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Abstract: Nowadays, GF-1 (GF is the acronym for GaoFen which means high-resolution in Chinese)
remote sensing images are widely utilized in agriculture because of their high spatio-temporal
resolution and free availability. However, due to the transferrable rationale of optical satellites, the
GF-1 remote sensing images are inevitably impacted by clouds, which leads to a lack of ground
object’s information of crop areas and adds noises to research datasets. Therefore, it is crucial
to efficiently detect the cloud pixel of GF-1 imagery of crop areas with powerful performance
both in time consumption and accuracy when it comes to large-scale agricultural processing and
application. To solve the above problems, this paper proposed a cloud detection approach based
on hybrid multispectral features (HMF) with dynamic thresholds. This approach combined three
spectral features, namely the Normalized Difference Vegetation Index (NDVI), WHITENESS and the
Haze-Optimized Transformation (HOT), to detect the cloud pixels, which can take advantage of the
hybrid Multispectral Features. Meanwhile, in order to meet the variety of the threshold values in
different seasons, a dynamic threshold adjustment method was adopted, which builds a relationship
between the features and a solar altitude angle to acquire a group of specific thresholds for an image.
With the test of GF-1 remote sensing datasets and comparative trials with Random Forest (RF),
the results show that the method proposed in this paper not only has high accuracy, but also has
advantages in terms of time consumption. The average accuracy of cloud detection can reach 90.8%
and time consumption for each GF-1 imagery can reach to 5 min, which has been reduced by 83.27%
compared with RF method. Therefore, the approach presented in this work could serve as a reference
for those who are interested in the cloud detection of remote sensing images.

Keywords: cloud detection; hybrid multispectral features; dynamic thresholds; GF-1 images

1. Introduction

GF-1 satellite is the first satellite of China’s high-resolution earth observation system (GF is
an acronym which means high-resolution in Chinese). It was successfully launched by the Long
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March -2D carrier rocket at 12:13:04 on 26 April 2013, which opened a new era of China’s earth
observation. The GF-1 satellite is characterized by a breakthrough to the key technologies of high
spatial resolution, multi-spectral and wide coverage in optical remote sensing, and has a design
life of 5 to 8 years. The satellite plays an important role in the survey and dynamic monitoring of
land resources, geological hazard monitoring, climate change monitoring and agricultural facilities
distribution survey [1–7].

However, due to the transferrable rationale of optical satellite, many remote sensing images are
inevitably covered with a large number of clouds. Cloudless weather is rare, especially in southern
China. Clouds impact the application of visible-multispectral remote sensing images. In satellite
images, clouds are seen as white due to the fact of scattering light, which can blur remote sensing
images and even prevent scientists from observing the surface and cause the images to be completely
unusable [8–11]. At the same time, there are also shadows corresponding to clouds in the image, which
block parts of the ground objects and prevent researchers from observing the surface [12–14]. Therefore,
it is essential to evaluate the quality of remote sensing image data, and identify and calculate the area
covered by cloud to avoid the storage of invalid data and the waste of subsequent computing resources.

Until now, the main cloud detection methods can be divided into three categories: The first one is
the physical method, which is to detect the cloud in each pixel of a remote sensing image by using
its physical multi-spectral features. In the early stage of the study, physical methods often utilized a
fixed threshold to distinguish clouds and other objects. In 1987, Saunders used a series of physical
thresholds to process the NOAA AVHRR sensor data, which may be the first article to study cloud
detection [15]. Then, on the one hand, many researchers proposed diverse thresholds for different
remote sensing datasets (e.g., MODIS, Landsat data and GF-1 imagery) [16–20]. On the other hand,
some researchers focused on improving a fixed threshold method to acquire an optimal cloud detection
result [16,19]. However, using a fixed threshold has many shortcomings and limitations. With the
increasing demand for cloud detection accuracy, more and more cloud detection researches have
adopted a dynamic threshold instead of a fixed threshold. For example, Gennaro et al. used manual
intervention to dynamically select threshold [21]. Although this method can improve the accuracy of
cloud detection, it is hard to apply to massive images because it needs manual intervention. In order to
address this issue, some researchers proposed several methods which allow thresholds to dynamically
change according to the changes of solar altitude angle and adapt to the real atmospheric and surface
conditions [22,23]. From the above researches, we found that physical methods have an excellent
advantage with high calculational speed because of their simple model, which meets our demand to
process massive imageries. Meanwhile, although the dynamic threshold method is rarely applied to
the dataset of GF-1 images, it is crucial to find the efficient physical features and a reasonable dynamic
adaptive threshold method for GF-1 images.

