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Abstract: The probabilistic mapping of landslide occurrence at a high spatial resolution and over a
large geographic extent is explored using random forests (RF) machine learning; light detection and
ranging (LiDAR)-derived terrain variables; additional variables relating to lithology, soils, distance to
roads and streams and cost distance to roads and streams; and training data interpreted from high
spatial resolution LiDAR-derivatives. Using a large training set and all predictor variables, an area
under the receiver operating characteristic (ROC) curve (AUC) of 0.946 is obtained. Our findings
highlight the value of a large training dataset, the incorporation of a variety of terrain variables and the
use of variable window sizes to characterize the landscape at different spatial scales. We also document
important variables for mapping slope failures. Our results suggest that feature selection is not
required to improve the RF modeling results and that incorporating multiple models using different
pseudo absence samples is not necessary. From our findings and based on a review of prior studies,
we make recommendations for high spatial resolution, large-area slope failure probabilistic mapping.

Keywords: slope failures; landslides; light detection and ranging; LiDAR; digital terrain analysis;
machine learning; random forest; spatial predictive modeling

1. Introduction

Slope failures, including landslides, are estimated to cause 25 to 50 fatalities and more than
3 billion dollars in damage each year in the United States alone [1-4]. Based on a review of government
statistics, aid agency reports and research papers, Petley [5] estimates that 32,322 global fatalities from
non-seismically induced landslides occurred between 2004 and 2010. Further, although uncertainty
still remains, it has been suggested that global climate change may result in alterations in the global
and local frequency, intensity and distribution of failures [6-10]. Thus, there is a need to develop
methods to monitor and predict slope failure occurrence that are appropriate for mapping large spatial
extents using available geospatial data and mapped reference locations.

Accurate and consistent geospatial data are of great importance in mapping and predicting
slope failures, as they represent key factors that may contribute to or inhibit slope stability, such as
geomorphologic, lithologic, soil and land use characteristics [11-14]. As early as the 1970s and
1980s, researchers were using geospatial data and statistical modeling to assess these hazards [11-14].
More recently, machine learning methods have been applied to mapping, predicting and modeling
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slope failures [15-25]. Generally, machine learning methods have been successfully applied to a wide
range of predictive modeling and classification tasks in the geospatial sciences, which is at least
partially attributed to their ability to model complex patterns and relationships from a variety of input
data without distribution assumptions [26-28]. Further, the more recent development of deep learning
methods and convolutional neural networks are further expanding our ability to map and model slope
failure features, as recently demonstrated by Sameen et al. [29] and Wang et al. [30].

Development of light detection and ranging (LiDAR) technologies and their application to mapping
bare earth terrains over large spatial extents with high spatial detail has improved our ability to quantify
and map geomorphic features and processes [31-34]. In the United States, the federal government has
implemented the 3D Elevation Program (3DEP) (https://www.usgs.gov/core-science-systems/ngp/3dep)
with the goal of providing LiDAR coverage for the entire country, excluding Alaska, which will be
collected using interferometric synthetic aperture radar (InSAR) data [35,36]. Further, the United States
Geologic Survey (USGS) is currently curating a nation-wide landslide inventory with contributions
from local, state and federal agencies (https://www.usgs.gov/natural-hazards/landslide-hazards) [37].
Given the risks that slope failures pose and these recent developments in availability of quality digital
terrain data, landslide inventories and computational and machine learning methods, we argue that
there is a need to develop methods that leverage these data and algorithms to map and predict slope
failures over large spatial extents.

This research explores the mapping of slope failures throughout the entirety of the 10,765 km?
Northern Appalachian Ridges and Valleys Major Land Resource Area (MLRA) within the state of
West Virginia. We make use of terrain data derived from LiDAR, additional geospatial data and the
position of mapped slope failure head scarps interpreted from LiDAR-derivatives. The objective of
this research is to provide recommendations for large-area slope failure mapping from LiDAR and
additional geospatial data as highlighted by our results and previous studies. We specifically address
the following questions:

(1). Does combining multiple models using different sets of pseudo absence data improve slope
failure prediction? The use of pseudo absence samples is an approach to generate negative (i.e.,
no slope failure) examples and is explained in more detail in the Methods section.

(2). Does incorporating additional variables representing lithology, soil characteristics and proximity
to roads or streams improve the model in comparison to just using terrain variables?

(3). How does reducing the training sample size impact model performance?

(4). How does predictor variable feature selection impact model performance?

(5). What variables are most important for predicting slope failure occurrence?

(6). Does calculating terrain variables using multiple window sizes improve the prediction?

Modeling is conducted using the random forest (RF) algorithm to obtain a probabilistic output
as opposed to a classification of slope failure extents. In this study, we define slope failures as the
movement of a mass of rock, earth or debris down a slope [38]. Our goal is to predict the likelihood of
slope failure occurrence broadly, regardless of material or movement type. Debris flows, lateral spread
and slides, both translational and rotational, are predicted.

1.1. Mapping Slope Failures and Susceptibility

Remotely sensed data, other ancillary geospatial data and machine learning have already been
applied to mapping the extent of slope failures or predicting susceptibility [12,15,17-24,39-51]. Optical
data have been used to map the extent of failures that have a distinct spectral signature, such as debris
flows and other events that expose bare earth material [51-53]. For example, Stumpf and Kerle [51]
combined geographic object-based image analysis (GEOBIA), very high spatial resolution imagery and
the RF algorithm to map failures over multiple study areas. There focus was to assess the use of optical
data for disaster response and the mapping of recent events [51].
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Since many failures may not have a distinct spectral signature due to age, canopy cover or
spectral confusion with other landscape features and because there is a need to assess future risk
along with inventorying existing failures, it is common to attempt to map the likelihood of occurrence
or the future susceptibility to failure [11,15,20,21,25,33,42,45,54,55]. For example, Trigilia et al. [54]
compared logistic regression (LR) and RF for shallow landslide susceptibility mapping from a variety
of terrain, lithologic and land use variables. Using terrain variables only, Goetz et al. [45] compared
generalized additive models (GAM), generalize linear models (GLM), weights of evidence (WOE),
support vector machines (SVM), RF and bootstrap aggregated classification trees (bundling) with
penalized linear discrimination analysis (BPLDA) for generating susceptibility models. Duo et al. [25]
noted the value of SVM for predicting earthquake and rainfall induced landslide susceptibility in
comparison to four other methods. We expand upon such studies by exploring the application of
LiDAR, a variety of predictor variables and RF machine learning over a large spatial extent, which is
uncommon in the literature. Although this study focuses on probabilistic mapping using the RF
traditional machine learning method, is should be noted that deep learning methods that rely on
convolutional neural networks have been explored for slope failure mapping and predictive tasks in
several recent studies [25,29,30,56-61].

