE, and the MAE to evaluate the accuracy
of the new LST data model. The correlation coefficient (R) of all stations varied from 0.84 to 0.96
with an average of 0.90. The RMSE ranged from 0.81 ◦C to 1.55 ◦C with an average of 1.10 ◦C. By
comparison, a large RMSE between the ground-based LST and rebuilt LST occurred in some locations
in South Africa (Figure 9, Region f), where the temperature is impacted by the complex terrain and
forest areas. The MAE varied from 0.56 ◦C to 1.11 ◦C with an average of 0.75 ◦C. This result indicates
that the reconstructed MODIS LST dataset, due to the high consistency with in situ information, is
robust and accurate. The main areas used for the review are cases where the local heating/cooling
frequency of the LST changes more than the overall rate and the theoretical error rate is larger than
that in other regions. In addition, the examples show that the reconstruction model proposed here is
efficient in the most likely error domains. As the temperature data are further adjusted to better reflect
the general temperature trend, the trends in other regions should become more accurate. Therefore,
we believe that this approach can guarantee the accuracy of LST data.
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Figure 9. Comparison of the monthly data from ground stations in different countries and the monthly
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To obtain a better understanding of the credibility of the information, the accuracy of the seasonal
predictions was assessed. In the six main areas (Figure 1), the MAE values of the ground-based LST
data and the respective LST data were used to assess the seasonal variations, as shown in Table 2. The
summer season has the largest average MAE of 1.14 ◦C, followed by spring with a value of 1.08 ◦C.
In addition, the MAE values at some of the sites were substantially higher in the summer than in
the other seasons. These sites were mainly located in West Africa (Mauritania), which may be due
to the complicated and variable terrain there, wide range of climatic variations, and the influence
of the Ethiopian Plateau in the western region. These values were comparatively low in four other
areas, including Sudan, Algeria, Congo, and South Africa. The winter MAE ranged from 0.08 ◦C to
3.52 ◦C with an average of 1.03 ◦C. Moreover, the distribution of MAE varied greatly between the
eastern and western regions at the seasonal scale. For all stations in the eastern typical zones (i.e.,
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key zone (a) in northeast region (I) and key zone (b) in the North Africa region (I)), the maximum
MAE values occurred in summer, and the highest values at most sites in the western region occurred
during the summer (i.e., the remaining four zones). Additionally, a comparison of the results suggests
that the mean MAE of the ground-based observation data and the LST data in the eastern region was
significantly higher than that recorded in the western region (mean 1.42 ◦C in eastern region I and
0.98 ◦C in western region III). In the eastern region, the spatial heterogeneity of temperature due to the
complex terrain may be the cause of large errors.

Table 2. The MAEs of the ground stations in six typical zones (Unit ◦C).

Region
Category Region Key

Zone ID Spring Summer Autumn Winter

I

Northeast Region a 62640 0.61 2.23 4.6 0.77
Northeast Region a 62650 1.2 3.5 0.67 0.54
Northeast Region a 62660 0.85 4.01 0.93 0.24
Northeast Region a 62721 0.56 0.06 0.76 1.23

II

North Africa Region b 60611 0.51 2.02 0.66 0.9
North Africa Region b 60620 0.19 0.41 0.16 0.29
North Africa Region b 60640 2.81 0.34 0.33 0.11
North Africa Region b 60680 0.09 0.9 0.08 1.3

III

West Africa Region c 61437 0.71 3.21 0.4 0.26
West Africa Region c 61499 0.44 5.01 0.09 2.43
West t Africa Region c 61612 4.33 0.72 0.45 1.02
West Africa Region c 61630 0.29 4.23 0.4 0.61

IV

East Africa Region d 63820 0.17 0.8 0.32 3.02
East Africa Region d 63832 0.15 2.8 0.2 0.33
East Africa Region d 63862 0.26 0.23 0.06 0.57
East Africa Region d 63894 0.49 1.2 0.55 0.43

