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Abstract: This analysis aims to generate landslide susceptibility maps (LSMs) using various machine learning
methods, namely random forest (RF), alternative decision tree (ADTree) and Fisher’s Linear Discriminant
Function (FLDA). The results of the FLDA, RF and ADTree models were compared with regard to their
applicability for creating an LSM of the Gallicash river watershed in the northern part of Iran close to
the Caspian Sea. A landslide inventory map was created using GPS points obtained in a field analysis,
high-resolution satellite images, topographic maps and historical records. A total of 249 landslide sites have
been identified to date and were used in this study to model and validate the LSMs of the study region. Of the
249 landslide locations, 70% were used as training data and 30% for the validation of the resulting LSMs.
Sixteen factors related to topographical, hydrological, soil type, geological and environmental conditions
were used and a multi-collinearity test of the landslide conditioning factors (LCFs) was performed. Using the
natural break method (NBM) in a geographic information system (GIS), the LSMs generated by the RF, FLDA,
and ADTree models were categorized into five classes, namely very low, low, medium, high and very high
landslide susceptibility (LS) zones. The very high susceptibility zones cover 15.37% (ADTree), 16.10% (FLDA)
and 11.36% (RF) of the total catchment area. The results of the different models (FLDA, RF, and ADTree) were
explained and compared using the area under receiver operating characteristics (AUROC) curve, seed cell
area index (SCAI), efficiency and true skill statistic (TSS). The accuracy of models was calculated considering
both the training and validation data. The results revealed that the AUROC success rates are 0.89 (ADTree),
0.92 (FLDA) and 0.97 (RF) and predication rates are 0.82 (ADTree), 0.79 (FLDA) and 0.98 (RF), which justifies
the approach and indicates a reasonably good landslide prediction. The results of the SCAI, efficiency
and TSS methods showed that all models have an excellent modeling capability. In a comparison of the
models, the RF model outperforms the boosted regression tree (BRT) and ADTree models. The results of the
landslide susceptibility modeling could be useful for land-use planning and decision-makers, for managing
and controlling the current and future landslides, as well as for the protection of society and the ecosystem.
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1. Introduction

Landslides are among the most destructive natural hazards in the watershed of the Gorganround
River, destroying human life and property [1]. A landslide can be described as earthen materials falling
along a slope due to the force of gravity [2]. Landslides are a predominantly geological phenomenon
that occurs when the material’s force exceeds the resistance of the soil’s shear force [3]. Of all the
different natural hazards occurring worldwide, landslides are in 7th place in terms of destruction of
human life and property [4]. In Iran, the mountainous regions are at the greatest risk of landslides.
Physiogeographically, one-third of Iran is mountainous, while deserts and semi-deserts cover over
half, and only a small area is fertile land, namely the southern plain of the Caspian Sea and the plain of
Khuzestan [5]. The main causes of landslides in Iran are geomorphological circumstances, increased
population and its burden on natural resources and a lack of scientific environmental management [6].
Particularly in the northern province of Iran, landslides are the predominant type of natural disasters,
affecting the roads, power transmission, railway lines, mining and mineral facilities, irrigation and
water supply, oil and gas refineries, industrial centers, artificial lakes, forests and pastures, farms and
residential areas [7]. Landslides cause 500 billion Rial of damage in Iran each year, according to the
Iranian Ministry’s National Committee on Natural Disaster Reduction. This damage to the economy,
however, not only results from the direct and indirect damage to the non-renewable resources, but
also from the depletion of soil, which is the most important natural resource. Soil loss can increase
the volume of sediment that affects the ecosystem, and therefore, the economic loss resulting from
landslides in Iran is more than the stated amount [7].

Landslide susceptibility mapping can be used for efficient planning and management of natural
resources [8] and can be a useful tool for a region’s sustainable development. Landslide susceptibility
mapping has been implemented in recent decades as the subject of research around the world [9–11].
The factors contributing to the occurrence of landslides include lithology, climatic, morphometric,
and human factors, whereby road construction, settlements and land-use changes are the main
anthropogenic factors for landslide [12]. Understanding the LCFs, which control the occurrence of
landslides, and having access to accurate LSMs may provide useful information to various planners and
decision-makers, aiding them in taking important steps in soil and natural resource management and
protection, and to determine the areas of land appropriate for the expansion of cities and villages [13].
Landslide susceptibility maps, based on appropriate models, can be used to determine the likely
locations of landslides and can thus be used to make the best possible use of the land while avoiding
landslide-prone areas. The conservation and management of land is the main motivation behind
the preparation of LSMs [14]. Both quantitative and qualitative approaches were used to create the
LSMs [15]. Qualitative methods have a key role in preparation of landslide inventory mapping [16].
One of the essential and effective data sources used for the LSAM is a landslide inventory map (LIM).
A LIM may be obtained from the interpretation of the aerial photograph, field investigation, and Google
Earth images. The LIM indicates the spatial distribution of the landslides in the form of points and
polygons [17]. A LIM is a basic precondition for landslide susceptibility mapping [18,19]. Researchers
around the world have applied different kinds of methods and techniques, including knowledge-driven,
probability-based, machine learning, data mining, and ensemble methods for landslide susceptible
mapping. Examples of applications of these methods and approaches have been found in the literature,
including analytic hierarchy process (AHP), frequency ratio (FR), statistical index (SI), evidential
belief function (EBF), landslide nominal risk factor (LNRF), Dempster-Shafer (DS), logistic regression
(LR), weights of evidence (WOE), fuzzy logic (FL), support vector machine (SVM), artificial neural
network (ANN) boosted regression tree (BRT), least squares SVM (LSSVM), multivariate adaptive
regression spline (MARS), adaptive neuro-fuzz inference system (ANFIS), random forest (RF) decision
tree (DT), Fisher’s Linear Discriminant Function (FLDA), J48, k-nearest neighbor (KNN), Bayesian
logistic regression (BLR), logistic model tree (LMT) and alternate decision tree (ADTree) [20–39].

In the last three decades, machine learning ensemble approaches have been applied in different
fields due to their superior performance capabilities and the ability to deal with complex and varying
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data [40]. The geographic information system (GIS), combined with R programming, is a strong and
effective tool for hazard mapping [41–44] that has provided appropriate and meaningful results in
landslide susceptibility mapping [45]. The benefits and advantages of machine learning ensemble
models are not only that these techniques provide transparent computations but they also lead to more
accurate models [20]. Thus, the discovery of new landslide modeling technologies, processes, and
models are essential [20,34–36].

Landslides are creating huge problems in the Gallicash drainage basin in Golestan Province,
Iran [46]. We evaluated the literature and found that the area’s vulnerability to landslides and
resulting losses are due to a lack of appropriate guidelines in the construction of residential areas,
roads and other facilities in potentially dangerous areas. It is necessary to recognize and map
landslide-prone areas to achieve efficient and safe operations in the area. Informing decision-makers
about potentially vulnerable areas would help them to avoid developing unsuitable structures in
the area, avoiding the area altogether, or employing effective technological measures to overcome
the potential threat. Therefore, given the importance of the issue, we used the ADTree, FLDA, and
RF machine learning-based models in the Gallicash drainage basin in Golestan Province, Iran to
obtain a landslide susceptibility map with high prediction accuracy. Models using the ADTree and
FLDA algorithms are effective yet seldom used for spatial landslide modeling [47–49]. The ADTree
integrates decision rules in the classification by boosting and decision tree algorithms, and the ADTree
can, therefore, be used to construct a simpler layout, and its description of classification rules is also
easier to understand and visualize [49]. FLDA is a popular statistical learning approach that produces
promising results for classification issues [49]. The data is projected onto a line in the FLDA algorithm,
and the classification takes place in one-dimensional space. Furthermore, the projection maximizes
the difference between the means of two classes in the data, while the variance within each class is
minimized [49]. In this analysis, we contrast the prediction accuracy of these two models with RF,
which is a powerful model in natural hazard modeling [25]. These models were used to identify the
landslide-prone areas that will support development planners and decision-makers without hampering
nature to maintain environmental management.

