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Abstract: As one of geostationary earth orbit constellation for environmental monitoring over the 
next decade, the Geostationary Environment Monitoring Spectrometer (GEMS) has been designed 
to observe the Asia-Pacific region to provide information on atmospheric chemicals, aerosols, and 
cloud properties. In order to continuously monitor sensor performance after its launch in early 2020, 
we suggest in this paper deep convective clouds (DCCs) as a possible target for the vicarious 
calibration of the GEMS, the first ultraviolet and visible hyperspectral sensor onboard a 
geostationary satellite. The Tropospheric Monitoring Instrument (TROPOMI) and the Ozone 
Monitoring Instrument (OMI) are used as a proxy for GEMS, and a conventional DCC-detection 
approach applying a thermal threshold test is used for DCC detection based on collocations with 
the Advanced Himawari Imager (AHI) onboard the Himawari-8 geostationary satellite. DCCs are 
frequently detected over the GEMS observation area at an average of over 200 pixels within a single 
observation scene. Considering the spatial resolution of the GEMS (3.5 × 8 km2), which is similar 
to the TROPOMI and its temporal resolution (eight times a day), the availability of DCCs is expected 
to be sufficient for the vicarious calibration of the GEMS. Inspection of the DCC reflectivity spectra 
estimated from OMI and TROPOMI data also shows promising results. The estimated DCC spectra 
are in good agreement within a known uncertainty range with comparable spectral features even 
with different observation geometries and sensor characteristics. When DCC detection is improved 
further by applying both visible and infrared tests, the variability of DCC reflectivity from 
TROPOMI data is reduced from 10% to 5%. This is mainly due to the efficient screening out of cold, 
thin cirrus clouds in the visible test and of bright, warm clouds in the infrared test. Precise DCC 
detection is also expected to contribute to the accurate characterization of cloud reflectivity, which 
will be investigated further in future research.  

Keywords: GEMS; UV; VIS; hyperspectral data; deep convective cloud; vicarious calibration; OMI; 
TROPOMI 

 

1. Introduction 

With the global transport of anthropogenic chemicals in the atmosphere becoming a 
controversial issue over recent years, satellites have been considered a key tool for keeping track of 
chemicals given their wide spatial coverage. In the Asia-Pacific region, Geostationary Korea Multi-
Purpose Satellite-2B (GEO-KOMPSAT-2B, GK2B) is expected to perform this role following its 
planned launch in February 2020 using an ultraviolet (UV) and visible (VIS) hyperspectral sensor 
called the Geostationary Environment Monitoring Spectrometer (GEMS). The GEMS has been 
designed to observe the Asia-Pacific region including the Korea Peninsula and surrounding areas 
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and continuously monitor atmospheric conditions by measuring the concentration of atmospheric 
chemicals and tracking aerosol properties [1,2]. To ensure the consistency of these measurements, the 
onboard calibration with solar diffusers and light-emitting diode (LED) is deployed in the GEMS 
calibration system, which converts light from a scene into calibrated spectral data (Level 1B). 
However, it has been frequently reported by previous satellite programs that residual errors in Level-
1B data introduce some level of uncertainty to higher-level products [3–8]. It is also highly probable 
for a sensor’s characteristics to change over time due to both internal and external factors, and this 
makes it necessary for the sensor to be continuously monitored and calibrated.  

Vicarious calibration is a well-known approach for monitoring and improving sensor 
performance by periodically comparing it with reference targets. To successfully perform the 
calibration, it is important to select a suitable target that is stable enough to be repeatedly observed 
and well-characterized under different observation conditions. Because of these requirements, 
particular observation targets have been used for calibration, such as snow and ice over polar regions, 
bright clouds, deserts, and artificial sites [9–14]. However, geostationary earth orbit (GEO) sensors 
are limited in selecting the target because each sensor only covers a particular spatial region, while 
low-earth orbit (LEO) sensors cover the entire surface of the Earth. Considering that the GEMS only 
measures UV and VIS radiance reflected by the atmosphere and the Earth’s surface, the variation in 
the measurements also imposes limitations on the selection of a stable target.  

Deep convective clouds (DCCs), in this respect, are an excellent candidate as a calibration target 
for the GEMS considering their physical and radiative properties. DCCs are frequently observed over 
the tropical western Pacific (TWP) region with their tops reaching up to or over the tropopause due 
to the strong vertical convection [15–18]. This means that the backscattered radiation from these 
clouds is less affected by the Earth’s surface and the troposphere, where most atmospheric 
components reside. The reflective properties of the cloud tops have also been fairly well-
characterized due to their spatially uniform and less penetrative features, especially in the VIS and 
infrared (IR) spectral regions [19–22]. With these characteristics, DCCs have been widely used as a 
reference target for the monitoring of VIS and IR satellite sensors [23–31]. However, little attention 
has been paid to the applicability of DCCs as reference targets in the UV spectral region because there 
are not many UV sensors in operation, especially onboard GEO satellites. In this study, we aim to 
explore the applicability of DCCs as a reference target for the GEMS. Some of the advantages of using 
DCCs as a target are still valid even at shorter wavelengths, such as lower dependence on 
atmospheric conditions, the distinct brightness of the clouds, and the low spectral dependence in the 
reflected radiance from the clouds [32].  