The second cloud detection method is the method based on the texture and spatial features of the
cloud, which is carried out according to the spatial information features of images. An image’s texture
reflects the spatial change of the spectral brightness value of a remote sensing image. Although the
textures of clouds are variable, clouds have their own unique statistical texture characteristics compared
with the ground objects they cover. The cloud coverage area has higher brightness and corresponding
grey level. Liu et al. carried out cloud detection on MODIS images by using a classification matrix and
dynamic clustering algorithm of shortest distance [24]. Sun et al. generated a cloud mask for Landsat
by Gauss filtering [25]. Liu et al. used a grey level co-occurrence matrix to extract the texture features
of clouds as a criterion for their cloud detection algorithm [26]. This kind of algorithm is complex and
computationally intensive; it is hard to satisfy a prompt computational demand.

The third cloud detecting method is machine learning. With the development of computer
technology, machine learning has been widely used in the field of remote sensing, and provides
another effective means of cloud detection. There are two key points in the research of cloud detection
methods based on machine learning: the first is how to extract and select cloud features, and the
second is how to design cloud detectors, including artificial neural network, support vector machine,
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random forest, clustering and other methods [26,27]. Jin et al. established a back propagation in a
neural network for MODIS remote sensing images, which has a better ability to learn knowledge [28].
Yu et al. used a clustering method according to texture features to realize automatic detection of cloud
area [29]. Wang Wei et al. used a K-means clustering algorithm to initially classify the clustering feature
of the data, and then used spectral threshold judgment to eliminate the interference of smoke and snow
to detect clouds in MODIS data [27,30]. Fu et al. succeeded to detect clouds in an FY meteorological
satellite with Random Forest Method [31]. However, the method based on machine learning usually
requires a large number of training samples and test samples for model construction and accuracy
evaluation, which cannot effectively guarantee the generalization ability of the model in a wide range
of applications.

Aiming at detecting clouds promptly for GF-1 remote sensing images in the whole China and
considering the data quality requirements of subsequent agricultural applications, this paper considers
that it is more important to reduce the leakage recognition rate of clouds (i.e., if there are 100 cloud
pixels in an image, we should do our best to find these pixels, no matter what the total pixels we mark
as clouds is) than to reduce the error recognition rate of clouds. Therefore, after analyzing the spectral
features of typical targets in GF-1 remote sensing images, three cloud detection feature parameters are
selected to ensure that the suspected cloud pixels can also be identified. Meanwhile, this work utilizes
Kawano’s dynamic threshold method to build a relationship between the features and solar altitude
angle of each image, which can realize the dynamic adjustment of thresholds of different features.
Experiments demonstrate that the algorithm is simple and efficient. It can be used to realize automatic
cloud detection of GF-1 remote sensing images throughout China.

This paper is organized as follows. Section 2 introduces a cloud detection algorithm for a GF-1
remote sensing image based on hybrid multispectral features with dynamic threshold, including
analysis and selection of the feature parameters, seasonal adjustment of coefficients in the HOT
calculation and spatial adjustment of feature parameters threshold. Section 3 demonstrates the cloud
detection experimental results. Finally, Sections 4 and 5 discuss the experimental results and list
future work.

2. Methodology

In this section, the spectral features of typical targets in GF-1 remote sensing images are analyzed,
and three feature parameters are selected, namely NDVI (Normalized Difference Vegetation Index),
WHITENESS and HOT (Haze-Optimized Transformation). Then, the seasonal background field of
clear sky is designed, and the coefficients in the HOT calculation suitable for different seasons are
obtained. Finally, a dynamic threshold method adapting to the change of solar altitude angle is adopted
to dynamically change the three features’ thresholds according each GF-1 image. Before detecting cloud,
the radiometric calibration, atmospheric correction and orthorectification of the GF-1 multispectral images
are carried out with the GF-1 remote sensing data preprocessing system developed by Ye et al. [1,32,33],
and the reflectance values of the images are obtained.

2.1. Spectral Features

2.1.1. NDVI

NDVI is the normalized difference vegetation index. For Landsat TM (The Thematic Mapper (TM)
is an advanced, multispectral scanning, Earth resources sensor) images, most of the values of the NDVI
and normalized snow index of cloud pixels are near zero because of the white color feature of cloud in
the visible band [34]. With the increase of wavelength, the reflectance of cloud decreases slowly, while
the reflectance of vegetation increases [35], so the pixels which are clouds or crops in the image can be



Remote Sens. 2020, 12, 450 4 of 18

preliminarily distinguished by NDVI. The NDVI equation is shown as (1), NIR represents the near
infrared reflectance of remote sensing images, and R represents the red band reflectance.