2. Materials and Methods

2.1. Study Area

The Gallicash drainage basin, situated in northern Iran, is part of the Gorganroud basin, which
encompasses an area of roughly 5368 km2 between latitude 37◦07′ and 37◦43′N and longitude 54◦58′

and 55◦56′E and drains into the Caspian Sea (Figure 1). The elevation of the basin ranges from 13 m to
2870 m above sea level. While Iran is generally referred to as arid and semi-arid, in the eastern part of
the Gallicash drainage basin the climate is semi-arid, and in the western part, it is wet. The mean basin
temperature varies between 11 ◦C and 18.1 ◦C and the total annual precipitation of the watershed
ranges from 195 to 946 mm [50]. About 36% of the total precipitation occurs between January and
March. Generally, the topography is characterized by a complex mixture of mountains (46.1%), hills
(9.6%), plateaus and higher terraces (4.6%), plains of Piedmont (15.5%), alluvial plains (16.3%) and
lowlands (7.7%) [51]. The area is covered by numerous sedimentary rocks, including calcareous,
sandstone, limestone, dolomite, and marl, along with conglomerates, loess sediments, and alluvium
(Geological Department of Iran). The watershed comprises four soil classes, namely Entisols (25.6%),
Alfisols (25.1%), Inceptisols (19.7%) and Mollisols (29.3%). The predominant land-use/landcover types
in the basin are agriculture (10.44 %) with wheat, barley, sunflower and watermelon as the main crops,
orchard (0.02%), afforest (25.88%), dry farming (47.1%), water (0.69%), agriculture-orchard (14.7%),
rock (0.08%) and settlement (0.98%). The Gallicash basin is the population center of Golestan Province
and home to around 1.2 million residents. At the river confluence, the Voshmgir dam serves the public
water supply, flood control, hydroelectric power generation and irrigation. The basin maintains an
agriculture-based economy along with manufacturing and mining. The rivers of this basin originate in
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the southern and northeastern highlands and, from west to east, include Qazanabad, Taghi Abad and
Mohammad Abad. The most significant structural elements of the region are the faults of the Caspian
Sea and northern Alborz mountains. some faults extend from northeast to southwest and some from
north to south in the eastern part [52]. Population growth in erodible soils has contributed to shifts
in land-use in recent years, which has increased runoff and surface erosion [53]. Due to population
growth and consequently land use change, the Gallicash River suffers from increased soil erosion, flash
flooding, landslides, and a high yield of sediment [46].
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Figure 1. Location of the study area.

2.2. Methodology

The current research demonstrates the application of different machine learning ensemble
techniques in Landslide susceptibility mapping. Preparing the Landslide susceptibility map in the
present study involved data collection, inventory map preparation, LCFs preparation, collinearity
test, factors importance analysis using the RF and BRT models, LS mapping using RF, ADtree, and
FLDA and validation of the models (Figure 2). Both primary and secondary data were used in this
work. The LIM was prepared based on the field investigation in a different time (2018/05/12; 2018/08/10;
and 2018/10/14) and Google Earth imagery. The topographic parameters of altitude, slope aspect
convergence index (CI), stream power index (SPI) and topographical positioning index (TPI) were
obtained from the 12.5 m × 12.5 m resolution ALOS PALSAR DEM that was downloaded from the
Alaska Satellite Facility homepage. The enhanced thematic mapper plus (ETM+) satellite imagery
of 15 m × 15 m resolution was obtained from USGS. The topographic map (1:50,000) and geological
map (1:1,000,000) were obtained from the Cartographic and Geological Department, Iran. Rainfall
data of different rain gauge stations was also collected from the Metrological Department of Iran.
The LSMs were classified into five classes using the natural break method of Jenks. The Jenks method
of optimization, also called the natural breaks classification method, is a method of data segmentation
designed to determine the best value arrangement in different classes. This method of classification
aims to decrease the average deviation from the mean class value while increasing the deviation from
the mean of other classes. The method reduces the intra-class variance and maximizes the inter-class
variance [54,55]. The natural breaks classification method is an iterative process. That is, it repeats
calculations using different breaks in the dataset to decide which set of the breaks have the smallest
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variance in the class. There are three steps that need to be followed for this method: (1) calculate the
sum of squared deviations from the class mean (SDCM); (2) calculate the sum of squared deviations
from the array mean (SDAM); (3) after each SDCM is checked, decided to move one unit from a class
with a larger SDCM to an adjacent class with a lower SDCM. New class deviations are then measured,
and the process continues until a minimum value is reached by the sum of the deviations within the
class [54]. The whole process was carried out using R studio, ArcGIS, ENVI and Weka.
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2.3. LIM

The LIM can be defined as the total set of landslide locations as it includes both past and present
landslide points. The LIM is an essential part of the landslide susceptibility mapping. The relationship
between the landslide inventory datasets and landslide conditioning factors (LCFs) is the most
important for landslide susceptibility mapping [56]. The LIM contains both the old and new landslides
that have occurred in the study area. A LIM can be prepared based on a combination of several data
sources, including previous records, local field examinations, the perception survey with inhabitants
and interpretation of satellite images [57]. Some researchers have used geomorphologic features visible
in satellite imagery to detect landslides [58].

In this study, a LIM was prepared using historical records [59,60], aerial photos, field inquiry
with GPS, Google Earth imagery and the PALSAR DEM. The PALSAR DEM is more accurate for
detecting landslides in forested areas [61]. The resolution of the PALSAR DEM is 12.5 m × 12.5 m.
Many landslides, which due to their remote locations aren’t even detectable through field surveys,
were extracted with acceptable resolution using Google Earth’s optical images. A total of 249 landslides
were randomly selected in the basin. Of the 249 landslides, 70% were randomly selected to be used for
training, and 30% were used for validation. The research area’s landslide identification results show
that landslides in the study area are mainly translational earth flow slides, rotational slides and debris
flows (Figure 3a). Of the 249 identified landslides 75 (30%) are creeps, 47 (19%) are rotational slides, 27
(11%) are earth flows, 87 (35%) are translational slides, and 13 (5%) are debris flows. The combined
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area covered by all the landslides in the study area is 16,213,651 m2. Of the identified landslides, the
smallest was 191.76 m2 and the largest was 1,254,925 m2, and the mean size was 562,782 m2.
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Very little research is available on analyzing areas where the chance of landslides occurring is
virtually zero, which is the definition of non-landslide areas [62]. Marchesini et al. [63] recommended
a non-linear quantile model for identifying non-susceptible landslide areas based on a morphometric
evaluation. However, non-landslide areas were delimited in the current study based on the availability
of good inventory maps. It was necessary to generate non-landslide evidence for modeling as the
landslide susceptibility analysis is based on a binary classification [64]. In the present research, we also
used non-landslide data for generating the training and validation datasets by identifying non-landslide
areas on Google Earth images where no building and slope failures were found. For both training and
validation datasets, the number of non-landslide data equals the number of landslide data. Landslide
data was assigned a value of “1,” while non-landslide data was assigned a value of “0” for spatial
landslide susceptibility modeling. Figure 1 shows the landslide locations of the training and validation
datasets. The percentages of different landslide types along with some field photographs, are shown in
Figure 3a–e.
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2.4. Preparing Landslide Conditioning Factors (LCFs)