To select only spatially homogeneous clouds, we apply a DCC-detection routine with the IR 
brightness temperature (TB) threshold suggested by Doelling et al. [27] and an adaption of the UV–
VIS threshold. Combining thermal and reflective signals is expected to facilitate the selection of 
suitable DCCs because each radiative property provides different types of information on the clouds 
[33,34]. In Section 2, to evaluate the applicability of DCC calibration, we firstly check whether DCCs 
occur over the TWP region in high enough numbers to provide reliable statistical parameters. Because 
the GEMS does not cover the IR region, we use TB and reflectivity data from the Advanced Himawari 
Imager (AHI) onboard a geostationary weather satellite (Himawari-8) to derive simple climatology 
for DCCs over the TWP region. After confirming that there are a sufficient number of DCCs over the 
TWP region, UV–VIS hyperspectral data from the Ozone Monitoring Instrument (OMI) onboard 
Aura and the Tropospheric Monitoring Instrument (TROPOMI) onboard Sentinel-5 Precursor (S5P) 
are used as a proxy for the GEMS for the spectral analysis of DCCs. In Section 3, we compare OMI 
and TROPOMI DCCs to confirm whether the detected DCCs reflect a sufficiently stable and bright 
signal to reduce the different sensor characteristics as having homogeneous spectral features. Based 
on these results, DCC detection thresholds are tested to optimize detection for further 
characterization of cloud reflectivity. In Section 4, we verify the effectiveness of the optimized DCC 
detection using TROPOMI observations and cloud properties from TROPOMI Level-2 data products. 
Preliminary results and the limitations of our proposed method are also presented in this section. In 
Section 5, conclusions are presented with the remarks on the future research.  
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2. Data and Methods 

2.1. UV–VIS Hyperspectral Sensor 

2.1.1. GEMS 

The GEMS covers the Asia-Pacific region (5°S–45°N and 75°E–145°E), observing the Earth in an 
east-west direction with a fixed north–south field of view (FOV) of 7.73° [2]. For the retrieval of the 
concentrations of atmospheric gases (O3, NO2, SO2, and HCHO) and aerosol properties, the GEMS 
has been designed to provide a continuous spectrum from 300 to 500 nm, with a spectral resolution 
of better than 0.6 nm every 0.2 nm. As the first hyperspectral UV–VIS sensor onboard a GEO satellite, 
the GEMS is expected to provide critical information for the monitoring of the regional transport of 
atmospheric chemicals at hourly intervals during the daytime as part of the GEO constellation [35]. 

Prior to the launch of the satellite, on-ground sensor characterization and calibration have been 
conducted during the preparatory phase for the GEMS. While in orbit, the GEMS relies on the 
onboard calibration consisting of solar diffusers and LED to evaluate and maintain calibration 
quality. As part of the onboard calibration system, the LED serves as a stable light source to monitor 
the non-linearity of the electronic response and the aliveness of each pixel at the detector level. Solar 
measurements have also been designed to monitor and calibrate changes in the sensor response with 
two transmissive diffusers: a working and reference diffuser. The working diffuser has been designed 
to observe the sun on a daily basis which makes it to gradually degrade over the course of the mission. 
Thus, a reference diffuser identical to the working diffuser but observing the sun only once every six 
months has been included in the calibration system. However, because most components of the 
sensor are expected to degrade over time, it is important to isolate the degradation of each component 
of the sensor and accurately calibrate the changes. Because onboard calibration has been incorporated 
into the calibration system, an independent method for evaluating the overall performance of the 
calibration system would be useful for maintaining the data quality of the GEMS in the long-term as 
a back-up calibration strategy. 

2.1.2. OMI and TROPOMI 

The OMI and TROPOMI are hyperspectral sensors that encompass both the spectral range and 
the observation area of the GEMS. Operating in a sun-synchronous polar orbit, both sensors take 
radiance measurements in the ascending node of the satellites at around the local solar time (LST) of 
13:30. The top-level specifications for the GEMS, OMI, and TROPOMI are summarized in Table 1. 
Launched in October 2017, the TROPOMI has stricter data quality requirements compared to other 
sensors. Because the spatial and spectral resolution of the GEMS is quite similar to the resolution of 
the TROPOMI, the GEMS and TROPOMI are strongly expected to be reciprocal candidates for inter-
calibration once the GEMS goes into operation.  

Table 1. Sensor specifications for the GEMS, OMI, and TROPOMI. 

Sensor GEMS OMI TROPOMI 

Orbit type 
Geosynchronous 
(nadir at 128°E) 

Sun-synchronous 
(mean LST – 13:45) 

Sun-synchronous 
(mean LST – 13:35) 

Spectral 
range 

300–500 nm 
UV-2 307–383 nm Band 3 320–405 nm 
VIS 349–504 nm Band 4 405–500 nm 

Spectral 
resolution 

< 0.60 nm 
UV-2 0.42 nm Band 3 

0.55 nm 
VIS 0.63 nm Band 4 

Spectral 
sampling 

< 0.20 nm/pixel 
UV-2 0.14 nm/pixel Band 3 

0.20 nm/pixel 
VIS 0.21 nm/pixel Band 4 

Spatial 
resolution 

3.5 × 8 km2 

(at Seoul) 
13 × 24 km2 

(along × across track) 
5.5 × 3.5 km2 

(along × across track) 
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*The spatial resolution of TROPOMI Band 3-4 has been updated from 7 to 5.5 km along track since 6 
August 2019 [36]. UV-2 and VIS indicate the Level 1B products of OMI while Band 3 and Band 4 
indicate the products of TROPOMI. 

2.2. DCC Climatology 

To check whether there are sufficient DCCs available within the GEMS field of regards (FOR), 
especially over the TWP region, we apply a conventional DCC-detection approach using threshold 
tests for TB and the uniformity of the clouds [26]. The threshold values used for each test and the 
constraints for the observation angles and spatial coverage are summarized in Table 2. For the TB 
test, we use an 11-µm window channel with a threshold of 205 K, which is set considering the trade-
off between the precision of DCC detection and the number of detected DCCs as presented by 
previous studies [27,28]. In addition, for the uniformity test, a relaxed threshold value (from 1 K to 2 
K) is used to account for the lower spatial resolution of the GEMS. The relaxation of the threshold 
could broaden the range of available data with little change to the effectiveness of the DCC detection 
[28]. The maximum solar and viewing zenith angle is also limited to 40° because DCC reflectivity 
changes considerably when the solar and viewing angles are too large [21].  

Table 2. DCC detection thresholds. 