1.2. Random Forest for Spatial Predictive Modeling

RF is a nonparametric, ensemble decision tree (DT) method capable of accepting continuous
and categorical predictor variables to perform classification, regression and make probabilistic
predictions [62]. DTs rely on recursive binary splits of the data based on learned decision rules to divide
the data into more homogenous subsets [63]. Ensemble methods combine multiple decision trees to
potentially improve upon the predictive performance of a single tree [27,64]. For RF specifically, each
tree in the ensemble is trained using a subset of available training samples, selected using bootstrapping
or random sampling with replacement. Additionally, instead of defining an optimal split using any
variable, only a subset of the predictor variables will be available at each node or split. The goal is
to decrease the correlation between trees in the ensemble by providing each with a different set of
training data and input features, resulting in a large number of weak classifiers that, when combined,
act as a strong model with the ability to generalize well and not overfit to the training examples [62].
RF has many positive attributes for predictive modeling including its ability to accept a variety of
input predictor variables that may be correlated and/or scaled differently. Also, it is generally robust
to complex feature space, can be trained quickly, can accept categorical predictor variables and can
provide an assessment of variable importance based on the withheld or out-of-bag (OOB), data in each
tree [27,62].

The RF algorithm has been applied to many mapping and spatial predictive modeling tasks
with remotely sensed and/or geospatial data as input [15,27,51,52,54,65-68]. It has also been used
extensively to obtain probabilistic predictions as opposed to classification products. For example,
Evans and Cushman [65] assessed the algorithm for predicting conifer tree species occurrence. Maxwell
et al. [69] assessed the algorithm for predicting the likelihood of palustrine wetland occurrence based
on topographic variables, while Strager et al. [70] used the algorithm to predict the likelihood of surface
mine expansion.

Many studies have already assessed RF for probabilistic mapping of landslide occurrence or
susceptibility (for example, References [15,21,45,55,68]); Goetz et al. [45] document strong performance
for RF when applied to slope failure susceptibility modeling, as it generally outperformed the other
tested methods and was not negatively impacted by a high-dimensional feature space and highly
correlated variables. Trigila et al. [54] note the convenience of incorporating categorical predictor
variables without the need to generate dummy variables. Taalab et al. [21] document that the algorithm
can be used for both probabilistic susceptibility mapping and differentiation of failure types. Thus, prior
research generally suggests that RF is an appropriate algorithm for slope failure mapping and based
on our previous experience and also a review of the literature we suggest that it is an optimal method
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to investigate this mapping problem over large spatial extents with a variety of input variables. Given
that many prior studies have noted the value of this algorithm for slope failure mapping and modeling
and its many positive characteristics as described above, no additional methods were investigated.
Further, as highlighted in our review of the literature, prior studies already offer a comparison of
different machine learning methods for this mapping task; as a result, algorithm comparison was not
pursued in this study.

1.3. LiDAR and Terrain Variables for Mapping Slope Failures

LiDAR is an active remote sensing method that relies on laser range finding to generate accurate
horizontal and elevational coordinates at a high spatial resolution from a terrestrial, airborne or satellite
platform. An emitted photon, generally in the visible or near infrared spectrum, can strike an object
and a portion of the energy can reflect back to the sensor for detection. Further, a single laser pulse can
also be divided into multiple returns, allowing for vegetation canopy penetration and the mapping of
subcanopy terrain features, in contrast to other elevation mapping methods, such as InNSAR. Other than
laser range finding, LiDAR also relies on global positioning system (GPS) measurements to reference
the point cloud to a geospatial datum and an inertial measurement unit (IMU), which measures the
orientation and motion of the aircraft [71]. As highlighted in the review by Jaboyedoff et al. [32], LIDAR
offers detailed terrain and geomorphic information for characterizing and detecting the topographic
signature of slope failure; however, there are some limitations, such as the expense and time required
to collect and post-process the data, the lack of world-wide open and freely available data, the absence
of available historic LIDAR data due to the only recent development of these technologies for mapping
large spatial extents, and variability in the data in regards to point density and collection conditions.

A variety of terrain variables can be calculated from raster-based digital terrain models (DTMs),
which can be generated from LiDAR data; further, Goetz et al. [72], Goetz et al. [45] and Mahalingam
et al. [73] all suggest that terrain variables are highly important in predicting landslide occurrence
and susceptibility. Goetz et al. [72] suggest that empirical or trained models that incorporate terrain
variables often outperform physical models that attempt to model slope failure susceptibility based
on our understanding of the physical processes that produce them. Table 1 provides some example
terrain variables that have been used in different slope failure mapping and modeling studies.
Note that this is not an exhaustive list and is simply meant to provide some examples. Also, many of
these studies incorporate additional, non-terrain variables, such as variables relating to lithology;,
soil characteristics or land use, that are not summarized here. A review of these papers suggests that
several variables have consistently been used in slope failure studies, such as topographic slope [74],
topographic aspect [74], topographic wetness index (TWI) [75] and measures of curvature, such as
profile curvature (PrC)—which measures curvature in the direction parallel to maximum slope—and
plan or planform curvature (PIC), which measures curvature in the direction perpendicular to the
maximum slope [76,77]. However, it does not appear that a consistent or optimal set of terrain variables
have been determined. Also, many of these variables are calculated based on a neighborhood or
moving window analysis [69,76-78] and studies have not generally investigated the effect of altering
this window size. Thus, there is a need for further investigation of terrain variables for mapping and
predicting slope failures.
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Table 1. Example of terrain variables used in slope failure mapping or susceptibility studies .