A landslide susceptibility map cannot be accurate without understanding the effective LCFs.
The topographical factors, i.e., elevation, slope, slope length (LS), plan curvature, convergence index
(CI), stream power index (SPI), topographic position index (TPI), geomorphologic, i.e., distance to
stream, topographic wetness index (TWI), geological, i.e., lithology, distance to fault, and environmental,
i.e., land-use/land cover (LU/LC), soil type, normalized differential vegetation index (NDVI) were
considered based on existing literature [19–25] and multi-collinearity analysis for the prediction of the
landslide risk zones in the Gallicash river watershed. Determining the LCFs is the first step in mapping
the LS. The Phased Array type L-band synthetic aperture radar (PALSAR) DEM is more reliable
and accurate than the ASTER and SRTM DEM. So, in this study, we used the PALSAR DEM with
12.5 m × 12.5 m resolution. The topographical parameters of elevation (Figure 4a), slope (Figure 4b), LS
(Figure 4g), plan curvature (Figure 4c), convergence index (Figure 4h), stream power index (Figure 4d),
TWI (Figure 4f), TPI (Figure 4e), and stream network (Figure 4k) were extracted from the PALSAR
DEM in GIS using suitable techniques, which are presented in Table 1. The geological map of the
study area was prepared from the 1:100,000 geological map of Iran, (Figure 4m). The eight geological
units in this watershed were identified (Table 1). Faults were extracted from the ETM+2002 satellite
imagery using ENVI 4.7 software. The distance to the fault map was prepared using the Euclidian
distance tool in ArcGIS (Figure 4i). The Sentinal-2 images with 30 m × 30 m resolution were used
to construct the LULC (Figure 4n) and NDVI maps (Figure 4o) using the supervised classification
(maximum likelihood). For the assessment of the classification accuracy of the LULC map, 523 ground
control points were used. The overall accuracy of the LULC map is 97.1% (Kappa coefficient = 0.971),
which is acceptable. Different types of land-use, namely Afforest, Agriculture, Orchard, Dry farming,
Water, Agriculture-Orchard, Rock and Urban area (Figure 4n) have been identified in this watershed.
The soil map was prepared from a projected soil map (scale 1: 50,000), which was obtained from
the Agriculture and Natural Resources Center using the digitized process in the GIS environment
(Figure 4p). The study area is composed of different soil types, namely Rock Outcrops/Entisols,
Inceptisols, Mollisols, and Alfisols (Figure 4p and Table 1). The elevation, slope, LS, convergence index
(CI), SPI, TPI, TWI were classified into five sub-layers with the aid of the natural break method (NBM)
of Jenk’s in GIS, as shown in Figure 4 and Table 1. The NDVI was categorized into the three sub-layers
of <−0.201, −0.201 −0.36 and >0.36 using the NBM (Figure 4o and Table 1). The soil type, lithology
and LU/LC are the categorical variables, with detailed description given in Figure 4 and Table 1.
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(Kappa coefficient = 0.971), which is acceptable. Different types of land-use, namely Afforest, 
Agriculture, Orchard, Dry farming, Water, Agriculture-Orchard, Rock and Urban area (Figure 4n) 
have been identified in this watershed. The soil map was prepared from a projected soil map (scale 
1: 50,000), which was obtained from the Agriculture and Natural Resources Center using the digitized 
process in the GIS environment (Figure 4p). The study area is composed of different soil types, 
namely Rock Outcrops/Entisols, Inceptisols, Mollisols, and Alfisols (Figure 4p and Table 1). The 
elevation, slope, LS, convergence index (CI), SPI, TPI, TWI were classified into five sub-layers with 
the aid of the natural break method (NBM) of Jenk’s in GIS, as shown in Figure 4 and Table 1. The 
NDVI was categorized into the three sub-layers of <−0.201, −0.201 −0.36 and >0.36 using the NBM 
(Figure 4o and Table 1). The soil type, lithology and LU/LC are the categorical variables, with detailed 
description given in Figure 4 and Table 1. 
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factors.  
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Data 
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Data Sources Techniques Classification Methods Ref. 

Elevation 
(m) 

1. <354,  
2. 354–768, 
3. 768–1216, 
4. 1216–658, 

5. >1658 

ALOS 
DEM (12.5 m × 

12.5 m 
resolution) 

https//vertex 
.daac.asf.alaska.edu 

(Alaska Satellite Facility) 
12.5 m × 12.5 m DEM Natural break (Jenks) [65] 

Slope (0) 

1. <5,  
2. 5–10, 

3. 10–15,  
4. 20–30,  

5. >30 

ALOS 
DEM (12.5 m × 

15.5 m 
resolution) 

https//vertex 
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(Alaska Satellite Facility) 

T𝑎𝑛𝜃 =   .  where N = No. of 
Contour Cuttings; I = Contour 

Interval  (12.5 m × 15.5 m 
resolution) 

Natural break (Jenks) [66] 

PC 
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3. Convex 

ALOS 
DEM (12.5 m × 

12.5 m 
resolution) 

https//vertex 
.daac.asf.alaska.edu 

(Alaska Satellite Facility) 
12.5 m × 12.5 m DEM Natural break (Jenks) [67] 

SPI 

1. <9.08, 
2. 9.08–10.99, 
3. 10.99–12.9, 
4. 12.9–15.8, 

5. >15.8 

ALOS 
DEM (12.5 m × 

12.5 m 
resolution) 

https//vertex 
.daac.asf.alaska.edu 

(Alaska Satellite Facility) 

SPI = 𝐴𝑠 ×  tanβ where AS is the 
upstream contributing area and β 
is the slope gradient (in degrees) 

Natural break (Jenks) [68] 

TPI 

1. <−1.83, 
2. −1.83–−0.18, 
3. −0.18–1.37, 
4. 1.37–3.99, 

5. >3.99 

ALOS 
DEM (12.5 m × 

12.5 m 
resolution) 

https//vertex 
.daac.asf.alaska.edu 

(Alaska Satellite Facility) 
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Figure 4. Landslide conditioning factors—(a) Elevation, (b) Slope, (c) Plan curvature (PC), (d) Stream
power index (SPI), (e) Topographic position index (TPI), (f) Topographic wetness index (TWI), (g) Slope
length (LS), (h) Convergence index (CI), (i) Distance to fault, (j) Distance to road, (k) Distance to stream,
(l) Rainfall, (m) Lithology, (n) LULC, (o) NDVI, (p) Soil type.

Table 1. Suitable techniques, data sources, and classification methods of landslide conditioning factors.

Factors Class Data
Used/Resolution/Scales Data Sources Techniques Classification

Methods Ref.

Elevation
(m)

1. <354,
2. 354–768,
3. 768–1216,
4. 1216–658,

5. >1658

ALOS
DEM (12.5 m × 12.5 m

resolution)

https//vertex.daac.asf.alaska.edu
(Alaska Satellite Facility) 12.5 m × 12.5 m DEM Natural break

(Jenks) [65]

Slope (0)

1. <5,
2. 5–10,
3. 10–15,
4. 20–30,
5. >30

ALOS
DEM (12.5 m × 15.5 m

resolution)

https//vertex.daac.asf.alaska.edu
(Alaska Satellite Facility)

Tanθ = N x i
636.6 where N = No. of

Contour Cuttings; I = Contour
Interval (12.5 m × 15.5 m

resolution)

Natural break
(Jenks) [66]

PC
1. Concave,

2. Flat,
3. Convex

ALOS
DEM (12.5 m × 12.5 m

resolution)

https//vertex.daac.asf.alaska.edu
(Alaska Satellite Facility) 12.5 m × 12.5 m DEM Natural break

(Jenks) [67]

SPI

1. <9.08,
2. 9.08–10.99,
3. 10.99–12.9,
4. 12.9–15.8,

5. >15.8

ALOS
DEM (12.5 m × 12.5 m

resolution)

https//vertex.daac.asf.alaska.edu
(Alaska Satellite Facility)

SPI = As× tanβ where AS is
the upstream contributing area
and β is the slope gradient (in

degrees)

Natural break
(Jenks) [68]

TPI

1. <−1.83,
2. −1.83–−0.18,
3. −0.18–1.37,
4. 1.37–3.99,

5. >3.99

ALOS
DEM (12.5 m × 12.5 m

resolution)

https//vertex.daac.asf.alaska.edu
(Alaska Satellite Facility)

TPI = Z0 −Z
Z = 1

nR

∑
i∈R

Zi

Center point elevation (Z0) and
the average elevation (Z)

around it within a
predetermined radius (R)

Natural break
(Jenks) [69]

TWI

1. <4.89,
2. 4.89–7.33,

3. 7.33–11.08,
4. >11.08

ALOS
DEM (12.5 m × 12.5 m

resolution)

https//vertex.daac.asf.alaska.edu
(Alaska Satellite Facility)

TWI = In
(

As
tanθ

)
where α not in

formula is a total upsloped area
that drains through a point (per
unit contour length), β not in
formula is a gradient of the

slope (in degree).

Natural break
(Jenks) [68]

LS (m)

1. <30.7,
2. 30.7–65.08,
3. 65.08–101.1,
4. 101.1–140.7,

5. >140.7

ALOS
DEM (12.5 m × 12.5 m

resolution)

https//vertex.daac.asf.alaska.edu
(Alaska Satellite Facility)

LS =
(

As
22.13

)0.6
×

(
sinβ

0.0896

)1.3

where AS is the particular area
of the basin (m2 m−1) and β is

the slope in degrees.

Natural break
(Jenks) [70]

CI (100/M)

1. <−32.54,
2. −32.54—9.8,

3. −9.8–9.01,
4. 9.01–31.76,

5. >31.76

ALOS
DEM (12.5 m × 12.5 m

resolution)

https//vertex.daac.asf.alaska.edu
(Alaska Satellite Facility)

CI =
(

1
8

8∑
i=1

θi

)
− 90

◦

where θ

indicates the average angle
between the aspect of adjacent
cells and the direction to the

central cell.