Condition Threshold 
Infrared brightness temperature (TBIR) TBIR < 205 K 

Spatial uniformity (TBIR) Standard deviation of TBIR < 2 K 
Spatial uniformity (RVIS) Standard deviation of RVIS < 0.03 

Solar and viewing zenith angle (θ0 and θ)  θ0 < 40°, θ < 40° 
GEMS observation area 5°S–45°N, 75°E–145°E 

2.2.1. AHI Data Processing 

AHI measurements are used because this imager onboard a GEO satellite provides VIS (R0.47) 
and IR (TB10.4) channels at a higher temporal resolution while fully covering the TWP region with its 
full-disk observation (see Table 3). Because R0.47 has a higher spatial resolution than TB10.4, spatially 
averaged R0.47 is employed. To test the availability of DCCs under GEMS observation conditions, the 
spatial resolution of the GEMS is simulated using 4 × 4 pixels for each of the VIS and IR channels, 
while the mean of TB10.4 and the standard deviations of R0.47 and TB10.4 are used for DCC detection. 

Table 3. AHI VIS and IR channels for DCC detection. 

AHI Ch01 (R0.47) Ch13 (TB10.4) 
Channel VIS IR (window channel) 

Wavelength 0.47 µm 10.4 µm 
Spatial resolution 1 × 1 km2 2 × 2 km2 

Observation interval Every 10 min 
Spatial coverage Full-disk scan (nadir at 140.7°E) 

2.2.2. Frequency Distribution  

DCC climatology data from the AHI for July 2016 to June 2017 with a spatial grid and sampling 
frequency that matches that of the GEMS are collected. In the Asia-Pacific region, most DCCs are 
observed near the tropics and are distributed quite evenly over the GEMS observation area, as 
reported in previous studies [37–39]. In Figure 1, the spatial distribution of the frequency of DCCs 
exhibits a unique arc-shaped boundary, which is attributed to the limitations imposed by the current 
study (i.e., the viewing zenith angle (θ) should be smaller than 40°). Given that the viewing zenith 
angle is a fixed value over time for each pixel of a GEO sensor, the spatial distribution may be limited 
to those pixels that satisfy the angle condition.  
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Figure 2 shows the temporal variation in the number of DCCs observed in a single observation 
scene. On a specific day, most DCCs are detected at noon (02:00–04:00 UTC) when the sun directly 
passes over the target area. This can be attributed to the constraint on the solar zenith angle for DCC 
detection because the solar zenith angle is also limited in the same way as the viewing zenith angle. 
The constraint along with the seasonal deep convection in the Northern Hemisphere might also cause 
the seasonal variation in the frequency of DCCs. As shown in Figure 2b, DCCs mostly occur from 
late summer to early autumn over the TWP region because atmospheric convection is strongly 
dependent on high moisture levels and the latent heat that accumulates during summer [38,40–42]. 

 
Figure 1. Frequency distribution of DCCs matched to the GEMS FOV over the GEMS observation area 
from AHI data taken at three-day intervals for the period July 2016–June 2017. Here, the frequency is 
calculated as the number of DCCs occurring over the year at three-day intervals at each AHI grid 
point binned to 8 × 8 km2. 

 
(a) (b) 

Figure 2. (a) Hourly and (b) monthly distribution of the number of DCCs observed in a single scene 
over the GEMS observation area corresponding to the GEMS FOV from AHI data taken at three-day 
intervals for the period July 2016–June 2017. The yellow and blue boxes represent the lower and upper 
quartile to the median, respectively.  

Even with the limitation imposed by the viewing angular geometry and the seasonality, the 
average number of DCCs in a single observation scene is still larger than 200 pixels even in the month 
with the minimum frequency. Because the GEMS observes the Earth eight times a day, at least 50,000 
DCCs can be detected a month from the GEMS when using the conventional DCC-detection approach 
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with collocated AHI data. This number could be higher if the Advanced Meteorological Imager (AMI) 
onboard GEO-KOMPSAT-2A (GK2A) is used, which is stationed over 128.2°E as with the GEMS; 
thus, the coverage could be expanded further to the west. 

2.3. DCC Reflectivity Spectrum 

After confirming the availability of DCCs over the GEMS coverage area, DCC reflectivity spectra 
obtained from the OMI and TROPOMI are compared to confirm that the DCC measurements show 
similar spectral features and a sufficiently stable signal to be compared across different sensor 
characteristics and optical paths. In the UV–VIS spectral region, the reflected radiation from ice 
clouds is significantly affected by the angle condition [43], and this means it is important to precisely 
detect DCCs for the accurate characterization of cloud reflectivity.  

2.3.1. Collocation Process 

Because the OMI and TROPOMI only cover the UV–VIS and UV–SWIR spectral regions, 
respectively, DCC detection for both sensors could be performed with the collocated VIS and IR 
channels of the AHI. For the collocation between GEO and LEO sensors, we apply the collocation 
criteria suggested by the Global Space-based Inter-Calibration System (GSICS) community [44]. 
Because collocated LEO and GEO data are not directly compared in this study, the viewing angle 
does not match between the sensors. As shown in Figure 3, hyperspectral data satisfying the spatial 
and angle conditions (see Table 2) are collected first, and then the AHI VIS and IR channels matching 
the temporal collocation criteria are called. With the collected data, AHI pixels observed at nearly the 
same time (Δt < 5 min) as the OMI and TROPOMI pixels are collocated when the pixels 
simultaneously satisfy the spatial threshold (located within a half of shorter FOV of a LEO sensor). 
With the collocated AHI pixels, the average TB10.4 and the standard deviations of TB10.4 and R0.47 are 
employed for DCC detection.  