V

South Africa Region e 68424 3.26 0.03 1.07 0.94
South Africa Region e 68438 0.36 0.67 0.82 1.3
South Africa Region e 68512 2.01 0.08 0.29 0.92
South Africa Region e 68538 0.23 0.43 0.26 3.52

VI

Central Africa Region f 64601 0.73 0.86 4.6 0.77
Central Africa Region f 64709 0.61 1.02 0.77 0.08
Central Africa Region f 64750 0.17 0.49 1.13 0.21
Central Africa Region f 64860 0.36 0.4 0.89 2.93

Average 0.89 1.48 0.85 1.03

The verification results demonstrate that the dataset is in reasonable agreement with the station
measurements, indicating that the cloud cover interference was well resolved. The accuracy and spatial
and temporal continuity of this dataset are significantly improved compared to that for the monthly
MODIS original data. We believe that this dataset can be used in research on the regional ecological
environment and for monitoring agrometeorological disasters. In a few practical applications, such as
urban heat island monitoring, our current data may not be able to provide sufficient detail due to the
coarse resolution, and this issue should be improved in future work.

4. Discussion

The issue of climate change in Africa is well worth studying. Temperature changes are key factors
influencing and controlling climate change in certain identifiable ways. Africa is certainly a developing
continent, hence, many countries do not have enough weather stations. Consequently, a lack of
weather stations leads to poor data coverage and the inability to record temperature changes across the
continent. Researchers reported that remote sensing data may be a reliable alternative to compensate
for this shortage [82]. In this study, the spatiotemporal changes in LST in Africa for 15 years were
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investigated using long-term sequences of MODIS data. This study we reconstructed LST dataset for
Africa from 2003 to 2017 based on a ground-measured temperature dataset and ground weather station
data from the Terra and Aqua MODIS satellites. To analyze the spatiotemporal variations in LST, we
reconstructed a model based on an LST time series and ground station data and recreated the LST
record. Then, the MODIS LST reconstructed data was analyzed to provide a detailed description of the
significant patterns of LST. The dataset was used to examine the regional characteristics and variations
in LST at the monthly, seasonal and interannual scales. The LST displayed a slight upward trend
(76.56% for warming and approximately 23.44% for cooling, with 56% of the trends being significant).
The strongest significant warming trend was observed in the south, followed by the trends in the
Atlas Mountains and western East Africa (Madagascar). The impacts of human activities, such as
urbanization, industrial and agricultural development, deforestation and wildfires, had a tremendous
effect on warming. However, this trend was more pronounced in fast-growing urban areas such as
South Africa and in areas with abundant water resources. Additionally, a nonsignificant cooling trend
was observed in other parts of Africa; the north became noticeably colder (slope < −0.07, R > −0.85),
and there was a slight cooling trend in West Africa (slope < 0). Moreover, the temperature during the
nighttime changed more significantly than that during the day, which may be closely related to the
changes in solar radiation and the release of large amounts of greenhouse gases by human activities.

Different surface types at different times react to different temperature changes. Our results
suggest that the LST was high during the day, as solar radiation is a major source of heat, leading
to a massive increase in LST (Figure 5). In contrast, the source of heat at night comes from the
heat trapped during the day. Therefore, the trend during the day decreased and the trend at night
increased in the highlands, with a strong correlation between nighttime and daytime patterns [69].
This information helps to better understand local warming and climate regimes, which are important
in shaping agricultural production.

Earth rotation is the determining factor for seasonal change. The rotation of the Earth influences
the monsoon changes, ocean currents, and other factors. Our results showed that there were significant
differences in the LST trends in different seasons. The warming trend in winter was the most significant
compared to that in the other three seasons, especially in West Africa (Mauritania, see Figure 8),
the Atlas Mountains, the Ethiopian Plateau region, and the Sahel due to low rainfall (July, August,
September, and October). Studies by Leroux et al. [83] showed the same results, as the winter season
was warmer than the other seasons. In the summer and spring seasons, the green areas (savannas and
forests) and coastal areas are affected by temperature decreases due to evapotranspiration. The results
are in agreement with those of Kebiao et al. [84], who reported that an increase in green space lowered
the surface temperature of the land. Similar results showed that the rate at which the temperature
changed in the Sahara differed from that in other areas due to the lack of vegetation and water scarcity,
which confirms the possible relationship between temperature and green space and the direct influence
on climate change [80].