NDVI =
NIR− R
NIR + R

(1)

In this section, 20 images in Heilongjiang Province, China are selected (10 images in summer
and 10 images in winter, each image represents 800 × 800 km2). Each image is classified according to
four types of objects: thick cloud, thin cloud, crop and water. Then the NDVI parameter is calculated,
and the mean, the standard deviation and the range of the four types of objects are calculated,
as Table 1 shows.

Table 1. The normalized difference vegetation index (NDVI) value statistics of clouds and other ground
objects in the same and different seasons.

Image Time Statistics Thick Cloud Thin Cloud Crop Water

The summer in 2016
mean 0.080 0.075 0.489 −0.082

standard deviation 0.036 0.033 0.182 −0.022
range 0.036–0.214 0.032–0.207 0.015–0.855 −0.167–0.013

The winter in 2016
mean 0.072 0.071 0.353 −0.065

standard deviation 0.021 0.025 0.165 0.013
range 0.026–0.321 0.021–0.318 0.011–0.743 −0.132–0.011

It can be seen from Table 1 that, in the same season, the NDVI mean values of different objects,
such as thick cloud, crop and water differ greatly, which means there is a potential threshold that can
be used to distinguish clouds and other ground objects. In different seasons, the NDVI mean values
of the thick cloud differ slightly, which means the potential threshold is stable in different seasons.
Therefore, using the NDVI parameter as one of the cloud detection features is feasible.

2.1.2. WHITENESS

WHITENESS was first proposed by Gomez-Chova in 2007 [36]. In the visible band, clouds always
appear white because of their plane reflection characteristics. This parameter uses the sum of the
absolute difference between each visible band and the overall brightness to capture the attribute of
clouds. But for Landsat TM images and GF-1 multispectral images with only three visible bands,
the effect is not ideal. However, by improving the calculation method [14], as in Equations (2) and (3)
list, it can be well adapted to the multispectral images of GF-1. Band1 is the blue band of GF-1, Band2

is the green band and Band3 is the red band. Bandi represents the ith band of GF-1, MeanVis is the
average of visible bands of GF-1.

MeanVis =
Band1 + Band2 + Band3

3
(2)

WHITENESS =
3

∑
i=1

∣∣∣∣Bandi −MeanVis
MeanVis

∣∣∣∣ (3)

The WHITENESS value statistics of clouds and other ground objects in the same and different
seasons is calculated like NDVI, the results are shown in Table 2.
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Table 2. The WHITENESS value statistics of clouds and other ground objects in the same and
different seasons.

Image Time Statistics Thick Cloud Thin Cloud Crop Water

The summer in 2016
mean 0.19 0.17 0.27 0.25

standard deviation 0.04 0.06 0.05 0.07
range 0.08–0.35 0.00–0.35 0.12–0.51 0.09–0.50

The winter in 2016
mean 0.15 0.08 0.55 0.05

standard deviation 0.02 0.02 0.09 0.003
range 0.11–0.22 0.00–0.76 0.01–0.85 0.00–0.43

It can be seen from Table 2 that at the same season, the WHITENESS mean values of different
objects, such as thick cloud and crop, thick cloud and water, differ greatly, which means there is
a potential threshold that can be used to distinguish clouds and other ground objects.At different
seasons, the values of thick clouds differ slightly, which means the potential threshold is stable in
different seasons. Therefore, it has a good effect on distinguishing thick cloud, crop and water that
using WHITENESS as one of cloud detection features.

2.1.3. HOT

The HOT (Haze-Optimized Transformation) [37] algorithm was first published by Zhang in 2002.
By analyzing a large amount of spectral information of multi-spectral remote sensing images, it was
found that under sunny weather conditions, the blue-band pixel values of images are highly correlated
with the red-band pixel values, and this relationship has nothing to do with the types of objects. In the
image band scatter map, most of the pixels in red and blue bands are distributed on a straight line,
which is defined as “clear sky line”. The pixels in the cloud cover area will deviate from the clear
sky line. The thicker the cloud, the greater the deviation. The HOT formula is Equation (4), Band1

represents the pixel values of the blue band, Band3 represents the pixel values of the red band, and ω

is the angle between the horizontal axis (blue band) and the clear sky line.