 

Figure 3. Flow chart of the collocation process between a UV–VIS hyperspectral sensor and a VIS–IR 
imager for the generation of DCC data. Mean and standard deviation (SD) are calculated with AHI 
pixels satisfying the spatiotemporal collocation criteria. 
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2.3.2. Apparent Reflectivity of DCCs 

The GEMS, OMI, and TROPOMI provide the spectral radiance data that are used as input for 
the retrieval of geophysical information from the atmosphere. Because the uncertainty in the 
measured radiance due to the optical path of the instrument could be mitigated by using irradiance, 
which has the same optical depth [45], here, we use reflectivity for the spectral analysis. Because the 
OMI and TROPOMI provide solar observations once a day, timely matched irradiance with radiance 
is used to calculate the reflectivity. The radiance measured over the DCCs can be written as: 

𝐼 (𝜃 , 𝜃, 𝜑) = 𝑅 (𝜃 , 𝜃, 𝜑)
𝐹

𝜋
𝑒

( ) (1) 

where 𝐼 (𝜃 , 𝜃, 𝜑) is the measured upwelling radiance at wavelength λ with solar zenith angle 𝜃 , 
satellite zenith angle 𝜃, and relative azimuth angle 𝜑. The measured radiance is strongly affected by 
cloud reflectivity 𝑅 (𝜃 , 𝜃, 𝜑) and incoming solar irradiance 𝐹  at the top of the atmosphere (TOA). 
The equation also includes the attenuation caused by atmospheric extinction occurring when the 
incoming and outgoing radiation passes through the atmosphere. The atmospheric optical depth 
𝜏 (𝑧) from the cloud top altitude 𝑧 to the TOA is determined by both absorption and scattering. 
Here, we consider only Rayleigh scattering to simplify the problem and neglect the backscattered 
radiation from the atmosphere above the DCCs. The angle component 𝜇 is the cosine of the zenith 
angle. Thus, cloud reflectivity using the measured radiance and irradiance can be given as: 

𝑅 (𝜃 , 𝜃, 𝜑) =
𝜋𝐼 (𝜃 , 𝜃, 𝜑)

𝐹
𝑒

( ) (2) 

Here, the optical depth 𝜏 (𝑧) is estimated using the approximation suggested by Bodhaine et 
al. [46] that considers the altitude and Rayleigh scattering in the atmosphere. The cloud altitude is set 
to approximately 16 km because the cloud top of DCCs nearly reaches the tropopause in the 
equatorial region [31,47]. This means that the optical depth of the atmosphere above the clouds is 
within the range of 0.0005–0.0025 from 300 to 500 nm. Because Mie scattering and atmospheric 
absorption in the upper troposphere are not included in the calculation, the reflectivity is the apparent 
reflectivity of the DCCs, though it is referred to as simply DCC reflectivity in this study. 

3. Results 

3.1. DCCs Detected using the OMI and TROPOMI 

Figure 4 shows the DCCs identified using OMI and TROPOMI data for a particular cloudy scene 
(3 July 2018 06:10 UTC and 3 July 2018 06:40 UTC, respectively). The TROPOMI observes the Earth 
about 30 min earlier than the OMI, thus, the cloud distributions are slightly different. As shown in 
the figure, the number of DCCs obtained from the OMI–AHI collocations is appreciably smaller than 
that from the TROPOMI–AHI collocations. One of the main reasons for this difference is the lower 
spatial resolution of the OMI. An OMI pixel is about 15 times larger than a TROPOMI pixel, thus, 
many of the small-scale DCCs detected as DCCs using TROPOMI data are missed by the OMI 
because of the threshold and uniformity tests. The lower spatial resolution of the OMI for small-scale 
DCCs increases not only the TB but also the spatial variability in the IR and VIS channels, leading the 
pixel to be labeled as a non-DCC. 
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(a) 

 
(b) 

Figure 4. DCCs plotted on an AHI R0.47 image: (a) OMI DCCs (orange dots) on 3 July 2018 06:10 UTC 
and (b) TROPOMI DCCs (blue dots) on 3 July 2018 06:40 UTC. 

Data quality issues that arise during the long-term operation of the OMI also affect the 
availability of OMI observations. For instance, the row anomaly (RA) effect [32] renders nearly a 
quarter of all OMI pixels (especially those close to the nadir observations) unavailable for analysis. 
Figure 5 shows the measured reflectivity of the OMI as a function of the position (i.e., row) of the 
detector (i.e., the charge-coupled device, CCD) and the reflectivity spectrum affected by the RA effect. 
The measurements in rows 24–41 contaminated by the RA effect are eliminated during data 
processing. However, as shown in Figure 5a, the reflectivity for the row numbers close to the nadir 
port is also significantly lower, even though the rows are not flagged as RA-affected pixels. When 
these observations are detected together as DCCs, the reflectivity spectrum is significantly lower 
compared to the DCC reflectivity of the TROPOMI. Thus, in this study, the pixels in rows 41-48 are 
also eliminated, which are possibly affected by the RA effect but which are not flagged as such 
(https://projects.knmi.nl/omi/research/product/rowanomaly-messages.php). As shown in Figure 5b, 
with the elimination of the measurements in the CCD rows close to the nadir (41–48), the mean 
reflectivity becomes much closer to the DCC reflectivity of the TROPOMI. Because the rows close to 
the nadir port generally have a low viewing zenith angle, which satisfies the angle condition for DCC 
detection, the RA effect significantly influences the availability of DCC observations from the OMI.  

  
(a) (b) 

Figure 5. (a) DCC R0.354 binned depending on the position of the detector in the OMI. The shaded red 
box indicates the RA flagged rows in the northern region of the orbit. (b) The DCC mean reflectivity 
spectrum of the OMI (the UV-2 product) containing the RA-affected observations in comparison with 
TROPOMI DCCs 

3.2. DCC Reflectivity Spectrum 
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The DCC spectra of the OMI and TROPOMI observed over a year at 10-day intervals are 
presented in Figure 6, which shows the mean and standard deviation of the radiance and reflectivity 
at each wavelength. Solar measurements observed on the same day and the scan angle position (i.e., 
the position on the detector) of each DCC measurement are also displayed together. Because of the 
previously mentioned data quality issues, the number of DCCs from OMI observations over the year 
is only 3% of that from TROPOMI observations. However, even with this considerable difference in 
the number of measurements, the mean reflectivity of the OMI and TROPOMI is very similar at about 
0.90 and 0.85, respectively, with nearly invariant spectral features except for both ends of the 
wavelength range. The spectral features at both ends are attributed to ozone absorption (300–345 nm) 
and the pixel saturation of the TROPOMI (450–500 nm) [36]. The results indicate that the DCCs 
observed by the satellite sensor reflect a mostly stable signal even with differences in sensor 
characteristics, the number of measurements, and the observation angle geometry.  