Overall, the temperature in the Sahara region is moderate and the temperature change rate
between day and night was recorded to be between low and medium trends. The most significant
month seems to be September, however, except for the Sahara region, the trend of surface temperature
changes across Africa is increasing. This study reveals that the Sahara region has an impact on surface
to show increased or decreased trend of LST which can explain and define the relationship between
LST and vegetation.

In controlled environmental studies, the rate of phonology increases with increasing temperature,
and it does not affect vegetation biomass compared to normal temperatures. The warmest temperature
has a large negative impact on the main crop yield in Africa such as maize and sorghum [50]. The
reduction in vegetation cover results an increased production of atmospheric carbon dioxide and there
is an interaction among vegetation, evaporation, and carbon dioxide, since green land work regulates
the temperature and carbon dioxide in the atmosphere. In the warmest time (months, seasons, and
years) vegetation degradation led to elevated temperatures and carbon dioxide, consequently, the
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rate of increase in carbon dioxide causes global warming. Based on the results obtained in this study,
we may opine and consider the change in surface temperature to be critical, which is important for
predicting the consequences that the globe might face in the wake of climate change. Therefore, remote
sensing technology provides data, basically covering the African continent.

Critical LST changes are important for predicting the consequences that could be faced globally
in the context of climate change events in Africa. In African countries, there are regular droughts
due to insufficient rainfall and high temperatures. When we summarized the LST trend from 2003
to 2017, we observed significant changes in some regions of Africa, including the hottest and coldest
years on record, differences between day and night, and seasonal changes. In addition to climate
change, decreasing vegetation coverage in Africa, which is mainly caused by drought and population
growth, is increasing the LST. Without radical decentralization measures, however, it will be difficult
to prevent or reverse the urbanization process in forest areas as population and economic growth spur
the demand for natural resources [85,86]. The implementation of sustainable development and growth
management strategies can help to limit the reduction in forest areas.

5. Conclusions

Analyzing the spatiotemporal changes in LST is important for understanding the distribution of
warming trends. The spatiotemporal changes in LST were investigated using a long-term sequence of
MODIS data in Africa (2003–2017) in this study. This pixel reconstruction process has hardly been
applied in Africa on such a scale to analyze the spatiotemporal changes in LSTs. An approach for
reconstructing LST was used to get long-term sequence LST data over Africa based on IDW interpolator
and liner regression model. The results of the spatiotemporal analysis of the overall annual average LST
showed that the LST fluctuated and that the warming trend in Africa was remarkably heterogeneous.
LST time series with high spatial and temporal resolutions are crucial for various applications. As
a crucial environmental factor and an important indicator of climate change, the LST in Africa is
increasing gradually. The results suggest that 2016 was a highly significant warming year and 2006 was
a nonsignificant cold year. A highly significant warming trend was generally observed at the diurnal,
seasonal, and monthly time scales. However, the most significant warming LST trend occurred near
the equator in the south and central regions. These significant trends imply increased LSTs despite
the fact that LSTs have varied interannual and spatially. At the diurnal scale, the LST was typically
increased during the day in mid-North Africa compared with the trends in the annual and seasonal
periods. Spatially, a highly significant warming trend was identified in the winter season, especially
in Mauritania.

Moreover, LST changes are key factors that influence and control climate change in different ways.
Thus, government agencies and climate-relevant organizations must pay particular attention to the
changes in the LST to characterize climate change. Urbanization and population growth are also part
of the cause of LST change, in addition to climate change. Without radical decentralization measures,
however, it will be difficult to prevent or reverse the urbanization of forest areas, as population and
economic growth increase the need for natural resources.
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