HOT = Band1 × sin ω− Band3 × cos ω (4)

The HOT value statistics of clouds and other ground objects in the same and different seasons is
calculated like NDVI and WHITENESS, the results are shown in Table 3.

Table 3. The HOT value statistics of clouds and other ground objects in the same and different seasons.

Image Time Statistics Thick Cloud Thin Cloud Crop Water

The summer in 2016
mean 235 179 35 107

standard deviation 0.236 0.279 0.162 0.122
range 190–549 132–208 19–98 35–149

The winter in 2016
mean 274 186 43 123

standard deviation 0.215 0.187 0.165 0.204
range 205–597 143–215 25–103 43–165

It can be seen from Table 3 that at the same season, the HOT mean values of different objects, such
as thin cloud and crop, thin cloud and water, differ greatly, but there is a partial overlap of HOT values’
range between thin clouds and some high-brightness water, and at different seasons, the HOT mean
values of the same land objects differ slightly. Therefore, HOT parameters can distinguish thin clouds
from most crops, but HOT parameters are weak at distinguishing thin clouds from water.

In the three Tables above, it can be found that the corresponding features of thick clouds also vary
with seasons, this may be relative to lots of aspects such as solar altitude angle, the concentration of
composition of thick clouds, and so on.
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2.1.4. Hybrid Multispectral Features

From the experiments, we found that all three features will fail to recognize some pixels in clouds.
In order to reduce the leakage recognition rate of clouds, this work uses these features together to detect
clouds, which is the cloud detection method based on hybrid multispectral features, as Figure 1 shows.

Figure 1. The cloud detection method based on hybrid multispectral features. (a) An original image.
(b) The features images. (c) The cloud images. (d) The final cloud image.

We assume there is an original image with 4 × 4 pixels. The first step is to calculate the three
features values respectively and get the three features images. The second step is to detect which pixels
are clouds and which are not. The last step is to combine these three cloud images to get the final cloud
image, the combined principle is if a pixel has been detected as a cloud pixel in any cloud images, we
think it is a cloud pixel in the final cloud image. However, the HOT formula (4) is variant because of
the two coefficients (sin ω and cos ω), so how to stabilize these two coefficients is an essential point in
the method, which we will introduce in the next section.

2.2. Seasonal HOT Formula

2.2.1. Seasonal Datasets

The first step of the HOT feature algorithm is to select the clear sky area in the image and calculate
the clear sky line. However, due to the influence of external factors such as solar irradiation intensity
and aerosol concentration, the clear sky area and the clear sky line will be different in each image,
so the conventional method needs to select the clear sky area manually. In this section, the method
of establishing a clear sky background field is used to determine the clear sky line and HOT feature
parameter of each image, which avoids manual selection of clear sky area and improves efficiency.
A large number of clear and cloudless multispectral images of the satellite are selected as the data
source to establish the seasonal clear sky background field, as Figure 2 shows. After pre-processing
and geometric registration, the coordinates of different images have been unified. Then, the blue and
red band data sets of all images are averaged separately, and the mean images of the two data sets
(clear sky background field) are obtained by C# (a kind of programming language).
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Figure 2. Seasonal clear sky background field method. (a) overlapped regional images in the season.
(b) The images of blue band. (c) The mean value image of the blue band. (d) The images of the red
band. (e) The mean value image of the red band.

2.2.2. Linear Regression

The next step is to calculate the clear sky line for every season. Firstly, the red and blue band
scatter diagram of all the pixels in the seasonal background field is constructed using the least square
method. The result is shown in Figure 3.

a). The clear sky line of background field in the Spring b). The clear sky line of background field in the Summer

c). The clear sky line of background field in the Autumn d). The clear sky line of background field in the Winter

Figure 3. Clear sky lines for seasonal backgrounds. (a) The clear sky line of background field in the
Spring. (b) The clear sky line of background field in the Summer. (c) The clear sky line of background
field in the Autumn. (d) The clear sky line of the background field in the Winter.
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In Figure 3, the horizontal axis represents the blue band and the vertical axis represents the red
band. The red and blue band pixel values of the clear sky background field in each season are linearly
correlated. The regression coefficients b and a of the clear sky line equation in each season are shown
in Table 4.

Table 4. The coefficients of clear sky line.