 
(a) 

 
(b) 

 
(c) 

Figure 6. Mean and standard deviation of the (a) irradiance, (b) radiance, and (c) reflectivity spectra 
of OMI and TROPOMI DCCs observed for the period July 2018–June 2019 at 10-day intervals. The 
solid and dashed lines represent the mean and standard deviation at each wavelength, respectively. 
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However, some differences are also observed between the spectra of the OMI and TROPOMI. 
At shorter wavelengths, TROPOMI reflectivity is slightly higher than that of the OMI; as the 
wavelength increases, this difference becomes much smaller. This might be caused by the 
degradation of the diffuser in the solar measurements of the TROPOMI because this degradation is 
more significant at shorter wavelengths. This degradation is to be addressed in future updates of 
TROPOMI L1B data in early 2020, as announced in the S5P validation report [36]. TROPOMI DCCs 
also have less spectral noise because the OMI solar measurements have more spectral noise across all 
wavelengths, as shown in Figure 6a. There are also sharp peaks at 393 and 397 nm corresponding to 
the Ca II K and Ca II H Fraunhofer lines, respectively, which are caused by the beam-filling effect of 
the atmosphere above the clouds. Because rotational Raman scattering occurs in the atmosphere, 
scattered radiation is added to the upwelling radiation from the clouds [48]. However, OMI 
reflectivity exhibits negative peaks, which appears unrealistic considering that the beam-filling effect 
predominantly occurs with radiance. These peaks are caused by missing data at particular 
wavelengths for OMI irradiance. When calculating reflectivity, missing data are approximated by 
linear interpolation, which may not accurately reproduce the spectral features, especially for higher 
peaks.  

These results indicate that the TROPOMI still requires further minor updates but that DCCs are 
a promising target given the theoretically well-matched spectral features and lower spectral noise. 
The abundance of data is also an advantage of using the measurements in further research. However, 
even with the well-explained spectral features, DCC measurements still exhibit large systematic 
differences, as indicated by the standard deviations in Figure 6c, reaching nearly 10% and 12% for 
the OMI and TROPOMI, respectively. Because this systematic difference increases as the number of 
measurements increases, the TROPOMI has a higher systematic difference than the OMI. This 
indicates that, as the observation period becomes longer, the difference among the DCCs could 
increase considerably. The difference might be too large to regard the DCC detection properly done 
and this also make the characterization of the cloud reflectivity complicated without knowing the 
reason of the difference. Thus, in Section 3.3, the thresholds for conventional DCC detection are tested 
to reduce the systematic differences in DCC measurements and improve the accuracy of DCC 
detection. Because the OMI has some data-quality issues, we use only TROPOMI and AHI 
observations for this analysis. 

3.3. Improvement in DCC Detection 

3.3.1. Comparison of VIS and IR Radiation 

Figures 7 and 8 present the characteristics of the DCCs detected by the VIS and IR channels. This 
comparison provides insights into whether DCC detection is accurate when detecting only the colder 
and brighter cloud cores. Figure 7 shows the horizontal distribution of DCCs found over Typhoon 
Chaba in October 2016. For a one-to-one comparison, an AHI R0.47 image is binned to match the spatial 
resolution of TB10.4. As shown in Figure 7a, DCCs (identified as blue dots) are mainly found over the 
typhoon center, which has a cold TB10.4, with a symmetrical distribution around the center. However, 
Figure 7b, which presents the DCCs detected over the R0.47 image, is interesting in that the blue dots 
over the right side of the typhoon center have a lower R0.47 of about 0.7. These are thin cirrus clouds 
that have spread out from the typhoon center following strong upper air outflow. Because these 
cirrus clouds have colder cloud tops composed of ice particles, the clouds are detected as DCCs using 
the conventional detection method even though their reflectivity is much lower than genuine DCCs. 
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(a) 

 
(b) 

Figure 7. AHI DCCs plotted as blue dots on (a) 2-km AHI TB10.4 and (b) 2-km R0.47 images of Typhoon 
Chaba (3 October 2016 03:30 UTC) 

The difference in the radiative properties of the DCCs is also demonstrated in Figure 8, which 
presents a two-dimensional histogram of R0.47 and TB10.4 of the DCCs. Based on the histogram, it can 
be inferred that an increase in TB10.4 also increases the skewness of the distribution of R0.47. This may 
be due to the increase in the proportion of detected DCCs with a lower reflectivity. This also indicates 
that DCCs usually have colder cloud tops, a higher reflectivity, and an optically thicker vertical 
structure, while cloud edges and cirrus clouds have similar colder but darker cloud tops. 
Consequently, these results show that TB10.4 might be less effective as a DCC detection threshold, 
especially for UV–VIS measurements. 

 
Figure 8. Two-dimensional histogram of DCCs detected using AHI R0.47 and TB10.4 over the GEMS 
observation area with AHI data taken at three-day intervals for the period July 2016–June 2017. 

One of the few attempts to use DCCs for the monitoring of a UV–VIS hyperspectral sensor used 
only the UV reflectivity threshold for DCC detection [32]. In that study, OMI pixels with a higher 
reflectivity at 354 nm (R0.354 > 0.9) were identified as DCCs and then used for the monitoring of the 
temporal stability of the radiometric calibration of the OMI. At 354 nm, ozone absorption becomes 
weaker while Rayleigh scattering becomes stronger, and these interactions with the atmosphere 
reduce the proportion of the directly transmitted light from the clouds which shows higher angle 
dependence even though the dependence is not very significant over bright clouds [34]. Even with 
this simple form of detection, the average cloud reflectivity was fairly constant regardless of the 
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wavelength (which is a characteristic of DCC reflectivity), and thus, they used DCC reflectivity for 
the long-term monitoring of spectral dependence in sensor performance. However, DCC reflectivity 
still exhibited seasonal and inter-annual variation, which was attributed to differences in cloudiness, 
angle dependence, and residual atmospheric effects (refer to Figure 32 in [32]). Although it is not easy 
to quantify, it is highly possible that these attributions could be increased when the detected DCCs 
are bright but low-lying warm clouds. For example, the optical path for warm clouds is much longer 
than that for DCCs, causing increased variability in the measured reflectivity due to the increased 
contribution from tropospheric air. By the same token, the angular variation of the measured 
reflectivity also increases with increasing optical depth. 