Study 2 Terrain Variables Year Algorithm(s)
Lee et al. Curvature (non-directional), Slope 2004 LR
Ayalew and Yamagishi Aspect, Elevation, Slope 2005 LR
Lee Aspect, Curvature (non-directional), Slope 2005 LR
Yao et al. Aspect, Curvature (Profile), Elevation, Slope, TWI 2008 SVM
Yilmaz Aspect, Elevation, Slope, SPI, TWI 2009 ANN, FR, LR
. ., Aspect, Curvature (Plan), Curvature (Profile), Elevation,
Marjanovic¢ et al. Slope, Slope Length, TWI 2011 SVM
. .. CBL, CI, Downslope Distance Gradient, Elevation, HLI,
Ballabio and Sterlacchini Tnternal Relief, MPI, Slope, SPI, TWI 2012 SVM
Tien et al. Aspect, Relief Amplitude, Slope 2012 DT, NB, SVM
Aspect, Curvature (Plan), Curvature (Profile), Curvature
Catani et al. (Classified), FA, Second Derivative of Elevation, Slope, 2013 RF
TWI
Pradhan Curvature (Plan), Elevation, Slope, TWI 2013 ANN, DT, SVM
) BPLDA, GAM,
Gootz et al. Aspect, Curvature‘ (Plan), Curvature (Profile), CH, CI, 2015 GLM, RE, SVM,
Elevation, FA, Slope, TR, TWI
WOE
.. Aspect, Curvature (non-directional), Curvature (Plan),
Trigila et al. Curvature (Profile), FA, Slope, SPI 2015 LR, RF
. ANN, DA, FR,
Mahalingam et al. Slope, SPI, SR, TR, TWI 2016 LR, SYM, WOE
. Aspect, CTMI, Curvature (Plan), Curvature (Profile),
Pourghasemi and Kerle Elevation, Slope, TWI 2016 RF
Aspect, Curvature (Plan), Curvature (Profile), Elevation, Boosted DT, DT,
Youssef et al. Slope 2016 GLM, RF
X . ANN, Maxent,
Chen et al. Aspect, Curvature (Profile), Curvature (Plan), Elevation, 2017 SVM, Ensemble
Slope, TWI
of methods
Aspect, Curvature (Plan), Curvature (Profile), Elevation, Boosted DT, DT,
Hong etal. Slope, SP1, STI, TWI 2018 RE
Kim et al. Aspect, Curvature (non-directional), Slope, SPI, TWI 2018 Boosted DT, RF
Aspect, CTMI, Curvature (non-directional), Curvature
Taalab et al. (Plan), Curvature (Profile), Landform, Slope, TWI 2018 RF
Aspect, Curvature (Plan), Drainage Density, Elevation, ANN, CFE, InV,
Dou et al. Slope 2019 PLER, SVM

5 of 27

1 CBL = Channel Base Level, CH = Catchment Height, CI = Convergence Index, FA = Flow Accumulation, HLI = Heat
Load Index, MPI = Morphological Protection Index, SPI = Stream Power Index, SR = Slope Roughness, STI = Sediment
Transport Index, TR = Topographic Roughness, TWI = Topographic Wetness Index, ANN = Artificial Neural Network,
BPLDA = Bootstrap Aggregated Classification Trees with Penalized Linear Discrimination Analysis, CF = Certainty
Factors, DA = Discriminant Analysis, DT = Decision Trees, FR = Frequency Ratio, GAM = Generalized Adaptive
Model, GLM = Generalized Linear Model, InV = Information Value, LR = Logistic Regression, Maxent = Maximum
Entropy, NB = Naive Bayes, PLFR = Probabilistic Likelihood-Frequency Ratio, RF = Random Forest, SVM = Support

Vector Machine, WOE = Weights of Evidence. 2 Studies are cited from [15-17,19-25,41,42,45,46,48,49,54,55,68,73].

2. Methods

2.1. Study Area

The 10,765 km? study area extent is defined relative to the Northern Appalachian Ridges and
Valleys MLRA within the state of West Virginia (Figure 1). MLRAs are defined based on common
patterns of physiography, lithology, soil, climate, water resources and land use [79]. This paper
highlights findings for this specific MLRA; however, it is part of a larger project to assess slope failure
occurrence across the entire state of West Virginia [80], which is ongoing at the time of writing. We have
chosen to produce separate models for each MLRA in the state on the assumption that patterns and
variable importance may vary based on landscape conditions and that a single model for the entire
state would be inappropriate.
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Figure 1. (a) Study area extent defined by Northern Appalachian Ridges and Valleys Major Land
Resource Area (MLRA). (b) Location of study area within United States. MLRA boundaries were
obtained from the Natural Resources Conservation Service (NRCS) of the United States Department of
Agriculture (USDA).

The Northern Appalachian Ridges and Valleys MLRA is characterized by an eroded mountain
belt of long, linear ridges and valleys, a pattern resulting from Paleozoic mountain building, folding
and thrust faulting. Rock units vary in age from Precambrian to early Mississippian, with more
recently formed units occurring in the western extent of the study area. The Precambrian exposure of
metamorphosed basement rock occurs only in the extreme eastern extent of the study area in the Blue
Ridge Mountains. The mapped extent also contains a portion of the Great Valley, which is relatively
flat and dominated by Cambrian and Ordovician limestone, dolomite and shale. Within the folded
mountain belt, valleys are commonly composed of shale and siltstone while ridges are supported by
resistant sandstone and limestone [81-83]. Based on the 1:250,000 scale geologic map of West Virginia
by Cardwell et al. [81], 30 geologic formations occur throughout the extent. The landscape is dominated
by a trellis stream network with elevations ranging from 0 to 1400 m and an average elevation of 540 m.
Mean annual temperature is near 0°C and yearly total precipitation is around 65 cm, though this can
vary greatly based on elevation and topographic aspect; for example, east-facing slopes tend to receive
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less precipitation than west-facing slopes due to a rain shadow effect. The region is dominated by
oak-pine and oak-history forests, with large expanses of agriculture in the Great Valley [82].