Natural break
(Jenks) [71]

https//vertex.daac.asf.alaska.edu
https//vertex.daac.asf.alaska.edu
https//vertex.daac.asf.alaska.edu
https//vertex.daac.asf.alaska.edu
https//vertex.daac.asf.alaska.edu
https//vertex.daac.asf.alaska.edu
https//vertex.daac.asf.alaska.edu
https//vertex.daac.asf.alaska.edu
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Table 1. Cont.

Factors Class Data
Used/Resolution/Scales Data Sources Techniques Classification

Methods Ref.

Dis to fault
(m)

1. <500,
2. 500–1000,

3. 1000–1500,
4. 1500–2000,

5. >2000

ETM+2002 satellite data
(15 m × 15 m)

Soil
Conservation Section of the

Agricultural and
Natural Resources Research Center

Euclidian Distance
Buffering

Natural break
(Jenks) [72]

Dis to road
(m)

1. <500,
2. 500–1000,

3. 1000–1500,
4. 1500–2000,

5. >2000

Topographical map
(scale 1: 25,000) and
Google Earth image

Cartography department of Iran Digitization process Natural break
(Jenks) [73]

Dis to stream
(m)

1. <100, 2.
100–200,

3. 200–300, 4.
300–400, 5. >400

ALOS
DEM (12.5 m × 12.5 m

resolution)

https//vertex.daac.asf.alaska.edu
(Alaska Satellite Facility)

Euclidian Distance
Buffering

Natural break
(Jenks) [72]

Rainfall
(mm)

1. <425.9,
2. 425.9–561.6,
3. 561.6–703.6,
4. 703.6–851.9,

5. >851.9

30 years average rainfall
data of different stations

Islamic Republic of Iran
metrological Organization

Kriging Interpolation
method

Natural break
(Jenks) [74]

Lithology
1. A, 2. B, 3. C, 4.

D,
5. E, 6. F, 7.G, 8. H

Projected geological map
(scale 1:100,000) Geological survey of Iran Digitization process Equal interval [73]

LU/LC

1. Afforest, 2.
Agriculture, 3.

Orchard, 4. Dry
farming, 5. Water,

6. Agri-Orch, 7.
Rock, 8. Urban

Landsat 8
OLI/TIRS (Path 162/Row

34)
(30 m × 30 m resolution)

U.S Geological Survey Supervised classification
(Maximum likelihood)

Maximum
likelihood [75]

NDVI
1. <−0.201,

2. −0.201–0.36,
3. >0.36

Landsat 8
OLI/TIRS (Path 162/Row

34) (30 m × 30 m
resolution)

U.S Geological Survey

NDVI = NIR−IR
NIR+IR where

NIR is near inferred
band or band 4 and IR is

the infrared band or
band 3.

Natural break
(Jenks) [76]

Soil type

1. Rock
Outcrops/Entisols,

2. Inceptisols, 3.
Mollisols, 4.

Alfisols

Projected soil map (Scale
1:25,000)

Agricultural and Natural
Resources Research Center in Iran Digitization process Equal interval [73]

In the lithology map, A = Cm unit, B = Dp, and DCkh units, C = E1c, and E1m units, D = Jsc, Jd,
Jl, Jmz, and Jch units, E = Kat, Ksn, Ksr, Ku, and Kad-ab units, F = Pz, Pz1av, pC-C, Pr, Pz1a.bv, Pd, Plc,
and P units, G = Qsw, Qft2, Qm, Qft1, Qs,d, and Qal, H = Tre, and TRJs units.

2.5. Testing Multi-Collinearity Problems

The multi-collinearity test may enhance the results of the models by helping in the selection
of ideal factors for hazard mapping [77]. Multi-collinearity is the linear dependency that implies
that there are two or more related variables in a dataset. The multi-collinearity test has been used
for several purposes, such as landslide susceptibility mapping, soil and gully erosion susceptibility,
groundwater potentiality mapping, etc. [1,20–38]. The multi-collinearity was tested by applying
the variance inflation factor (VIF) and tolerance [78]. The VIF is reciprocal to the tolerance values,
calculated using the following Equations (1) and (2):

Tolerance = 1−R2
J (1)

VIF =
[ 1
Tolerance

]
(2)

where R2
J is the coefficient of determination of a regression of explanator j on all the other explanators.

The threshold value of tolerance and VIF is more than 0.1 and less than 10 [79]. Arabameri et al. [1]
and Roy and Saha [33] used the multi-collinearity analysis to test the topographical, geomorphological,
and environmental factors for LS mapping. In the current research, the multi-collinearity of the sixteen
LCFs was tested using the SPSS software.

https//vertex.daac.asf.alaska.edu
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2.6. Landslide Susceptibility Modeling

2.6.1. Applying Random Forest (RF)

RF is one of the main machine learning approaches [80]. The RF method generates multiple
classification trees and aggregates them to compute a classification [81]. Hansen and Salamon [82]
point out that ensemble classification trees are much more precise than any of their individual members.
RF adds diversity among the classification trees by changing the data with alternate and modifying the
explanatory factor sets arbitrarily over the different processes of tree induction. The two user-defined
variables that are needed to grow a random forest are the number of trees (k) and the number of
predictive factors used to divide the nodes (m). The numerical and categorical variables are used for
conditioning factors. The out-of-bag (OOB) error is characterized as the percentage of the total number
of out-of-bag items that are misclassified. The OOB error is a rational generalization error estimation.
The OOB error is estimated at the time of construction of the RF model. Breiman [80] mentioned that the
RF produces a limiting value of the error of generalization. The generalization errors often fall together
as the number of trees grows. The k has to be set high enough to allow this convergence. The RF
method calculates the value of a predictor variable by examining how much the OOB error decreases
as OOB data is permuted for that variable while being constant for all other variables. The rise in the
error of OOB corresponds to the value of the explanatory variable [83]. One of the major advantages
of RF is the resistance to overtraining and the development of a large number of random forest trees
where it doesn’t really pose a risk of overfitting (e.g., each tree is a random experiment completed
independently). There is no need to rescale, transform, or change the RF algorithm. For predictors,
RF has resistance to outliers and manages the missing values automatically [76]. In this work, the RF
model was computed using the “Randomforest” package in R 3.8, whereby, after a primary discursion,
the number of trees was set to 1000 and the m samples at each node was chosen to be 3 to calculate
the mutual contribution of attribute subsets while preserving gradual convergence during iterations.
No training set is required to monitor the parameters [84,85]. The mean decrease in Gini error and
accuracy were analyzed.

2.6.2. Applying Alternating Decision Tree (ADTree)

ADTree is one of the machine learning ensemble classifiers that incorporates the decision tree and
thus improves the algorithm [49]. ADTree is related to direct decision tree generalizations in which
each node is separated into two nodes, including a node of prediction and a node of splitter. For a
mapping of the base ruler, the actual number consists of two conditions, namely a precondition (c1)
and a base condition (c2). ADTree was detected the two real numbers a and b. The prediction is if
c1 ∩ c2 or b if c1 ∩−c2.− identified as negation (NOT). The two real numbers a and b are derived using
Equations (3) and (4):

a =
1
2

In
W+(c1 ∩ c2)

W−(c1 ∩ c2)

)
(3)

b =
1
2

In
W+(c1 ∩

− c2)

W−(c1 ∩
− c2)

(4)

where W(p) is the total weight of the p predicate training instances. The best c1 and c2 are calculated by
minimizing the Zt(c1,c2) calculated using Equation (5):

Zt(c1, c2) = 2
√

W+(c1 ∩ c2)W−(c1 ∩ c2) +
√

W+(c1 ∩−c2)W−(c1 ∩−c2) + W(−c2) (5)
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When R symbol is believed to be a set of basic rules, a new base rule will be defined as
Rt+1 = Rt + rt.rt(x) showing the two predictive values of a and b at each predictive layer of T. X is a
set of instances. An instance classification is the symbol of the sum of all predictive values in Rt+1:

Class(x) = sign

 T∑
t=1

rt(x)

 (6)

The algorithm begins by choosing the best constant forecasting for the whole dataset [49]. Typically,
cross-validation is useful to build the selection [86].