To further clarify the issues associated with warm clouds, Figures 9 and 10 show the spatial 
distribution of TB10.4 and R0.47 in warm clouds and the spectral reflectivity of clouds with different 
TB10.4 values, respectively. This demonstrates the importance of the IR threshold for the accurate 
detection of DCCs, especially in relation to high-altitude clouds with minimal influence from the 
troposphere. The blue dots in Figure 9 show DCCs with high reflectivity (TROPOMI R0.354 > 0.9) and 
warm IR temperatures (AHI TB10.4 > 260 K). In this case, most of the blue dots are located over the 
cloud edges with bright reflectivity, although their temperatures are much warmer than the nearby 
convection core. Thus, if we use the UV–VIS radiation threshold only, it would be difficult to screen 
out bright but warm clouds that are close to the cloud core.  

 
(a) (b) 

Figure 9. TROPOMI cloud pixels (AHI TB10.4 > 260 K, TROPOMI R0.354 > 0.9) plotted as blue dots on 
(a) 2-km AHI TB10.4 and (b) 2-km R0.47 images (20 June 2019 04:30 UTC). 

Figure 10 shows the reflectivity spectrum of bright DCCs with different brightness temperatures. 
The blue line in Figure 10a represents the average reflectivity spectrum of the blue dots in Figure 9, 
while the black line represents that of the clouds satisfying the conventional DCC detection 
thresholds. The reflectivity spectrum including bright but warm clouds (blue line) clearly has a 
smaller reflectivity compared to the bright and cold clouds, which is attributed to the radiative 
interaction with the tropospheric atmosphere. The tropospheric effects in the measured reflectivity is 
also presented in Figure 10b because the beam-filling effect increases cloud reflectivity with greater 
rotational Raman scattering from the tropospheric atmosphere [48].  
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(a) 
 

(b) 

Figure 10. (a) Mean reflectivity spectrum of TROPOMI DCCs detected using UV reflectivity 
(TROPOMI R0.354 > 0.9) and (b) spectral anomaly spectra (i: each DCC pixel, λ: wavelength). The black 
and blue lines represent a cold and warm IR temperature, respectively. 

The results in Figure 8 to 10 make it clear that using VIS and IR information together could 
effectively screen out cirrus clouds and cloud edges as well as ensure the detection of only colder 
cloud tops for the better utilization of DCC reflectivity. 

3.3.2. DCC Detection with Additional VIS Reflectivity  

Based on the previous analysis, we develop an updated DCC detection approach utilizing both 
reflectivity and TB. In order to adapt the reflectivity test, it is important to set an appropriate 
threshold for reflectivity; a stricter threshold (e.g., 0.9) could produce more stable statistics but reduce 
the availability of the data, while a more relaxed threshold (e.g., 0.6) could increase the number of 
data points but increase the variability. Thus, the optimal reflectivity threshold for DCC detection 
needs to be set by weighing both sides (i.e., data availability and the stability of the reflectivity 
distribution). Here, we choose an optimal value by analyzing the variation in statistical parameters 
as a function of different threshold values. 

Figure 11a,b presents the DCC frequency distribution for TROPOMI R0.354 with the addition of 
the AHI R0.47 threshold and the uniformity threshold for AHI R0.47, respectively. The use of R0.354 is 
based on a previous implementation with the OMI [32]. As shown in Figure 11a, applying the AHI 
R0.47 test reduces the spread of the TROPOMI R0.354 distribution and generates a distribution that 
closely follows a normal distribution. However, some low-reflectivity data remains because of the 
atmospheric effects and collocation uncertainty between the AHI and TROPOMI measurements. 
Figure 11b also shows that cloud pixels with higher spatial inhomogeneity account for a large 
proportion of the center of the distribution. This means that the overshooting tops near the cloud core 
may have a lower spatial uniformity, which cannot be eliminated by the reflectivity threshold.  
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(a) (b) 

Figure 11. Frequency distribution of TROPOMI R354 with an additional AHI R0.47 restriction for data 
from July 2018–June 2019 taken at five-day intervals. 

Table 4 presents the statistics for TROPOMI DCC R0.354 with the application of different AHI R0.47 
thresholds to determine the optimal threshold that produces a fairly normal distribution without 
eliminating too many observations. TROPOMI R0.354 is also applied together as the detection 
threshold to reduce collocation uncertainty by restricting the tail of the distribution (TROPOMI R0.354 
> 0.7). The results show that, as the AHI R0.47 threshold increases, the distribution becomes very close 
to normal even though the number of detected DCCs decreases exponentially. The standard 
deviation of the reflectivity decreases linearly and the VIS threshold increases when the kurtosis 
increases exponentially. Interestingly, only skewness converges at a particular AHI R0.47 threshold 
(0.64). Because TROPOMI R0.354 reflectivity is skewed to the left due to the darker cirrus clouds with 
a lower reflectivity, the skewness of the distribution has a negative value regardless of the AHI R0.47 
threshold.    

Table 4. Statistics for TROPOMI DCC R0.354 depending on the addition of an AHI R0.47 threshold for 
DCC detection compared to the conventional DCC detection (w/o column) using DCC measurements 
for July 2018–June 2019 taken at five-day intervals. 