Season b a R2

Spring 1.5656 −1087.40 0.9534
Summer 1.4639 177.02 0.9501
Autumn 1.5981 −3783.7 0.9852
Winter 1.3193 −783.54 0.7743

It can be seen from Table 4 that the determinant coefficient R2 of the clear sky line equation in
each season is high, which indicates that the background field can be used as the reference data for
calculating the feature value, HOT. From the regression equation of the clear sky lines and Equation (4),
the Equations (5) and (6) can be derived. Therefore, the sin ω and cos ω in Equation (4) can be derived,
as Table 5 shows.

sin ω =
b√

1 + b2
(5)

cos ω =
1√

1 + b2
(6)

Table 5. The parameters of HOT.

Season sin ω cos ω

Spring 0.8429 0.5384
Summer 0.8256 0.5643
Autumn 0.8478 0.5305
Winter 0.7972 0.5279

2.3. Dynamic Thresholds

Variability in surface characteristics over the vast territory of China makes using a fixed threshold
for cloud detection unreasonable. In theory, there is no fixed threshold for nationwide cloud detection
of multispectral features. Therefore, a dynamic threshold calculation method combined with solar
elevation angle is adopted.

2.3.1. Coefficients of Formula

Koichi Kawano [22] believes that for visible and near infrared bands, the relationship between
local solar elevation angle and image reflectance can be defined by Equation (7).

γ = α sin ϑ + β (7)

In the equation, γ is the reflectance of the pixel, and ϑ is the solar elevation angle. The values of α and
β are obtained by linear regression analysis of a series of point pairs composed of γ and sin ϑ. In this
section, 10 high-resolution multispectral images of Heilongjiang in 2015 are selected for band linear
fitting, and the coefficients in the equations between solar elevation angle and reflectance in blue, red,
green and near infrared bands of GF-1 images are obtained separately, as Table 6 shows.
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Table 6. The coefficient table of sun elevation and reflectance.

Band α β

blue 288 −102
green 234 −56

red 342 −132
near infrared 217 −87

2.3.2. Algorithm

The flow chart of cloud detection with dynamic threshold is shown as Figure 4.

Figure 4. The flow chart of cloud detection with dynamic threshold.

The algorithm flow of calculating dynamic threshold and the parameters in the Figure 4 are
as follows:

(1) suppose that the reference image’s central point is x and solar elevation angle is ϑx. After radiation
correction and atmospheric calibration, three cloud detection feature parameters are calculated
respectively. Then we continually adjust thresholds (tndvi1, tndvi2, twhiteness and thot) until the accuracy
of cloud detection of the reference image is more than 90% with these thresholds.
(2) the pixel values of ith band of image’s central point x(xbi) can be obtained through the Equation (7)
and coefficients in Table 6, as shown in Equation (8).

xb1 = α1 sin ϑx + β1

xb2 = α2 sin ϑx + β2

xb3 = α3 sin ϑx + β3

xb4 = α4 sin ϑx + β4

(8)

(3) calculate the NDVI, WHITENESS and HOT of the central point x of the reference image, as shown
in Equation (9). The values of sin ϑ and cos ϑ can be determined by acquired time of image and Table 5.

xndvi =
xb4−xb3
xb4+xb3

xwhiteness = ∑3
i=1

∣∣∣ xbi−MeanVis
MeanVis

∣∣∣
xhot = xb1 sin ϑ− xb3 cos ϑ

(9)
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(4) calculate the difference (N) between features of the reference image and the thresholds, as shown in
Equation (10). 

Nndvi1 = tndvi1 − xndvi
Nndvi2 = tndvi2 − xndvi
Nwhiteness = twhiteness − xwhiteness
Nhot = thot − xhot

(10)

(5) suppose that the center point of the image (the clouds that need to be detected) is y and the solar
elevation angle is ϑy. After radiation correction and atmospheric calibration, the pixel values of the ith
band of the image’s central point y(ybi) can be obtained through the Equation (7) and coefficients in
Table 6, as shown in Equation (11). 

yb1 = α1 sin ϑy + β1

yb2 = α2 sin ϑy + β2

yb3 = α3 sin ϑy + β3

yb4 = α4 sin ϑy + β4

(11)

(6) calculate the NDVI, WHITENESS and HOT of the central point y of the aim image, as shown in
Equation (12). The values of sin ϑ and cos ϑ can be determined by the time information about when
the image was captured and Table 5.

yndvi =
yb4−yb3
yb4+yb3

ywhiteness = ∑3
i=1

∣∣∣ ybi−MeanVis
MeanVis

∣∣∣
yhot = yb1 sin ϑ− yb3 cos ϑ

(12)

(7) calculate the threshold (T) of NDVI, WHITENESS and HOT of the image which is needed to detect
clouds, as shown in Equation (13).