2.6.3. Applying Fisher’s Linear Discrimination Analysis (FLDA)

FLDA is another important machine learning approach. FLDA is a feature recognition method
used in several fields [87]. Theoretically, m is used for the method as the recognize classes. X(i)

j indicates

the j-th class i training trial. Xi corresponds to the mean of class i training trials, while X refers to
complete training trials. The supposed learning trials Mb and Mw show a scatter matrix for class and
with-class and can be determined using Equations (7) and (8) as well:

Mb =
1
N

m∑
i=1

Ni(Xi
−X)(Xi

−X)T (7)

Mw =
1
N

m∑
i=1

Ni∑
j=1

(X(i)
j −Xi)(X(i)

j −Xi)T (8)

where Ni indicates the number of training trials in class i(
∑m

i=1 Si = S) and N is the total number of
training trials carried out. FLDA aims at obtaining an optimal set of defining vectors for computing
Φd = (ϕ1,ϕ2, . . . . . . . . ϕd) transformation by optimizing the Fisher criterion, as indicated [88]:

J(Φ)
def
=

tr(ΦT
d MbΦd)

tr(ΦT
d MwΦd)

(9)

where T is the matrix’s transpose. Because benchmark maximization allows the optimal discriminating
vectors, a vector can be derived for one input instance, and the following vector can be used to
categorize the subsequent instance [89].

2.7. Considering the Contribution of Landslide Conditioning Factors

2.7.1. Boosted Regression Tree (BRT) Model

BRT is the non-parametric machine learning method which establishes a relationship between
dependent and independent variables [90]. It is a crucial means of measuring the importance of
individual variables and to overcome grouping and forecasting problems [91]. The response to a
parameter depends on the higher node values in the regression tree’s hierarchical structure, and then
the relationships between the factors are automatically built [92]. At first, the divisor variable is used to
split the target variable in the BRT modeling. To select the best divisor variable, the data was classified
into two groups [93]. The recursive aspect point segmentation splits each individual node into two
nodes and ultimately separates these divided nodes. This differentiation ends when nodes become
homogeneous [91]. The point of the regression analysis is to make a decision during postpone to the
divisions. The tree algorithm splits all the data and can lead to overfitting if the divisions do not
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stop [94]. Trees are more complex and fragile, i.e., they have more errors in the new observations. BRT
is calculated using the following Equation (10) [95]:

F
(
X; [βmαm]

m0
)
=

m∑
m=0

βmh(x;αm) (10)

where h(x; m) is described as a basic function of classification with parameter a and variables x, m is
the stage of the model. BRT was computed using R 3.3.1 and the “Rattle” package [96].

2.7.2. Application of Frequency Ratio Model

The frequency ratio (FR) is a geospatial assessment tool and one of the important bivariate
statistical methods [97]. The FR values are determined from the relationship between landslide
locations and LCFs. The result of FR is useful and appropriate [98]. The FR can be described by
Equation (11) [99]:

FR =
(A/B)
(C/D)

(11)

where A is the number of landslide pixels in each class of LCFs, B is the total number of landslide
pixels in the watershed, C is the total number of pixels of each sub-class of the LCFs, and D is the total
number of pixels of the watershed.

2.8. Methods for Validating the Models

Validation is necessary for the justification of the LSMs created using different models. Without
validation, the LSMs have no value or meaning [100]. The area under receiver operating characteristics
(AUROC) curve was used to test the various models. The AUROC curve is a threshold-independent
tool for the measurement of predictive performance [101–106]. The AUROC indicates the model’s
predictive accuracy. The AUROC is expressed as the percentage of prediction values [107]. Generally,
the value of AUROC ranges from 0.5 to 1. The closer an AUROC value is to 1, the better the performance
of the method [9,10]. The AUROC values were classified by Yeashiar and Topal [108] into five classes:
low (0.5–0.6), moderate (0.6–0.7), good (0.7–0.8), very good (0.8–0.9) and excellent (0.9–1). Using all
the learning and testing datasets, this approach was used to construct a curve, and subsequently, it
was used to calculate the goodness of fit and model prediction accuracy [109]. The goodness of fit
is superior in measuring the predictive performance of the models using the training and testing
datasets [89]. In this work, the AUROC curve was constructed based on the training and testing
landslide datasets. The AUROC curve plot consists of two variables, namely the true positive rate
(TPR) and the false positive rate (FPR), called the sensitivity and specificity [110]. The TPR shows the
percentage of landslide pixels accurately categorized as landslide occurrences, and the FPR indicates
the percentage of non-landslide pixels wrongly identified as landslides [111]. The Formulas (12) and
(13) were used to calculate the TPR and FPR:

TPR =
TP

TP + FN
(12)

FPR =
FP

FP + TN
(13)

where TP (true positive) and TN (true negative) are accurately classified pixel numbers, while FP
(false positive) and FN (false negative) are falsely classified pixel numbers. The AUROC reflects the
reliability of simulations in correctly predicting landslide occurrence or non-occurrence [108]. The SCAI
validation technique used in this study was developed by Süzen and Doyuran [112]. The SCAI is
defined as the ratio between the percentage of pixels of the specific landslide susceptibility class and
the percentage of the pixels of existing landslides in this specific landslide susceptibility zone. Two
threshold-dependent measurement metrics, namely the efficiency (E) and true skill statistic (TSS), were
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also used to analyze the performance of the models [113]. The E and TSS can be calculated using
Equations (14) and (15):

E =
TP + TN

TP + TN + FP + FN
(14)

TSS = TPR− FPR (15)

3. Results

3.1. Considering Multi-Collinearity of Factors Contributing to Landslide Susceptibility

A multi-collinearity test was performed on the LCFs. Chen et al. [14] mentioned that the linear
relationship between the parameters would minimize the model’s predictability. The tolerance and
variance inflation factors (VIF) were utilized to test the multi-collinearity. Tolerance and VIF values of
<0.1 and above 10 indicate multi-collinearity problems. Arabameri et al. [1] and Roy and Saha [34]
used Tolerance and VIF techniques to select suitable parameters for LSMs. In this study, different
LCFs, namely elevation, slope, slope length, plan curvature, rainfall, CI, TPI, TWI, SPI, LULC, NDVI,
lithology, soil type, distance from stream, distance from fault and distance to road were selected
using the multi-collinearity test for the creation of LSMs using different models. The outcomes of the
multi-collinearity analysis in this study (Table 2) show that the effective factors of landslides have no
multi-collinearity problem because all the LCFs have lower than threshold values of tolerance and VIF.
The maximum tolerance value was identified for TPI (0.955), and the VIF value for TWI (4.55) was
identified from the conditioning factors. Therefore, all the proposed landslide conditioning factors
were considered to be suitable to produce the LSMs using RF, ADTree and FLDA models in Gallicash
catchment area.

Table 2. Multi-collinearity analysis among landslide conditioning factors.

Unstandardized
Coefficients

Standardized
Coefficients t Sig. Collinearity Statistics

B Std. Error Beta Tolerance VIF

(Constant) −1.017 0.222 − −4.580 0.000 − −

Rainfall 0.001 0.000 0.269 3.644 0.000 0.392 2.552
Soil type 0.303 0.111 0.150 2.744 0.006 0.711 1.407
LU/LC 0.186 0.040 0.249 4.710 0.000 0.766 1.306

Lithology 0.223 0.063 0.174 3.547 0.000 0.883 1.132
Slope −0.005 0.004 −0.094 −1.162 0.246 0.324 3.085

Dis to road −2.427 × 10−5 0.000 −0.111 −2.177 0.030 0.824 1.214
TWI −0.060 0.019 −0.402 −3.162 0.002 0.232 4.566

Dis to fault −1.372 × 10−5 0.000 −0.090 −1.594 0.112 0.667 1.498
PC 0.008 0.008 0.053 1.028 0.305 0.800 1.249
TPI 0.011 0.006 0.082 1.723 0.086 0.955 1.048

Elevation 0.000 0.000 −0.146 −2.512 0.012 0.628 1.592
NDVI −0.453 0.268 −0.122 −1.692 0.092 0.410 2.437

CI 0.000 0.001 0.021 .351 0.726 0.593 1.687
Dis to stram 0.000 0.000 −0.141 −2.705 0.007 0.785 1.274

SPI 0.092 0.021 0.506 4.337 0.000 0.257 4.368
LS −0.056 0.014 −0.345 −3.167 0.004 0.332 2.756

3.2. The Spatial Relationship Between Landslide Locations and Effective Factors by FR

The frequency ratio (FR) values were calculated based on the relationship between locations of
landslides and the sixteen LCFs. The mathematical calculation of the FR value is presented in Table 3.
An FR value over 1 indicates a high landslide susceptibility, whereas an FR value of 0 or close to
0 indicates that the sub-class of landslide conditioning factors does not affect landslide occurrence.
The FR model was applied to the landslide conditioning factors using Equation (11).
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Table 3. The spatial relationship between LCFs and landslides by FR model.