2.2. Reference Data

Reference data were generated based on manual interpretation of hillshades and slopeshades
produced at a 1 m spatial resolution. These raster-based representations of the terrain were derived
from publicly available LiDAR data that cover the entire study area extent. These data were funded
by the Federal Emergency Management Agency (FEMA) and are made freely available as part of the
3DEP program (https://www.usgs.gov/core-science-systems/ngp/3dep) and can also be obtained from
the West Virginia GIS Technical Center and West Virginia View (http://data.wvgis.wvu.edu/elevation/).
Hillshades are generated by modeling illumination over the landscape based on topography and the
position of an illuminating source in the local sky [84] while slopeshades are created from a topographic
slope model where dark shades represent steep slopes and light shades represent shallow slopes.
In contrast to hillshades, slopeshades are illumination invariant, as they do not rely on modeling
brightness relative to a specific illumination position [75,85].

Each feature was mapped as a point at the interpreted initiation location of the failure, generally
the head scarp. So, each feature was mapped as an individual point as opposed to multiple points or
an areal extent due to the difficulty of accurately mapping the full extent of the failure consistently
and to reduce spatial autocorrelation in the training data. This process was completed by two trained
analysts under the supervision of a professional geomorphologist. Debris flows, lateral spread and
slides were mapped and all locations were interpreted by one analyst then verified by the other. A total
of 1,798 slope failures were generated using this method. Examples are provided in Figure 2.

@ Examples
Slides: a, b, ¢, g

Figure 2. Example slope failure initiation points used to train the model. The hillshade was created
from a 1 m resolution LiDAR-derived digital terrain model (DTM).

RF requires both presence and absence data to create a probabilistic prediction [62]. We generated
pseudo absence data as 100,000 random points throughout the study area extent. Any random point


https://www.usgs.gov/core-science-systems/ngp/3dep
http://data.wvgis.wvu.edu/elevation/

Remote Sens. 2020, 12, 486 8 of 27

that was within 30 m of a slope failure observation was removed. Also, additional slope failure
data were obtained from the West Virginia Department of Transportation (WVDOT) and the West
Virginia Geologic and Economic Survey (WVGES) and any random points that occurred within these
mapped extents or within 30 m of them were removed. Given that a complete inventory of failures was
generated, we argue that it is unlikely to randomly select a slope failure feature in the pseudo absence
data. Similar methods were used by Strager et al. [70] for predicting future surface mine extents and
Maxwell et al. [69] for predicting palustrine wetland occurrence.

2.3. Predictor Variables

Table 2 provides a list of all terrain predictor variables used in the study. A total of 43 variables are
include, of which 32 represent terrain variables calculated from the LIDAR-derived DTM. All modeling
was conducted at a 2 m spatial resolution. Most of the terrain variables were calculated within ArcGIS
Pro 2 using built-in tools, such as the Slope Tool [86] or the ArcGIS Geomorphometry & Gradient
Metrics Toolbox [87]. All curvature measures were produced using the Morphometric Features module
from the open-source System for Automated Geoscientific Analysis (SAGA) software package [88-91].
Since many raster-based terrain calculations rely on local neighborhoods or moving windows to
measure local patterns and compare a cell to its neighbors, the window size and shape can have an
impact on the resulting measures and representation of the terrain [92,93]; therefore, we used multiple
window sizes to calculate all terrain variables that rely on moving windows in order to capture patterns
at multiple scales. Specifically, we used circular windows with radii of 7, 11 and 21 cells. These scales
were decided upon based on measures of ridge-to-valley distance across the study area extent The
curvature measures calculated in SAGA rely on second-order polynomials that can accept moving
windows of variable size [89-91].

Table 2. Description of terrain variables used in study. Abbreviations defined in this table will be used

throughout the paper.
. . 3
Variable 1 Abbreviation Description 2 Window Radius

(Cells)

Slope Gradient Slp Gradient or rate of maximum change in Z as 1

degrees of rise

Mean Slope Gradient SlpMn Slope averaged over a local window 7,11,21

Linear Aspect LnAsp Transform of topographic aspect to linear variable 1
Profile Curvature PrC Curvature parallel to direction of maximum slope 7,11,21
Plan Curvature Ple Curvature perpendicular to direction of maximum 711,21

slope

Profile curvature intersecting with the plane
Longitudinal Curvature LnC defined by the surface normal and maximum 7,11,21
gradient direction

Tangential curvature intersecting with the plane
Cross-Sectional defined by the surface normal and a tangent to the

Curvature csc contour - perpendicular to maximum gradient 711,21
direction
Slope Position SP Z —Mean Z 7,11,21
Topographic Roughniess TR Square root of standarc.l deviation of slope in local 711,21
window
Topographic Dissection TD % 7,11,21
Surface Area Ratio SAR W@g;wo) 1
; ; Mean Z—Min Z
Surface Relief Ratio SRR T VA 7,11,21
Site Exposure Index SEI Measure of exposure based on slope and aspect 1
Heat Load Index HLI Measure of solar insolation based on slope, aspect 1

and latitude

1 Variables are cited from [84,85,90,91,94-101]. 2 Max = maximum, Min = minimum, Z = elevation. > A window
radius of 1 is equivalent to a 3 by 3 cell window.
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Other than terrain variables, we also calculated 11 additional features (Table 3). Distance to
the nearest US, state and local road were calculated as three separate variables using the Euclidean
Distance Tool in ArcGIS Pro 2 [86]. We also calculated the distance from all mapped streams using
the same method. To further characterize these factors, we also calculated cost distance to roads and
streams by weighting the distance relative to topographic slope, since failures may arise along steep
slopes resulting from road construction or stream incision. This was accomplished using the Cost
Distance Tool in ArcGIS Pro 2 [86].