Tndvi1 = Nndvi1 + yndvi
Tndvi2 = Nndvi2 + yndvi
Twhiteness = Nwhiteness + ywhiteness
Thot = Nhot + yhot

(13)

When we use this method to detect clouds of GF-1 imageries, we only need to find out the
thresholds of the reference image, then we save the thresholds as fixed parameters, there is no need
to tune the thresholds every time. After that, we can use this method to automatically calculate the
features’ thresholds of each image from the reference image, which make it possible to detect clouds in
different images (large-scale area).

3. Results

3.1. Experiment Design

The paper designed three experiments to demonstrate the proposed method has a high accuracy
and efficiency. The first experiment is a comparison between the HMF and single features mentioned
in Section 2, which can interpret why we chose the HMF rather than a single feature. The second
experiment is making a comparison between the proposed method and a random forest method in
accuracy and efficiency. The experimental environment is a personal computer with the Ubuntu 14.06
operation system, an 8 GB RAM, an Intel(R) Core(TM) i7-7700HQ CPU and Python 3.6. The third
experiment uses the proposed method in parallel to detect clouds in the whole of China, which
illustrates that our method can be applied over a large-scale area.
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3.2. The Comparative Accuracy and Efficiency

3.2.1. Comparison between the HMF and Single Features

In this section, the experiment data is a GF-1 multi-spectral image with 8 m spatial resolution of
TIFF format, randomly selected from Heilongjiang province. The image is shown in Figure 5a. In the
image, the underlying surface is vegetation with some scattered thick clouds and a small amount of
thin clouds. The image is classified into five types of objects: thick cloud, thin cloud, vegetation, water
body and bare land by supervised classification. Then the NDVI, WHITENESS and HOT parameters
of the image are calculated. Finally, the best threshold values of the three parameters of the image for
cloud recognition are obtained by bisection and visual interpretation respectively: −0.1 < NDVI < 0.21,
WHITENESS < 0.1, HOT > 1050, cloud detection results with different feature combinations are shown
in Figure 5.

Figure 5. The cloud detection effect with different feature combinations (The pixel depth of the image
in part a is 16 bit unsigned integer, the whole volume of image is about 0.15 GB, the rows and columns
of the image are about 4500 × 4500).

In order to quantitatively evaluate the accuracy of cloud detection with combination of different
features, ArcGIS random selection and classification evaluation function is used to gather statistics for
the accuracy of the cloud detection results of images. In this section, 100 corresponding points were
randomly selected from the two images for each type of object and were compared. The results are
shown in Tables 7–9.
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Table 7. Accuracy assessment of the cloud detection result with NDVI.

Results Thick Clouds Thin Clouds Vegetation Water Bare Land Accuracy%

cloud pixels 84 35 16 8 7 79.3
non-cloud pixels 16 65 84 92 93 76.9

accuracy% 84 35 84 92 93
59.5 89.6

Figure 5b and Table 7 demonstrate that the cloud detection with NDVI can detect thick clouds
and non-cloud objects well. The accuracy of thick clouds detection is 84%, but it does not work well on
thin clouds detection, with an accuracy of only 35%.

Table 8. Accuracy assessment of the cloud detection result with NDVI and WHITENESS.

Results Thick Clouds Thin Clouds Vegetation Water Bare Land Accuracy%

cloud pixels 94 59 12 7 7 85.5
non-cloud pixels 6 41 88 93 93 85.4

accuracy% 94 59 88 93 93
76.5 91.3

After comparing Figure 5b,c, Tables 7 and 8, it can be seen that a combination of NDVI and
WHITENESS improves cloud detection compared with just using NDVI. However, the detection of
thin clouds is unsatisfactory with an accuracy of only 59%.

Table 9. Accuracy assessment of the cloud detection result with three feature parameters.

Results Thick Clouds Thin Clouds Vegetation Water Bare Land Accuracy%

cloud pixels 93 88 4 0 9 93.3
non-cloud pixels 7 12 96 100 91 93.8

accuracy% 93 88 96 100 91
90.5 95.6

Through visual interpretation of cloud detection results (Figure 5d), it can be clearly seen that
thick clouds or thin clouds in the image are effectively detected and the results of the clouds’ edge
detection mask are highly consistent with the shape of clouds’ edge. From Table 9, it can be seen that the
detection accuracy of clouds or non-cloud objects is more than 90% by using three multispectral features.
Compared with thick clouds, some thin clouds are still misjudged, but the overall accuracy of clouds
detection is more than 90%, which can meet the requirements of subsequent agricultural applications.