Factors Class
Pixels in Domain Pixels of Landslide

FR
No % No %

Elevation (m)

<354 1,757,987 28.85 64 39.02 1.35
354–768 1,528,329 25.08 48 29.27 1.17

768–1216 1,255,594 20.60 40 24.39 1.18
1216–1658 979,570 16.07 11 6.71 0.42

>1658 573,032 9.40 1 0.61 0.06

Slope (0)

<5 1,533,843 25.17 33 20.12 0.80
5–10 877,089 14.39 42 25.61 1.78

10–15 1,031,179 16.92 27 16.46 0.97
15–20 947,857 15.56 17 10.37 0.67
20–30 1,198,335 19.67 37 22.56 1.15
>30 505,070 8.29 8 4.88 0.59

PC
Concave 2,686,090 44.08 79 48.17 1.09

Flat 528,638 8.68 6 3.66 0.42
Convex 2,878,644 47.24 79 48.17 1.02

SPI

<9.08 893,698 14.68 11 6.71 0.46
9.08–10.99 2,044,913 33.60 61 37.20 1.11
10.99–12.9 2,162,864 35.54 58 35.37 1.00
12.9–15.8 801,588 13.17 18 10.98 0.83

>15.8 182,979 3.01 16 9.76 3.24

TPI

<−1.83 303,487 4.98 8 4.88 0.98
−1.83–−0.18 1,031,274 16.92 23 14.02 0.83
−0.18–1.37 1,212,301 19.89 26 15.85 0.80
1.37–3.99 492,748 8.09 17 10.37 1.28

>3.99 3,054,702 50.12 90 54.88 1.09

TWI

<4.89 2,838,332 46.57 73 44.51 0.96
4.89–7.33 2,261,932 37.11 60 36.59 0.99
7.33–11.08 798,883 13.11 14 8.54 0.65

>11.08 195,364 3.21 17 10.37 3.23

LS (m)

<30.7 781,241 25.68 19 22.62 0.88
30.7–65.08 720,877 23.69 20 23.81 1.00

65.08–101.1 632,770 20.80 30 35.71 1.72
101.1–140.7 527,320 17.33 10 11.90 0.69

>140.7 380,217 12.50 5 5.95 0.48

CI (100/M)

<−32.54 586,802 9.63 22 13.41 1.39
−32.54–−9.8 1,196,806 19.64 37 22.56 1.15
−9.8–9.01 2,386,816 39.17 64 39.02 1.00
9.01–31.76 1,387,504 22.77 31 18.90 0.83

>31.76 536,304 8.80 10 6.10 0.69

Dis to road (m)

<500 762,121 12.51 46 28.05 2.24
500–1000 709,095 11.64 30 18.29 1.57
1000–1500 652,772 10.71 14 8.54 0.80
1500–2000 591,152 9.70 7 4.27 0.44

>2000 3,378,964 55.45 67 40.85 0.74

Dis to stream (m)

<100 1,058,295 17.38 70 42.68 2.46
100–200 844,165 13.86 29 17.68 1.28
200–300 834,301 13.70 10 6.10 0.45
300–400 644,273 10.58 9 5.49 0.52

>400 2,708,520 44.48 46 28.05 0.63

Rainfall (mm)

<425.9 929,156 15.25 2 1.22 0.08
425.9–561.6 1,861,610 30.56 86 52.44 1.72
561.6–703.6 1,490,446 24.47 18 10.98 0.45
703.6–851.9 1,176,590 19.31 25 15.24 0.79

>851.9 634,325 10.41 33 20.12 1.93



Remote Sens. 2020, 12, 475 16 of 29

Table 3. Cont.

Factors Class
Pixels in Domain Pixels of Landslide

FR
No % No %

Lithology

A 453,438 7.42 1 0.61 0.08
B 3,068,975 50.19 104 63.41 1.26
C 74,810 1.22 0 0.00 0.00
D 1,250,277 20.45 26 15.85 0.78
E 543,327 8.89 13 7.93 0.89
F 429,394 7.02 9 5.49 0.78
G 236,729 3.87 6 3.66 0.95
H 58,043 0.95 5 3.05 3.21

LU/LC

Afforest 1,582,944 25.89 20 12.20 0.47
Agriculture 638,404 10.44 14 8.54 0.82

Orchard 931 0.02 0 0.00 0.00
Dry farming 2,883,017 47.15 74 45.12 0.96

Water 42,648 0.70 1 0.61 0
Agri-Orch 901,557 14.74 51 31.10 2.11

Rock 5,361 0.09 1 0.61 6.95
Urban 59,975 0.98 3 1.83 1.87

NDVI
<−0.201 3,517,295 57.72 98 59.76 1.04
−0.201–0.36 929,798 15.26 41 25.00 1.64

>0.36 1,647,011 27.03 25 15.24 0.56

Soil type

Rock
Outcrops/Entisols 1,566,585 25.62 28 17.07 0.67

Inceptisols 1,210,719 19.80 36 21.95 1.11
Mollisols 1,797,624 29.40 44 26.83 0.91
Alfisols 1,540,065 25.19 56 34.15 1.36

Dis to fault (m)

<500 670,236 11.00 15 9.15 0.83
500–1000 637,781 10.47 14 8.54 0.82
1000–1500 581,006 9.53 11 6.71 0.70
1500–2000 503,170 8.26 11 6.71 0.81

>2000 3,701,746 60.74 113 68.90 1.13

The topographic factors are of great importance for the preparation of LSM [98]. The elevation has
a strong relationship with landslides occurrences. The sub-classes <354 m of elevation dataset has the
highest FR values (FR = 1.35), indicating the zone of highest landslide susceptibility. Precipitation is the
primary cause of landslide occurrences of a region. The long duration of heavy precipitation directly
affects landslides due to the loosening of soils, increase of surface runoff velocity and accelerated rate
of sediment transmission. The FR results showed that the sub-layer of >851 mm, which is the highest
rainfall in the study area, has the maximum FR value of 1.93, followed by the sub-classes of <425 mm
(0.08), 425–561 mm (1.72) and 561–703 mm (0.45). In the case of the slope, the steeply sloping area
is the most susceptible to landslide occurrences in comparison to gently sloping areas. In this study,
5–10 degree and 20–30 degree slope angles are the classes with the maximum FR values of 1.78 and
1.15, followed by the <5 degrees (0.80), 10–15 degrees (0.97) and >30 degrees (0.59) sub-classes. For
the slope length factor, the sub-class of 65.08–101.1 m has the highest FR value of 1.72, indicating
a high landslide susceptibility, followed by the 30.7–65.08 m <30.7 m, 101.1–140.7 m and >140.7 m
(0.48), respectively (Table 3). The topographic position index is one of the factors that determines
the landslides occurrences. The sub-layer of 1.37–3.99 of TPI has the maximum FR values of 1.28.
The highest FR values usually indicate zones of the highest landslides susceptibility, while lower FR
values of the sub-layers of TPI indicate zones of lesser landslide susceptibility. With the help of the FR
model, the concave (FR = 1.09) and convex (RF = 1.02) sub-layers of Plan curvature have been assigned
more weights than the flat areas. The convex and the concave areas of mountains are more susceptible
to landslides, while flat areas are not susceptible to landslides.
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The convergence index (CI) is the topographic factor that plays a role in the landslides occurrence
of a region. The values of CI vary from +100 to −100. The sub-layers of <−32.54 in the present study
have a maximum FR value of 1.39, preceded by −32.54 to −9.8 (FR = 1.15) and −9.8 to 9.1 (FR = 1.0),
respectively. The regions that have negative values of CI are more prone to landslides than the areas
that have positive CI values. The correlation between landslide locations and road distance indicates
that the subset <500 m has the maximum FR value (2.24), which indicates an extreme landslide risk.
Landslides frequently occur close to roads in this region. The distance sub-classes of 1000−1500 m,
1500–2000 m and >2000 m indicate a weaker relationship to landslide occurrence with greater distance
to the roads. In terms of the distance to streams, close proximity to a stream has a strong control on
landslide occurrence. The FR results show that the sub-layer of <110 m, which is the least distance from
a stream, has a direct impact on the occurrence of landslides due to the high velocity and discharge
of the streams. Comparatively, a greater distance to streams does not directly affect the occurrence
of landslides. The sub-layers of 200–300 m, 300–400 m, and >400 m distance have low FR values
of 0.45, 0.52 and 0.63, respectively. The presence of a fault is one of the causes of landslides. Here,
the sub-layer of >2000 m has the maximum FR value of 1.13, preceded by <500 m (0.83), 500−1000
m (0.82), 1000–1500 m (0.70) and 1500–2000 m (0.81), representing an increasing risk of landslides.
The stream power index (SPI) directly affects the landslide susceptibility. The maximum stream power
can transport the sediment and erode soil particles immediately, thus creating a favourable situation
for landslides. The FR results show that the sub-class of >15.8 has the highest FR value of 3.24 and
the highest landslide incidence, followed by the other sub-classes of <9.08 (0.46), 9.08–10.99 (1.11),
10.99–12.9 (1) and 12.9–15.8 (0.83), respectively. The geology, soil type, LU/LC and NDVI are the major
landslide determining factors in this region. Geologically, the area consists of eight geological units.
The outcomes of the FR model demonstrate that the geological sections H (Tre and TRJs lithological
units) and B (Dp, and DCkh lithological units) have high FR values of 3.21 and 1.26, followed by A
(0.08), C (0), D (0.78), E (0.89), F (0.78) and G (0.95), respectively. In the case of the soil type factor, the
fragile, weak and softest soils have the highest risk of landslides of the region. The results of FR show
that the inceptisols (FR = 1.11) and alfisols (FR = 1.36) have a stronger influence on landslide occurrence
than the rock (0.67) and mollisols (0.91). LULC also plays a crucial role in the occurrence of landslides.
Eight LULC classes were identified in the study area, namely afforested area, agriculture land, orchard,
dry farming, water, agriculture-orchard, rock outcrops. The majority of landslides occurred in the
mountain rocks area (FR = 6.95) followed by agriculture-orchard (FR = 2.11), urban areas (FR = 1.87),
the forest (FR = 0.47), agriculture (FR = 0.82) and dry farming (FR = 0.96) areas. A high vegetation
density can reduce the landslide risk and also postpone the soil transmission and erosion, while a high
concentration of landslides can be found in the low vegetation area, which is more susceptible to the
occurrence of landslides. In this study, the sub-class of −0.201 to 0.36 has the maximum FR of 1.64,
suggesting susceptibility to landslides. Therefore, the FR model depicts the reciprocal relationship of
the landslide locations and landslide conditioning factors, taken as the research purpose to manage the
landslide mitigation. The pixel-based study using FR is more accurate and appropriate for landslide
susceptibility mapping.