Table 3. Additional predictor variables. Abbreviations defined in this table will be used throughout

the paper.
Variable Abbreviation Description
Distance to Roads Euclidean distance to nearest US, state
(US, state and local) USD, StD, LoD or local road
Cost Distance to US Roads Euclidean distance to nearest US, state
(US, state and local) USC, SC, LoC or local road weighted by slope
Distance from Streams StrmD Distance from mapped streams
Cost Distance from Streams StrmC Distance from mapped streams
weighted by slope
Geomorphic Presentation Lith Classification of rogk formatlor}s
based on geomorphic presentation
Dominant Soil Parent Material DSPM Dominant parent material of soil
Soil Drainage Class SDC Drainage class of soil

The three remaining variables are categorical and represent lithological and soil characteristics.
A professional geomorphologist categorized all geologic formations in the extent based on their
geomorphic presentation as defined in Table 4. We did not include the individual formations as a
predictor variable due to the large number of categories. To characterize the soils, a soil scientist
augmented the Soil Survey Geographic Database (SSURGO) [102] to derive measures of dominant
soil parent material (DSPM) and drainage class. The derived categories are also listed in Table 4.
Other than just providing additional information for the predictive modeling, including these variables
also allowed us to incorporate expert knowledge into the prediction.

Table 4. Defined classes for lithologic and soil predictor variables.

Geomorphic Presentation Dominant Soil Parent Material Soil Drainage Class
(Lith) (DSPM) (SDO)

Low relief carbonates Colluvium Excessively drained
Low relief mudrock Disturbed areas Somewhat excessively drained
Major ridge formers Lacustrine Well drained

Moderate or variable quartzose Marl Moderately well drained
ridge formers
Moderate relief clastic rocks Mine regolith Somewhat poorly drained
Other Old alluvium Poorly drained
Shaley units with interbedded Recent alluvium Very poorly drained
sandstone

Residuum, acid clastic

Residuum, calcareous clastic
Variable low ridge or hill forming

carbonates with chert or sandstone Residuum, Limestone

Residuum, metamorphic/igneous

Water
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As highlighted in the literature review above, a consistent set of variables has not been determined
for slope failure likelihood prediction tasks. The variables in this study were selected based on
suggestions from the literature, initial experimentation, data availability and expert knowledge.
Although a larger number of features could be evaluated, we argue that the variables generated for
this study offer a detailed representation of the geomorphic, soil and lithologic characteristics of the
terrain even given data availability and additional limitations.

All raster-based variables were then extracted at the mapped slope failure and pseudo absence
point locations using the Extract Multi Values to Points Tool in ArcGIS Pro 2 [86] in order to generate
tables from which to extract training and validation data.

2.4. RF Modeling and Validation

The randomForest package [103] within the open-source data analysis software R [104] was
used to generate and validate the RF models. Of the 1798 available slope failure samples, 1500 were
randomly selected to use for training while the remaining 298 were withheld for validation. As one
goal of this study is to assess whether incorporating a variety of pseudo absence samples can improve
the model performance and also to avoid model bias resulting from an imbalanced training sample,
we paired the 1500 training samples with five sets of non-overlapping pseudo absence samples using
random sampling without replacement, resulting in five training sets containing all 1500 slope failure
samples and a different set of pseudo absence samples. This process resulted in five training datasets,
each with 3000 samples and a validation dataset with 596 samples, all of which contain an equal
number of samples in the presence and absence class. A model was then trained using each training
set and 500 trees, as this was found to be adequate to stabilize the results. The mtry parameter,
which defines the number of variables available for splitting at each node in the multiple decision trees,
was optimized using 5-fold cross validation and 10 values were tested. Hyperparameter optimization
was performed separately for each model. All five models were then combined into a single model
containing 1500 trees. In order to compare models using less variables or training samples, models
were also generated using feature and training sample subsets.

Variable importance measures produced by RF have been shown to be biased if variables are
highly correlated [105,106]. As demonstrated in Figure 3, which compares correlation between a subset
of the terrain variables based on Spearman’s rho [107], variable correlation is an issue in this study.
Further, calculating the same measure at different window sizes result in sets of highly correlated
variables; for example, Spearman’s rho between the three SP measures were all above 0.80. So, we used
a measure of variable importance based upon conditional random forests that takes into account
correlation in the importance calculation as implemented in the R party package [105,106]. In order to
explore the impact of feature space reduction, we used a feature selection method from the rfUtilities R
package [65], which selects variables using RF-based variable importance estimates.
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Figure 3. Correlation between a subset of terrain variables. Cross sectional curvature (CSC), topographic
dissection (Diss), longitudinal curvature (LnC), planform curvature (PLC), slope position (SP), surface
relief ratio (SRR) and terrain roughness (TR) were calculated using a 7-cell radius circular window. Both
the size and color of the circle symbol represent the magnitude of correlation based on Spearman’s rho.

Since our product is a probabilistic prediction as opposed to a classification, models are assessed
and compared using receiver operating characteristic (ROC) curves and the area under the ROC curve
(AUC) measure as implemented in the pROC R package [108-110]. An ROC curve plots the true
positive rate against the false positive rate at various thresholds. The AUC measure is the area under
the ROC curve and is equivalent to the probability that the classifier will rank a randomly chosen
positive (true) record higher than a randomly chosen negative (false) record. Generally, values over
0.9 indicate excellent prediction rates [108-110]. To statistically compare models, we also made use
of Delong’s test for two ROC curves, which provides a p-value for statistical comparison of ROC
curves [109,111]. Note that a balanced validation sample was used in this study, as ROC curves have
been shown to be misleading when applied to imbalanced datasets [112].

To further assess the classification results, we calculated overall accuracy and the Kappa statistic
using a 0.5 probability threshold. We also calculated precision, recall, specificity and the F1 score
relative to the slope failure class using the number of true positive (TP), false positive (FP), true negative
(TN) and false negative (FN) withheld validation samples. Precision represents the portion of the
predicted slope failures that were slope failures while recall represents the ratio of correctly predicted
slope failures relative to the total number of slope failures. Specificity represents the proportion of not
slope failure locations that are correctly identified as not slope failure. The F1 score is the harmonic
mean of precision and recall [112]. The equations for these metrics are provided below in Equations
(1)—(4). Lastly, to provide an additional measure of performance that does not rely on selecting a
threshold, we also calculated the area under the precision-recall curve (AUC (PRC)) using the PPROC
package in R [29,113,114].