AHI R0.47 w/o 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 
Count 91630 90752 89861 88286 86138 83569 80475 76696 71469 64857 
Mean 0.916 0.917 0.919 0.922 0.925 0.929 0.933 0.938 0.943 0.949 

Median 0.932 0.933 0.934 0.936 0.938 0.940 0.943 0.946 0.951 0.956 
Mode* 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 

SD* 0.076 0.074 0.072 0.070 0.067 0.063 0.060 0.057 0.053 0.050 
Skewness -0.779 -0.769 -0.765 -0.761 -0.767 -0.780 -0.803 -0.848 -0.917 -1.021 
Kurtosis -0.027 -0.008 0.029 0.110 0.255 0.448 0.706 1.056 1.570 2.225 

*The bin size used to calculate the mode is set to 0.01. SD indicates the standard deviation. 

Table 5 presents the statistics for TROPOMI DCC R0.354 with the application of different 
thresholds for the uniformity test for AHI R0.47. As shown in Table 5, the central value and the spread 
of the distribution changes only slightly with the different thresholds for the uniformity test for R0.47. 
The kurtosis and skewness also change as the uniformity increases, though they do not change 
dramatically, as with the reflectivity threshold.  

Table 5. Statistics for TROPOMI DCC R0.354 depending on the uniformity threshold for AHI R0.47 for 
DCC detection compared to the conventional DCC detection (w/o column) using DCC measurements 
for July 2018–June 2019 taken at five-day intervals. 
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SD* of AHI 
R0.47 

w/o 0.025 0.024 0.023 0.022 0.021 0.020 0.019 0.018 0.017 

Count 91630 84159 82454 80629 78626 76557 74241 71737 69135 66243 
Mean 0.916 0.916 0.916 0.916 0.916 0.916 0.916 0.916 0.916 0.916 

Median 0.932 0.933 0.933 0.933 0.933 0.933 0.933 0.932 0.932 0.932 
Mode* 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 

SD* 0.076 0.075 0.075 0.075 0.074 0.074 0.074 0.074 0.074 0.074 
Skewness −0.779 −0.788 −0.789 −0.792 −0.793 −0.795 −0.797 −0.796 −0.795 −0.797 
Kurtosis −0.027 −0.002 0.006 0.012 0.017 0.019 0.026 0.025 0.023 0.026 

*The bin size used to calculate the mode is set to 0.01. SD indicates the standard deviation. 

In summary, the skewness of distribution of TROPOMI R0.354 might become close to 0 with a 
brighter AHI R0.47 threshold until the number of DCCs is significantly lower. When it comes to spatial 
inhomogeneity, some DCCs with a relatively low uniformity are eliminated with the stricter 
uniformity test mostly at the center of the distribution. Because the AHI R0.47 threshold and the 
uniformity test might simultaneously affect the statistics for the reflectivity distribution of TROPOMI 
R0.354, the optimal threshold value for DCC detection needs to be set considering both effects. Figure 
12a,b show the number of available DCCs and the skewness of the distribution, respectively, as a 
function of the detection thresholds. Considering the distribution of each variable, the optimal 
thresholds for AHI R0.47 and the uniformity test for DCC detection are set at 0.70 and 0.018, 
respectively, because at that point, the available number of DCCs is still high even with a relatively 
low skewness of −0.70.  

  
(a) (b) 

Figure 12. (a) Skewness and (b) the number of DCCs as a function of the AHI R0.47 and uniformity test 
for DCC detection using DCC measurements for July 2018–June 2019 taken at 5-day intervals. 

4. Discussion 

4.1. Verification of the Updated DCC Detection Method 

The results in Section 3 show that DCCs have different radiative properties depending on the 
way to detect the DCCs. For the thermal threshold test, it would be most effective to screen out the 
low-altitude clouds, in this case warm clouds having longer optical path lengths. VIS reflectivity can 
also be a useful indicator for detecting only optically thick clouds that are bright enough to reflect 
most of the incoming radiation. Using both radiative properties, DCC detection can be improved 
further to detect only optically thick and high-altitude cloud targets that exhibit homogeneous 
spectral features and higher reflectivity with lower variation.  

4.1.1. Spectral Analysis of DCC Reflectivity 

Figure 13 highlights the advantages of applying the updated DCC detection method with the 
threshold values suggested in Section 3.3.2. The DCC mean reflectivity spectra at the Fraunhofer lines 
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are presented to compare the spectral features of the DCCs detected by different detection methods, 
including the UV threshold test (TROPOMI R0.354 > 0.9) and the IR threshold test (AHI BT10.4 < 205 K). 
In Figure 13a, the mean reflectivity spectra show similar spectral features but differences in 
reflectivity as the DCCs detected using the UV threshold test show the highest values. However, in 
Figure 13b, the spectral features of anomaly spectra exhibit more variance when only the UV 
detection threshold is used. In the figure, the DCCs detected using the updated DCC detection 
method have lower peaks at the Fraunhofer lines, which indicates that the atmosphere above the 
clouds might be much thinner when the DCCs are detected using the thermal radiation threshold.  

  
(a) (b) 

Figure 13. (a) Mean reflectivity and (b) anomaly spectra (i: each DCC pixel; λ: wavelength) of DCCs 
detected using different DCC detection threshold tests. The blue, red, orange lines represent the UV 
threshold test only, the updated DCC detection method, and the IR threshold test only, respectively. 
DCC measurements are from July 2018–June 2019 taken at five-day intervals. 

4.1.2. Cloud Properties of DCCs 

The cloud properties obtained from TROPOMI Level 2 cloud products are presented in this 
section in order to identify the practical range of cloud properties for the DCCs detected using 
different DCC detection threshold tests. Cloud optical thickness and cloud top height are used for 
this analysis because these properties represent the optical and physical features of the clouds, 
respectively. The cloud properties are retrieved from the O2 A-band at 760 nm, while the clouds are 
treated as scattering layers [49]. In Figure 14a, the optical thickness of the DCCs detected using the 
IR detection threshold is lower than that of the DCCs detected using the UV detection threshold. 
However, as shown in Figure 14b, the cloud top height is much higher when the IR threshold test is 
used for DCC detection. These results indicate that the UV and IR DCC detection thresholds 
complement each other in limiting various cloud properties while accurately detecting only those 
DCCs with homogeneous cloud properties. These results closely correspond with the analysis in 
Section 3.3. 
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(a) (b) 

Figure 14. Same as Figure 13 for histograms of (a) cloud optical thickness and (b) cloud top height 
from the TROPOMI Level -2 cloud product for DCCs. 