3.3. Landslide Susceptibility Models

In this landslide susceptibility assessment, the dependent factors were expressed as binary
variables, i.e., landslides and non-landslides. The numerical and categorical values of landslide
conditioning factors were extracted for creating the LSMs based on the models using the program
R. The landslide susceptibility mapping based on the random forest (RF) was constructed using the
relative weight of the mean decrees in accuracy and the mean decrees in accuracy of the Gini index
of LCFs (Table 7). The RF model results show that the very low, low, moderate, high and very high
landslide susceptibility zones of the LSM cover 25.75%, 28.61%, 19.46%, 14.82% and 11.36% areas of
the watershed, respectively (Figure 5). Only 11.36% of the basin, mainly in the middle portion along
the north-south line, has an even higher risk of landslides. Likewise, in the GIS setting, the LSM
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generated using the FLDA model was categorized into five sub-layers (Figure 6). The results of the
LSM based on the FLDA model show that 16.10% and 26.07% of the area have very high and high
landslide susceptibility (LS), while 10.64%, 22.20%, and 24.99% of the area have very low, low, and
moderate LS. The ADTree LS map was prepared by summarizing all prediction node values in the GIS
environment (Figure 7). In this study, the ADTree model was classified into the five classes of very low,
low, medium, high and very high according to the NBM of Jenk’s. From total of study area, 31.27% has
very low susceptibility to landslide occurance), 37.81% has low, 1.53% has moderate, 14.03 % has high
and 15.37% has very high susceptibility to gully co-occurance.
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3.4. Validation of Machine Learning Models

The success and predication curves (Figure 8) were generated using the training and testing data
sets by AUROC curves. The AUROC values of the success rate curves (SRC) are 0.896 (89%) for ADTree,
0.927 (92%) for FLDA and 0.972 (97%) for RF models, which means that the LSMs are very good to
excellent. The AUC values of the prediction rate curve (PRC) are 0.822 (82%) for ADTree, 0.795 (79%)
for FLDA and 0.985 (98%) for RF models, which is also very good to excellent for the resulting LSMs
(Figure 8). Very similar results have been found for the success and prediction curves. Of the selected
machine learning ensemble methods, the RF model produces a more accurate LSM.
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The seed cell area index (SCAI) is a reliable validation technique. The validation results of the
LSMs using the SCAI method are shown in Table 4. SCAI is the ratio of the percentage of each sub-layer
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to the percentage of landslides that occur in the class [52]. If values of the SCAI, decreased from very
low to very high classes of LS, the model is regarded as excellent [1,14–37]. The LSMs produced based
on the ADTree, FLDA and RF models were categorized into five classes. These landslide susceptibility
classes and the number of pixels of training and validation datasets were computed using the SCAI
statistical method. The SCAI values of very high landslides susceptibility classes are 0.28, 0.34 and 0.14
for the FLDA, ADTree, and RF models, respectively (Table 4).

Table 4. Percentage of each susceptibility class along with SCAI values.

Model Class
Pixels in Domain Pixels of Landslide

SCAI
No % No %

ADTree

Very Low 1,865,100 31.27 7 3.07 10.18
Low 2,255,466 37.81 43 18.86 2.00

Moderate 91,472 1.53 5 2.19 0.70
High 836,774 14.03 49 21.49 0.65

Very High 916,639 15.37 124 54.39 0.28

FLDA

Very Low 648,691 10.64 2 0.88 12.14
Low 1,352,591 22.20 7 3.07 7.23

Moderate 1,522,829 24.99 30 13.16 1.90
High 1,588,744 26.07 82 35.96 0.72

Very High 981,082 16.10 107 46.93 0.34

RF

Very Low 1,569,307 25.75 3 1.32 19.57
Low 1,743,560 28.61 3 1.32 21.75

Moderate 1,185,580 19.46 14 6.14 3.17
High 902,913 14.82 27 11.84 1.25

Very High 692,408 11.36 181 79.39 0.14

The efficiency values of the FLDA, ADTree, and RF models using the testing dataset are 0.69, 0.77
and 0.69, respectively. The efficiency values of the FLDA, ADTree, and RF models using a training
dataset are 0.74, 0.77 and 0.69, respectively. The TSS values of the FLDA, ADTree, and RF models
using the testing dataset are 0.37, 0.55 and 0.39, respectively (Table 5). The TSS values of the FLDA,
ADTree, and RF models using the training dataset are 0.47, 0.53 and 0.38, respectively. The AUROC,
SCAI, efficiency and TSS methods are a good representation of reality. The outcome of the validation
also indicates a strong relationship between the current landslide locations (validation data set) and
the model’s expected landslide locations. Above all, as per the validation methods used here, the RF
machine learning technique performs better than the other models for creating LSMs in the Gallicash
watershed in Iran.

Table 5. Values of efficiency (E) and true skill statistic (TSS).

Models
Validation Dataset (VD) Training Dataset (TD)

FLDA RF ADTree FLDA RF ADTree

TN 44 58 54 122 128 117
FP 31 17 21 52 46 57
FN 16 17 25 40 35 51
TP 59 58 50 134 139 123

TPR 0.79 0.77 0.67 0.77 0.80 0.71
FPR 0.41 0.23 0.28 0.30 0.26 0.33

efficiency 0.69 0.77 0.69 0.74 0.77 0.69
TSS 0.37 0.55 0.39 0.47 0.53 0.38
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4. Discussion

4.1. Model Performance and Comparison

The northern parts of Iran are frequently affected by landslides, which is hindering the economic
growth of this region. Landslide susceptibility mapping may contribute to an effective solution for
this region to reduce the financial losses and human deaths caused by the landslides. The landslide
susceptibility mapping is an invaluable tool for deploying protection measures and managing sudden
landslide occurrences in this region. To prepare an LSM, selecting suitable models and geo-environment
factors is an important task to properly forecast areas that may eventually be affected by a landslide.
In the forested area, it is difficult to investigate the topographic conditions and to map the landslide
susceptibility. Due to the obstruction of a large canopy cover, ASTER and SRTM low-resolution
images cannot provide sufficient information on topographical characteristics in forest areas [114].
The scarcity of the morphological information in the densely forested areas is creating difficulties in the
environmental management in the study area. These problems can be solved using radar, which is an
effective and reliable remote sensing technique that provides accurate information regarding natural
resources. synthetic aperture radar (SAR) techniques leads to lightweight cost-effective imaging sensors
of high resolution [115]. The ALOS PALSAR, ERS 1, 2, JERS Radar sat and Envisat have been used in
this field. The ALOS PALSAR DEM is more suitable for collecting information from densely forested
areas and also produces a more accurate DEM than ASTER and SRTM [108,114,116,117]. In this study,
the PASLAR DEM with a resolution of 12.5 m × 12.5 m was used to extract the topographical and
hydrological characteristics in the Gallicash watershed.