... TP
Precision = TP L Fp 1)
TP
Recall = TP + FN )
T
Specificity = N (©)]

TN + FP
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Recall x Precision
F1 Score = 2 x Recall + Precision ()

In order to make predictions across the full spatial extent and at each 2 m cell location, the trained
model was applied to the raster-based predictor variables using a combination of R and Python scripts.
Since all predictor variables across the full study area extent gridded at a 2 m cell size sum to several
terabytes of data, it was not possible to generate the prediction across the entire extent at once. Instead,
predictions were made over 858 4-by-4 km tiles with a 100 m overlap to avoid data gaps. Also, terrain
variables were derived for each tile prior to performing the prediction then subsequently deleted,
which allowed for the model to be generated without excessive storage requirements. Once all tiles
were processed, they were merged to generate a continuous probabilistic prediction across the entire
study area extent.

3. Results

3.1. Impact of Combining Multiple Models

AUC calculated from the withheld validation samples for each separate model and the combined
model are provided in Table 5. AUC varied by only 0.006 between all the models; further, based on
Delong’s test statistical difference between pairs of models was only observed between Model 5 and
the combined model (p-value = 0.021). This generally suggests that providing a wide variety of
pseudo absence examples to train multiple models did not improve the classification performance;
thus, the sampling scheme used here was not necessary to stabilize the prediction. This result if further
support by the AUC (PRC) metric and all threshold-based metrics, as metrics were similar for all
models and the combined model.

Table 5. Results for each model and the combined model. Lower and upper bounds represent a
95% confidence interval calculated using 2000 stratified bootstrap replicates. X indicates statistically
significantly different ROC curves at a 95% confidence level.

Model 1 Model 2 Model 3 Model 4 Model 5 Combined

AUC 0.945 0.942 0.942 0.946 0.940 0.946
AUC Lower 0.928 0.925 0.926 0.925 0.924 0.930
AUC Upper 0.962 0.958 0.959 0.959 0.957 0.962
AUC (PRO) 0.945 0.943 0.945 0.944 0.942 0.949

Kappa 0.748 0.748 0.738 0.738 0.715 0.742
Overall Accuracy 87.4% 87.4% 86.9% 86.9% 85.7% 87.1%
Precision 0.839 0.833 0.831 0.831 0.816 0.834
Recall 0.926 0.936 0.926 0.926 0.923 0.926
Specificity 0.822 0.812 0.812 0.812 0.792 0.815
F1 Score 0.880 0.882 0.876 0.876 0.866 0.878
Model 1
Model 2
Model 3
Model 4
Model 5 X

Combined
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Figure 4 represents the distribution of predicted probabilities for the withheld validation data
using a kernel density function. In support of the 0.946 AUC value obtained for the combined model,
this plot suggests a strong separation between slope failure samples and random pseudo absence
data. The median probability for the slope failure locations is 0.84 while the median probability for
the pseudo absence points is 0.15. Of the slope failure points, 92.6% have a predicted probability
higher than 0.50 while only 18.5% of the pseudo absence data have a probability higher than 0.50.
Using a probability threshold of 0.5, the overall accuracy for predicting the validation data is 87.1%
and the Kappa statistic is 0.742. For the slope failure class specifically, precision is 0.834 and recall is
0.926. The resulting prediction across the entire mapped extent and some example areas at a larger
scale are provided in Figure 5. Red areas are those that are predicted to have a high likelihood of
slope failure occurrence while green areas are predicted as having a low likelihood. Based on a visual
inspection, the figure suggests a strong relationship between predicted occurrence and topographic
slope and incision.

Density

Pseudo Absence
|:| Slope Failures

0
0.00 0.25 0.50 .7 1.00
Probability

Figure 4. Kernel density plot of predicted probabilities for the validation samples.



Remote Sens. 2020, 12, 486 14 of 27

81°W 80°W 79°' W 78° W

Z
z %,
(& o
(3p]

Z
Z o
o o
@® 3¢}
[3p]

81°W 80° W 79°W 78°W

Figure 5. Resulting slope failure likelihood model created using the five combined models for (a) the
entire mapped extent and (b—e) more detailed examples at larger scales.

3.2. Removing Variable Groups

Table 6 provides comparisons for models using subsets of the predictor variables while the ROC
curves are visualized in Figure 6. These models were created using five combined models with
different pseudo absence data, as described above. At the 95% confidence level statistical difference
was noted between all experiments other than those using all the variables and just the terrain variables
(p-value = 0.479). Further, using all variables provided only a 0.002 improvement in AUC and a 0.003
improvement in AUC (PRC) in comparison to only using the terrain variables. The model using all
variables provided the best performance while models trained with only the ancillary data provided
the poorest performance, which highlights the value of including terrain variables. Further, overall
accuracy was lower than 80% and the Kappa statistic was lower than 0.60 for all models that did not
incorporate terrain variables. The lithologic, soil, distance and cost distance variables were not able to
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provide a statistically comparable performance to the results obtained using only the terrain data and
combining these variables with the terrain data did not statistically improve the model performance.
As previously noted by Duo et al. [25], LIDAR-derived terrain variables are valuable for slope failure
predictive modeling tasks.

Table 6. Comparison for different feature spaces. Lower and upper bounds represent a 95% confidence
interval calculated using 2000 stratified bootstrap replicates. X indicates statistically significantly
different receiver operating characteristic (ROC) curves at a 95% confidence level.