3.2.2. The Comparison to the Random Forest Method

We also conducted an experiment to compare the proposed method with the accuracy and
efficiency of the random forest approach. We adopted the same programming language, Python 3.6,
to achieve the two methods. The random forest approach is described in the reference [31], then four
randomly selected GF-1 16-m images were used as the experimental data. One of the four images
was used to collect the training samples, and other images were used to test the accuracy and the
efficiency of cloud detection. The accuracy is shown in Table 10. It can be found that the two methods
have no apparent difference when it comes to detecting clouds, but random forest is more likely to
categorize crops into clouds by mistake. Furthermore, the average time consumption with random
forest to detect clouds for a GF-1 image is 12 h 21 min, but the proposed method only needs 2 h 4 min.
Therefore, the proposed method has the advantage of efficient calculation compared to the random
forest approach.
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Table 10. A comparison of the proposed method and random forest method

Images Results the Proposed Method Random Forest

Clouds Crop Accuracy% Clouds Crop Accuracy%

The image1 cloud pixels 93 3 96.88 95 30 76.00
non-cloud pixels 7 97 93.27 5 70 93.33

The image2 cloud pixels 92 3 96.84 94 6 94.00
non-cloud pixels 8 97 92.38 6 94 94.00

The image3 cloud pixels 90 5 94.74 85 8 91.40
non-cloud pixels 10 95 90.48 15 92 85.98

accuracy% 91.67 96.33 91.33 85.33

3.3. Large-Scale Cloud Detection

In order to evaluate the cloud detection capability in a large-scale area, some randomly selected
GF-1 multispectral remote sensing images in China are used to detect clouds. The results are shown in
the Figure 6 and the accuracy assessment is shown in Table 11.

a). the original image in 
Jan of Heilongjiang 
province

b). the cloud detection 
result of image a 

c). the original image in Aug 
of Heilongjiang province

d). the cloud detection 
result of image c 

e). the original image in 
Jan of Xinjiang province

f). the cloud detection 
result of image e 

g). the original image in 
Aug of Xinjiang province

h). the cloud detection 
result of image g 

i). the original image in 
Jan of Fujian province

j). the cloud detection 
result of image i

k). the original image in 
Aug of Fujian province

l). the cloud detection 
result of image k 

m). the original image in 
Jan of Henan province

n). the cloud detection
result of image  m

o). the original image in 
Aug of Henan province

p). the cloud detection 
result of image o 

Figure 6. The contrast of original images and cloud detection results (the columns of the 1st and 3rd
are original images, the other columns are corresponding cloud detection results).

Through visual interpretation of cloud detection results (Figure 6) and analyzing Table 11, it can
be seen that thick cloud detection accuracy can reach 93.8% and thin cloud detection accuracy can
reach 87.9%. Although the detection accuracy of thin clouds is slightly lower than that of thick clouds,
the overall detection accuracy of cloud pixels is 90.8%, and that of non-cloud pixels is 94.6%, so it can
be shown that thick clouds or thin clouds in the nationwide image are effectively detected. At the
same time, this section presents statistics on the cloud detection speed of a 8-m multispectral image
and a 16-m multispectral image with the number of 1, 20, 50, 100 and 200. The statistical results are
shown in the following Figure 7. It can be seen that the computing speed of the cloud detection system
can reach the second level in processing GF-1 8-m multispectral images and the minute level for 16-m
multispectral images, and the computing efficiency has reached the current application requirements.
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Table 11. Accuracy assessment of the cloud detection result with the hybrid multispectral features with
dynamic thresholds.

Images Results Thick Clouds Thin Clouds Crop Water Bare Land Accuracy%

Jan of HLJ cloud pixels 93 88 4 0 9 93.3
non-cloud pixels 7 12 96 100 91 93.8

Aug of HLJ cloud pixels 95 89 9 3 12 88.5
non-cloud pixels 5 11 91 97 88 94.5

Jan of XJ cloud pixels 93 85 10 4 5 90.4
non-cloud pixels 7 15 90 96 95 92.7

Aug of XJ cloud pixels 92 91 5 1 7 93.3
non-cloud pixels 8 9 95 99 93 93.8

Jan of FJ cloud pixels 93 86 10 5 2 93.3
non-cloud pixels 7 14 90 95 98 93.8

Aug of FJ cloud pixels 98 95 2 0 3 93.3
non-cloud pixels 2 5 98 100 97 93.8

Jan of HN cloud pixels 94 83 8 4 9 93.3
non-cloud pixels 6 17 92 96 91 93.8

Aug of HN cloud pixels 92 86 5 7 6 93.3
non-cloud pixels 8 14 95 93 94 93.8

accuracy% 93.8 87.9 93.4 97 93.4
90.8 94.6
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Figure 7. The cloud detection efficiency for 16-m images/8-m images.