4.2. Feasibility and Limitations 

In this section, we present the feasibility of using DCC calibration for a UV and VIS hyperspectral 
sensor based on our updated DCC detection method. As mentioned in Section 1, DCC calibration has 
been generally used with meteorological sensors to update radiometric calibration coefficients, which 
typically change over the course of the operation period. A meteorological sensor can be calibrated 
with the well-calibrated sensor after the normalization of various observation conditions, such as the 
angle dependence, spectral response functions, and different center wavelengths. DCC calibration 
for environmental sensors still has a long way to go in terms of normalization, but in this study, we 
present preliminary results for the temporal variability in the TROPOMI DCC observations.  

Figure 15a presents the seasonal distribution of TROPOMI DCCs for data collected over the 
period of a year with probability density functions (PDFs). Even though the number of DCCs is not 
sufficient to calculate a representative PDF for the observations, the PDFs have similar distribution 
patterns regardless of the number of DCCs in each season. However, given that distribution modes 
are generally used to monitor the calibration accuracy of meteorological sensors, the PDF modes are 
too variable since the bidirectional reflectivity of the DCCs and the disparity in the cloud optical 
properties have not been sufficiently accounted for so far. However, the temporal variability caused 
by these uncertainties could cancel each other out as the reflectivity ratio between two different 
wavelengths represents in Figure 15b. The ratio of DCC reflectivity at 354 and 397 nm is used because 
reflectivity at 397 nm (Ca II H line) is affected both by scattered and directly transmitted light. Even 
with the highly expected variability, the ratio of the mean reflectivity at both wavelengths appears 
relatively stable within 0.99–1.01.  

 
(a) 
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(b) 

Figure 15. (a) Probability density function for TROPOMI R0.354 over time (MAM: March to May; JJA: 
June to August; SON: September to November; DJF: December to February) and (b) time series of 
mean reflectivity ratio of R0.354 and R0.397 (grey diamonds are individual values) for the DCCs detected 
using the updated DCC detection method. 

5. Conclusions 

As the first UV–VIS hyperspectral sensor onboard a GEO satellite, the GEMS covers the Asia-
Pacific region, including the TWP region. To develop a vicarious calibration approach based on the 
current availability of calibration targets, the present study tests DCCs to determine whether optically 
thick clouds provide a sufficiently stable and bright signal to allow the radiometric calibration of 
sensors with different hardware characteristics and observation conditions especially in the UV–VIS 
spectral region. For feasibility testing, the VIS and IR channels of the AHI are used with UV–VIS 
hyperspectral data from the OMI and TROPOMI, as a surrogate for the GEMS. To mitigate the 
calibration uncertainty caused by degradation and high-frequency perturbations of the instrument 
optical paths, reflectivity (i.e., the ratio between radiance and irradiance) is used. The cloud 
reflectivity is calculated by taking account of the solar zenith angle, the satellite zenith angle, and 
Rayleigh scattering above the clouds. 

To ensure a sufficient number of DCCs over the GEMS observation area, AHI data from a year-
long period that match the spatial and temporal resolution of the GEMS are analyzed. The DCCs 
detected using the conventional approach (i.e., thermal temperature tests and uniformity tests) have 
a clear seasonality, with a maximum in September and a minimum in April. Spatially, the viewing 
zenith angle also limits the number of DCCs because the AHI observes the target area with a higher 
viewing zenith angle compared to the GEMS. This limitation of the satellite zenith angle is expected 
to be improved with the AMI onboard GK2A, which has the potential to be collocated with the GEMS 
as stationed nearby at 128.2°E. Even with these limitations, DCCs occur in more than 200 pixels on 
average in a single observation scene, which appears to be sufficient for the proposed statistical 
approach considering the observation frequency and the spatial resolution of the GEMS.  

Although the number of DCCs detected by the OMI and TROPOMI is significantly different, 
mainly due to the poor spatial resolution and degraded quality of OMI data, a comparison between 
the estimated spectral reflectivity of the DCCs shows comparable results even with clear differences 
in sensor characteristics, viewing geometry, and the number of data points. Given that more accurate 
calibration is essential for achieving the final goal of the mission, the results look promising in terms 
of applying the proposed method to various UV and VIS environmental sensors for inter-calibration. 
However, a closer inspection of the reflectivity spectra shows that there is high variability in the 
standard deviation (up to 10%), which is mainly due to the false classification of thin cirrus clouds as 
DCCs, which have a cold cloud temperature with a low optical depth. Furthermore, inspection of an 
alternative approach using only reflectivity tests for DCC detection leads to the false detection of 
warm clouds having a high reflectivity and a lower cloud top altitude. Thus, we devise an updated 
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DCC detection approach using both thermal and reflectivity tests to screen out cold, thin cirrus clouds 
and bright, warm clouds. Based on the variation in the statistical parameters of DCC reflectivity with 
different reflectivity threshold values, the threshold value for the reflectivity test is determined to be 
0.7, which produces a distribution close to normal with the location values of the distribution 
converging and retains as many observations as possible. However, certain issues remain that lead 
to a spread in reflectivity caused by the variation in cloud properties and angle dependence, 
including the bidirectional reflectivity distribution of DCCs. The long-term variability in DCC 
reflectivity based on the updated detection method needs to be analyzed, with the results used to 
minimize such variation and to demonstrate the applicability of the new approach for hyperspectral 
UV–VIS sensors. Additionally, since the updated DCC detection can still be dependent on the 
calibration accuracy of the meteorological sensor such as AHI (further AMI), it must also be 
investigated hereafter to properly perform the DCC calibration for the environmental sensors. 
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