Soil/Lithology = Roads/Streams  All Except Terrain Just Terrain All Variables

Number of
Variables 3 8 1 32 3
AUC 0.677 0.830 0.856 0.944 0.946
AUC Lower 0.656 0.807 0.834 0.927 0.930
AUC Upper 0.698 0.853 0.878 0.961 0.962
AUC (PRO) 0.661 0.791 0.838 0.946 0.949
Kappa 0.218 0.527 0.560 0.732 0.742
Overall Accuracy 60.9% 76.3% 78.0% 86.6% 87.1%
Precision 0.572 0.728 0.738 0.830 0.834
Recall 0.862 0.842 0.869 0.919 0.926
Specificity 0.356 0.685 0.691 0.812 0.815
F1 Score 0.688 0.781 0.798 0.873 0.878
Soil/Lithology X X X X
Roads/Streams X X X
All Except Terrain X X
Just Terrain
All Variables
>
1.00
4
/
I
'
4
e
4
4
s
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4
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4
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=
>
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Figure 6. ROC curve comparison for different feature spaces.
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3.3. Impact of Sample Size

Figures 7 and 8 summarize the impact of sample size on model performance. Note that the
sample size is the number of samples for each class not the overall number of samples. In Figure 7
red stars indicate statistical difference at the 95% confidence level between the model and the model
trained with 1500 samples per class. All models performed statistically significantly poorer than the
model with 1500 samples other than the models trained with 500 and 1250 samples, although the
p-value when using 500 samples was 0.084, just larger than the 0.05 threshold. Further, an increase in
performance is noted up to the model with 1500 samples, though the largest changes occur between
smaller sample sizes. AUC values larger than 0.900 are observed until the sample size is reduced to
fewer than 75 samples per class. Figure 8 shows patterns similar to those in Figure 7; improvement
in performance metrics is observed as sample size increases, with the largest improvement at lower
sample sizes. This suggests that increased sample size can improve the results; however, this benefit
diminishes as sample size increases. Further, this highlights the value of developing large slope failure
inventories to support model generation.

0.95- S {

|——|‘.

0.90+

AUC

0.85+

0.80+

0 250 500 750 1000 1250 1,500
Sample Size

Figure 7. Area under receiver operating characteristic curve (AUC) comparison at different sample
sizes. Error bars represent a 95% confidence interval calculated using 2000 stratified bootstrap replicates.
Stars indicate statistical difference in ROC curves in comparison to using 1500 samples per class.
The sample size represents the number of samples for each class as opposed to the overall sample size.
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Figure 8. Model comparison at different sample sizes using multiple classification assessment metrics.
The sample size represents the number of samples for each class as opposed to the overall sample size.

3.4. Feature Reduction and Feature Importance

Figures 9 and 10 show how model performance varies with feature selection. In comparison to
the model using all predictor variables, statistical significance in AUC is observed when only variables
in the upper 2.5 percentile of importance or less were used (p-value = 0.036). Model performance
stabilizes once roughly the upper 10! percentile of variables is included. In contrast to the sample size
results explored above, this generally suggests that the model is not negatively impacted by substantial
feature reduction. Also, feature selection does not improve the modeling results, as the highest AUC is
obtained when all variables are included. Additional metrics, which are shown in Figure 10, further
support this observation. Similar results were noted by Maxwell et al. [115] for general land cover
mapping and RF has generally been shown to be robust to complex and large feature spaces [27,62].
Practically, this suggests that feature selection may not need to be undertaken to improve the predictive
performance of the model. However, feature selection could be used to reduce the number of variables
that must be produced following a pilot study to assess which variables are most important. This could
be particularly useful if large extents are to be mapped.
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Figure 9. AUC comparison using feature selection. Error bars represent a 95% confidence interval
calculated using 2000 stratified bootstrap replicates. Stars indicate statistical difference in ROC curves

in comparison to using the entire feature set.
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Figure 10. Model comparison when incorporating feature selection using multiple classification

assessment metrics.
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Figure 11 summarizes the variable importance results obtained using conditional variable
importance. The most important five variables in the model are topographic slope (Slp), surface
area ratio (SAR), cross-sectional curvature (CSC), surface relief ratio (SRR) and plan curvature (P1C).
Specifically, the most important CSC, SRR and PIC variables are those calculated using a 7-cell radius
circular window. All variables calculated using a 7-cell radius circular window are found to be more
important than their counterparts calculated using an 11-cell or 21-cell radius window, suggesting the
importance of characterizing local terrain conditions. Generally, terrain features show high importance
in the model. Other than distance to US roads and cost distance from streams, the lithologic, soil,
distance and cost distance variables are found to be of comparatively low importance. This makes
sense, as adding these variables does not statistically improve the model performance in comparison to
only using the terrain variables as discussed above. It should be noted that variable importance is not
consistent given the large standard deviation displayed here with error bars calculated by replicating
the experiment five times using different training sample subsets.
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usD A

(I
——
LnC(7) { —=—q
I—o—o—l

PrC (7)
LnAsp
SlpMn (7) -
SEL

PIC (21)
CSC (11)
SlpMn (11) -
Lith

SlpMn (21) -
StrmC

PrC (21)

5P (7)

TR (21)

TR (11)
TD (11)
PIC (11)
LnC (11)
SP (11)
SRR (11)
usc
PrC (11)
LoC

5P (21)
LnC (21)
TD (21)
CSC (21)
SRR (21)
StC
StrmD»
LoD

5tD
DSPM
HLI
5DC

Variable

111111]11111T¥TTIIIIIIIIIII[[I{

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025
OOB Mean Decrease in Accuracy
Figure 11. Variable importance calculated using conditional variable importance. Five replicates were

used to obtain the standard deviation, as represented here with error bars. The red point represents the
mean while the blue point shows the median.



Remote Sens. 2020, 12, 486 20 of 27

This study confirms the importance of some variables noted as valuable in prior studies.
For example, Goetz et al. [45] note the value of Slp, TR and PIC and Trigila et al. [54] document the
importance of Slp, aspect and PIC. Interestingly, other studies contradict our results and the results of
Goetz et al. [45] and Trigila et al. [54]. For example, Taalab et al. [21] and Pourghasemi and Kerle [68]
both document low importance of PrC and PIC for landslide susceptibility mapping using RE. Some
prior studies suggest the value of including non-terrain variables; for example, Trigila et al. [54]
document the value of including lithology while Taalob et al. [21] highlight the value of distance from
stream. As note in prior studies (for example, Goetz [45]), importance of variables may vary based on
the characteristics of the study area, mapped failures and the modeling methods being used. This again
highlights the value of assessing a variety of variables for predicting landslide occurrence perhaps
using a pilot study. Additional studies to compare importance assessment methods and the value of
variables between different study area extents is needed.