4. Discussion

The fixed thresholds of each feature parameter found in Section 3.2 are partially inconsistent
with the range of each parameter corresponding to the cloud in Section 2.1. This is mainly because
the data which were used are not the same data, so it shows that although the threshold method
can distinguish cloud and non-cloud objects to a certain extent, the thresholds of different regions
or different seasons are variable, which implies that there is no fixed threshold for nationwide cloud
detection of multispectral features. Thus, the method of cloud detection with a dynamic threshold
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proposed in this paper is essential, and can calculate the corresponding threshold for each GF-1 remote
sensing image.

However, due to the overlap of cloud and snow in spectral characteristics and the lack of the Short
Wave Infrared (SWIR) band in the GF-1 images which is needed when calculating the Normalized
Difference Snow Index (NDSI), it is easy to make a misjudgement when using this method to detect
cloud and snow. The main attempt in this work is to acquire the real reflectance of crops for subsequent
agricultural application. If crops are covered by snow, the reflectance of a remote sensing image
cannot reflect the real information of a crop, so these pixels cannot be utilized either. Therefore, this
kind of misjudgement has a positive impact, which can be ignored in this study. However, for other
applications, clouds and snow might need to be distinguished effectively. In this case, interested
researchers can consider using texture features to distinguish clouds and snow. Furthermore, cloud
shadow is also a challenge in cloud detection. In this paper, the method cannot address this problem.
In future work, some feature parameters which can detect cloud shadow will be considered.

In evaluating the accuracy of the cloud detection results, this work and most researchers still
choose the corresponding points randomly from an original image and detected image, then evaluate
the accuracy by visual interpretation and judge the effect of cloud detection based on the results.
Therefore, how to evaluate cloud detection accuracy more objectively is the difficulty of the current
research stage, and is also the next research work of this study. This paper establishes a set of parameters
from images in Heilongjiang province, even though the nationwide application has demonstrated that
this method works. In the future, we would also focus on exploring and researching the differences of
these parameters in different regions.

5. Conclusions

Based on the features of the GF-1 satellite sensor and the requirement of cloud detection in
agriculture, this paper proposes a cloud detection method based on hybrid multispectral features with
a dynamic threshold for GF-1 remote sensing images to achieve the high precision and highly efficient
distinction between clouds and crops. Through experiments and analysis of various multispectral
features, this work preliminarily shows that NDVI, WHITENESS and HOT provide a certain degree
of discrimination between cloud and other ground objects in GF-1 satellite data. Combining this
with experimental analysis, this work finds out that the accuracy of cloud detection is the highest
when the three features are used in combination, which is more than 90%. In this paper, through the
establishment of clear sky background field and linear fitting in four seasons, the corresponding HOT
parameter calculation equations in different seasons are obtained. The R2 of fitting results in spring,
summer and autumn all reach above 0.95, the fitting effect is excellent, and the influence of different
imaging times on the calculation of HOT parameters is reduced as far as possible. At the same time,
this paper adopts an effective method to dynamically acquire the thresholds of NDVI, WHITENESS
and HOT according to the change of solar elevation angle, which minimizes the influence of different
imaging positions on the three feature parameters’ thresholds. In addition, experiments show that the
proposed method can process 8-m and 16-m GF-1 images efficiently, the speed can reach second and
minute levels respectively. In terms of accuracy, cloud detections are carried out for random images
in China, and the overall cloud detection accuracy is 90.8%. The main contributions of this work as
follows: 1. we explored an effective strategy based on previous researchers’ works without any other
auxiliary data to detect clouds of the GF-1 images which are not suitable for some popular algorithms.
2. the proposed method has been applied into scientific production and supports other researches in
the preprocessing of remote sensing images [33] and crop mapping [38,39].
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The following abbreviations are used in this manuscript:

GF-1 GaoFen No.1
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NOAA National Oceanic and Atmospheric Administration
MODIS Moderate Resolution Imaging Spectroradiometer
TM The Thematic Mapper
HMF Hybrid Multispectral Features
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