Recently, machine learning techniques have become more popular in the scientific community for
environmental modeling as these methods are helpful in effectivley explaining the complex relationships
between environmental predictors and responses. So far, many machine learning ensemble approaches,
including RF, FLDA, BRT, AdaBoost, multiboost, bagging, CART, NBT, ADTree have been used for the
evaluation of LSMs [1,29–31]. different approaches and methods were developed and implemented
around the world for the spatial assessment of environmental hazards.In this study, the RF, ADTree,
and FLDA models are used for the assessment of the LSMs in the Gallicash watershed. The LSMs of
the present study were prepared using the R program, remote sensing, and GIS. It is impossible to
avoid the problem of overfitting because the sampling ratio of 70:30 was established for the training
and test datasets without conducting a sampling ratio accuracy test, and despite a multi-collinearity
check having been carried out, noise still exists in the landslide conditioning factors data. A key
advantage of the machine learning algorithm used in this research is that it automates the task of
searching multiple databases in order to collect crucial information. Such algorithms can compensate
for particular theories that can be used together with automating the analysis of large amounts of data
to support planning decisions.

The LSMs prepared using the RF, ADTree, and FLDA models were categorized into five separate
landslide susceptibility classes, namely very low, low, moderate, high and very high, according to
the four classification methods, namely quantile, natural breaks of the Jenk’s classification, equal
interval, and geometric interval. By comparing the results of each classification method and the
distribution of landslides of the training and validation dataset on the high and very high classes of
landslide susceptibility, it was noticed that the most reliable distribution was given by the natural break
classification method. The main advantage of the natural break classification method is that there is no
class bias, and the intra-class deviation is minimum and inter-class deviation is maximum. This is in
line with the results of Arabameri et al. [1] since the natural break method is a reliable classifier in the
mapping of landslide susceptibility. In the Gallicash watershed, the very high LS classes of the RF,
ADTree, and FLDA models cover an area of about 11.36%, 15.37% and 16.10% (Table 4). To determine
the goodness of fit and prediction accuracy of LSMs, the AUROC curve, SCAI, efficiency, and TSS was
used in this study area. The AUROC curve produced the successive curve rate (SCR) and predication
curve rate (PCR) using the training and validation datasets. The succession and the prediction values
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of the AUROC curve are shown in Figure 8. The AUROC, SCAI, efficiency and TSS methods have
shown that all the models are suitable and efficient enough for producing the LSMs. Our results of
these models are rational and justified by the works of Arabameri et al. [1], Dieu Tien Bui et al. [31],
Lee et al. [40] and Chen et al. [14]. Above all, the study shows that the RF model is more suitable for
the landslide susceptibility mapping than the ADTree and FLDA models. The severe landslide risk
zones in this region have been found in the middle part along the north-south axis of the study area,
likely due to the mountainous, elevated, slopping, high convergence index and topographical position
of the landforms in this area.

4.2. Variable Contribution Analysis

In this work, a vital machine learning ensemble approach, namely the RF model, was used for
landslide susceptibility mapping in the Gallcash river watershed. In the program R, the presence or
absence of landslides, expressed as 0 and 1, were considered as the target variables, and the LCFs were
considered as the independent variables. The point’s values of the studies have been extracted LCFs
regarding the target variables. The results of the RF model show that the out-of-bag error is 4.7 %
(Table 6). The RF algorithm calculates the importance of FCFs for the construction of LSM (Table 7).
The LCFs such as TPI (21.09), distance to stream (7.72), elevation (5.8), rainfall (8.17), plan curvature
(2.99), lithology (2.78), SPI (2.78), CI (2.93), TWI (3.01), distance to road (4.62), NDVI (3.31), soil (1.42),
distance to fault (3.88), slope (3.35) and LULC (1.28) were assigned a weight by the RF model (Table 7).
The TPI, distance to stream, elevation, and rainfall were shown to have a great effect on landslides,
followed by plan curvature, lithology, SPI, CI, TWI, distance from road, NDVI, soil, distance from fault,
slope and LULC.

Table 6. Confusion matrix from the RF model (0 = no landslide, 1 = landslide).

0 1 Class Error

0 113 6 0.0504
1 20 104 0.1612

Table 7. The relative influence of landslide conditioning factors in the RF model.

Factor Weight

TPI 21.09
Distance to stream 7.72

Elevation 5.8
Rainfall 8.17

Plan curvature 2.99
Lithology 2.78

SPI 4.42
CI 2.93

TWI 3.01
Distance to road 4.62

NDVI 3.31
Soil 1.42

Distance to fault 3.88
Slope 3.35
LULC 1.28

LS 1.01

The relative importance of each of the LCFs was also calculated using the BRT machine learning
technique. The results of the BRT model indicate that the TPI (0.5552) has the highest contribution to
landslide susceptibility, followed by distance to stream (0.1148), elevation (0.0573), rainfall (0.0497),
plan curvature (0.0419), lithology (0.0306), SPI (0.0270), CI (0.0225), TWI (0.0224), distance to road
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(0.0219), NDVI (0.0218), soil type (0.0165), distance to fault (0.0086), slope (0.0075), LULC (0.0017) and
LS (0.0003). All the LCFs used in susceptibility modeling play a major role in making the area prone to
landslides (Figure 9).
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5. Conclusions

The presented study analyzes landslides and how they are impacted by tectonic activities, adverse
topographical and hydrological conditions, land-use change, road construction and unnecessary
activities of people in the Gallicash catchment, northern Iran. A total of 249 landslides were identified
and analyzed to evaluate the LS conditions in the study area. LSMs based on an environmental hazards
assessment is an important aspect of sustainable environmental management and planning. In this
study, sixteen landslide conditioning factors and three reliable machine learning ensemble models,
namely RF, ADTree and FLDA, were chosen to demonstrate the areas at risk of landslides. Landslide
inventory datasets were considered to be the dependent variables and LCFs were presumed to be
independent variables. The dependent variables are expressed as the binary values of 0 and 1, where
1 and 0 indicate the presence and absence of landslides. The high-quality data, such as the ALOS
PALSAR DEM and Sentinel-2 image with a resolution of 12.5 m × 12.5 m were used for extracting the
topographic, hydrological and geomorphological datasets to prepare LSMs. Of the different lithological
segments in this study area, the H (Tre and TRJs lithological units) and B (Dp, and DCkh lithological
units) geological sections have a strong influence on the occurrence of landslides. Similarly, alfisoil and
inceptisoil soils contribute significantly to landslides occurring in this region. The machine learning
software R Studio was used to run machine learning algorithms such as RF, ADTree, FLDA, etc. RS
and GIS are the basic tools for performing the landslide susceptibility mapping. The integrations of R,
RS and GIS have created a strong foundation for the construction of the LSMs using machine learning
algorithms. The results of RF, ADTree and FLDA models show that 11.36% (RF), 15.37% (ADTree), and
16.10% (FLDA) of the area of the whole catchment belong to the very high landslide susceptibility class.
Several common techniques, such as the ROC curve, SCAI, Efficiency and TSS, were used to verify the
performance of the three chosen models. All models have strong LS simulation abilities. Finally, the
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RF model shows slightly better accuracy (AUC of SRC = 0.978, AUC of PRC = 0.985, the efficiency
of VD = 0.77, efficiency of TD = 0.77, TSS of VD = 0.55 & TSS of TD = 0.53) than the other models
in modeling the landslide susceptibility in this region as per the results of the validation techniques.
The most critical zones of landslide susceptibility have been identified in the central part along the
north-south axis in the Gallicash catchment. This could identify the relationships between the spatial
distribution of landslide locations and landslide conditioning factors. The LSMs prepared based on the
RF, ADTree, and FLDA may be utilized by decision-makers, planners, academic researchers, engineers,
and government agencies to mitigate the loss of human life and property. The results of this study will
also support sustainable development measures and management of the environment in the Gallicash
catchment and landslides prone areas in general.
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