3.5. Effect of Variable Window Sizes

The results in Table 7 were generated for models using only the terrain variables. Models were
produced using all the terrain variables that were not calculated using different window sizes along
with the variables calculated at the window size of interest. The model that incorporated variables
calculated at only a window size of 21-cells was statistically less accurate in regard to AUC than the
model using the variables calculated at all window sizes (p-value = 0.001) while the models using
only 7-cell (p-value = 0.337) and 11-cell (p-value = 0.078) windows were not statistically different from
the model using all window sizes. The 7-cell window model statistically outperformed the 21-cell
model (p-value = 0.337) but not the 11-cell model (p-value = 0.398), again highlighting the value of
using smaller window sizes in this study. The additional metrics generally support these observations.
These results generally suggest that there is value in incorporating terrain measures at multiple scales.

Table 7. Comparison of different window sizes. Lower and upper bounds represent a 95% confidence
interval calculated using 2000 stratified bootstrap replicates. X indicates statistically significantly
different ROC curves at a 95% confidence level.

7 11 21 All Sizes

AUC 0.941 0.937 0.922 0.944
AUC Upper 0.924 0.920 0.904 0.927
AUC Lower 0.958 0.955 0.941 0.961
AUC (PRO) 0.942 0.940 0.922 0.947
Kappa 0.721 0.735 0.688 0.735
Overall Accuracy 86.1% 86.7% 84.4% 86.7%
Precision 0.821 0.837 0.812 0.831
Recall 0.923 0.913 0.896 0.923
Specificity 0.799 0.822 0.792 0.812
F1 Score 0.869 0.873 0.852 0.874

7 X

11 X

21 X

All Sizes

4. Discussion and Recommendations

Given recent developments in the availability of landslide inventories and high spatial resolution
LiDAR data over broad spatial extents, we argue that there is a need to develop methodologies for
predicting the likelihood of slope failure occurrence using these data. Thus, the primary objective
of this study is to provide recommendations for producing these large-area slope failure mapping
products based on our findings and prior studies.

In order to alleviate the impact of training data class imbalance and to provide the algorithm with
many examples of pseudo absence data, we produced five separate models then combined the results
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into one model, which is one benefit of using RE. However, we found that this was not necessary since
the combined model did not outperform the separate models based on a variety of metrics. Thus,
providing the model with one set of pseudo absence data was adequate; however, we had to produce a
complete inventory of slope failures across the study area extent to minimize the chance of randomly
selecting a slope failure as an absence location. If a complete mapping cannot be completed, we would
suggest that a manual interpretation of the random pseudo absence points be performed in order to
avoid any false negative samples.

Generally, incorporating measures of lithology, soils and proximity to roads and streams did
not statistically improve the model in comparison to just using the LIDAR-derived terrain variables.
This is an encouraging finding, as this may alleviate the need to produce variables from a wide variety
of input data that may be of different quality and scale. For example, we used lithology data from a
1:250,000 scale geologic map in this study, which is much coarser than the available LiDAR data and
was a limitation. Similar boundary uncertainties are an issue in the SSURGO soil data.

Reducing the sample size tended to decrease the model accuracy; however, AUC remained above
0.90 with only 75 samples per class. Further, the largest improvements for a variety of metrics was
observed at smaller sample sizes. When adding additional samples past 75, performance metrics
increased at a slower rate but improvement was documented. So, we would suggest that developing
a large training dataset is of great importance for obtaining quality predictions and is worth the
investment in resources. As noted above, we used a point feature at the head scarp to represent each
slope failure feature in the training and validation datasets. A review of the literature suggests that
there is not a consistent method used to represent slope failure features when generating likelihood or
susceptibility models; some studies use points (for example, References [19,45,48,72]) while other use
polygons (for example, References [15,73]). Thus, there is a need for further investigation of the impact
of sample selection and feature representation methods in slope failure modeling.

In contrast to sample size, our results suggest that RF is not heavily impacted by feature selection.
The best performance was obtained using all variables; however, results were not statistically different

when using all variables vs. the top 10

percentile of variables. Even though variable selection may
not be necessary, it may still be desirable as a means to reduce the model complexity and the need
to produce a large set of variables over a large spatial extent. A pilot study over a smaller extent or
multiple smaller extents could be used to determine appropriate variables.

The most important five variables in the model were topographic slope (Slp), surface area ratio
(SAR), cross-sectional curvature (CSC), surface relief ratio (SRR) and plan curvature (P1C). Generally,
we also document that variables calculated using a 7-cell radius moving window showed greater
importance than their counterparts calculated using 11- or 21-cells, which suggests the need to measure
local conditions. However, including the measures at multiple scales did improve the model, so we
suggest using multiple window sizes for calculating terrain variables that rely on moving windows.
More work is required to assess the impact of window size and to determine optimal scales at which
to produce these variables. The optimal terrain variables may be case specific and may depend on
the characteristics of the slides and the landscape. We recommend experimenting with a variety of
variables, perhaps as a pilot study.

In a risk management context, these findings generally suggest that LIDAR data are of great value
in mapping slope failures and producing likelihood models since they allow for the interpretation of
slope failure locations for producing inventories and training data for models. Further, as highlighted
in this study and prior studies, a variety of terrain variables can be generated from LiDAR that are
valuable for predicting slope failure occurrence. Once these models are generated, occurrence and risk
can be summarized relative to aggregating units, such as property boundaries, to generalize the model
and provide valuable information to regulators and land owners.
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5. Conclusions

Slope failure and landslide mapping is an important application of geospatial data due to the
threats to property and life that they pose. With the development of slope failure inventories and high
spatial resolution LiDAR data over large spatial extents, there is a need to develop consistent methods
for mapping and predicting these features. This study specifically highlights the value of large and
quality training datasets along with a characterization of the terrain using a variety of terrain variables
calculated at different scales. In the United States specifically, we argue for the adoption of consistent
methods to make use of landslide inventories, such as those currently being curated by the USGS and
LiDAR data, such as the 3DEP products, to consistently generate products over large spatial extents.
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