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Abstract: As one of geostationary earth orbit constellation for environmental monitoring over the
next decade, the Geostationary Environment Monitoring Spectrometer (GEMS) has been designed to
observe the Asia-Pacific region to provide information on atmospheric chemicals, aerosols, and cloud
properties. In order to continuously monitor sensor performance after its launch in early 2020,
we suggest in this paper deep convective clouds (DCCs) as a possible target for the vicarious
calibration of the GEMS, the first ultraviolet and visible hyperspectral sensor onboard a geostationary
satellite. The Tropospheric Monitoring Instrument (TROPOMI) and the Ozone Monitoring Instrument
(OMI) are used as a proxy for GEMS, and a conventional DCC-detection approach applying a thermal
threshold test is used for DCC detection based on collocations with the Advanced Himawari Imager
(AHI) onboard the Himawari-8 geostationary satellite. DCCs are frequently detected over the GEMS
observation area at an average of over 200 pixels within a single observation scene. Considering the
spatial resolution of the GEMS (3.5 × 8 km2), which is similar to the TROPOMI and its temporal
resolution (eight times a day), the availability of DCCs is expected to be sufficient for the vicarious
calibration of the GEMS. Inspection of the DCC reflectivity spectra estimated from OMI and TROPOMI
data also shows promising results. The estimated DCC spectra are in good agreement within a known
uncertainty range with comparable spectral features even with different observation geometries and
sensor characteristics. When DCC detection is improved further by applying both visible and infrared
tests, the variability of DCC reflectivity from TROPOMI data is reduced from 10% to 5%. This is
mainly due to the efficient screening out of cold, thin cirrus clouds in the visible test and of bright,
warm clouds in the infrared test. Precise DCC detection is also expected to contribute to the accurate
characterization of cloud reflectivity, which will be investigated further in future research.

Keywords: GEMS; UV; VIS; hyperspectral data; deep convective cloud; vicarious calibration;
OMI; TROPOMI

1. Introduction

With the global transport of anthropogenic chemicals in the atmosphere becoming a controversial
issue over recent years, satellites have been considered a key tool for keeping track of chemicals
given their wide spatial coverage. In the Asia-Pacific region, Geostationary Korea Multi-Purpose
Satellite-2B (GEO-KOMPSAT-2B, GK2B) is expected to perform this role following its planned
launch in February 2020 using an ultraviolet (UV) and visible (VIS) hyperspectral sensor called the
Geostationary Environment Monitoring Spectrometer (GEMS). The GEMS has been designed to observe
the Asia-Pacific region including the Korea Peninsula and surrounding areas and continuously monitor

Remote Sens. 2020, 12, 446; doi:10.3390/rs12030446 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-2044-5336
http://dx.doi.org/10.3390/rs12030446
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/3/446?type=check_update&version=2


Remote Sens. 2020, 12, 446 2 of 22

atmospheric conditions by measuring the concentration of atmospheric chemicals and tracking aerosol
properties [1,2]. To ensure the consistency of these measurements, the onboard calibration with solar
diffusers and light-emitting diode (LED) is deployed in the GEMS calibration system, which converts
light from a scene into calibrated spectral data (Level 1B). However, it has been frequently reported by
previous satellite programs that residual errors in Level-1B data introduce some level of uncertainty to
higher-level products [3–8]. It is also highly probable for a sensor’s characteristics to change over time
due to both internal and external factors, and this makes it necessary for the sensor to be continuously
monitored and calibrated.

Vicarious calibration is a well-known approach for monitoring and improving sensor performance
by periodically comparing it with reference targets. To successfully perform the calibration,
it is important to select a suitable target that is stable enough to be repeatedly observed and
well-characterized under different observation conditions. Because of these requirements, particular
observation targets have been used for calibration, such as snow and ice over polar regions, bright clouds,
deserts, and artificial sites [9–14]. However, geostationary earth orbit (GEO) sensors are limited in
selecting the target because each sensor only covers a particular spatial region, while low-earth orbit
(LEO) sensors cover the entire surface of the Earth. Considering that the GEMS only measures UV and
VIS radiance reflected by the atmosphere and the Earth’s surface, the variation in the measurements
also imposes limitations on the selection of a stable target.

Deep convective clouds (DCCs), in this respect, are an excellent candidate as a calibration target
for the GEMS considering their physical and radiative properties. DCCs are frequently observed over
the tropical western Pacific (TWP) region with their tops reaching up to or over the tropopause due to
the strong vertical convection [15–18]. This means that the backscattered radiation from these clouds is
less affected by the Earth’s surface and the troposphere, where most atmospheric components reside.
The reflective properties of the cloud tops have also been fairly well-characterized due to their spatially
uniform and less penetrative features, especially in the VIS and infrared (IR) spectral regions [19–22].
With these characteristics, DCCs have been widely used as a reference target for the monitoring of VIS
and IR satellite sensors [23–31]. However, little attention has been paid to the applicability of DCCs
as reference targets in the UV spectral region because there are not many UV sensors in operation,
especially onboard GEO satellites. In this study, we aim to explore the applicability of DCCs as a
reference target for the GEMS. Some of the advantages of using DCCs as a target are still valid even at
shorter wavelengths, such as lower dependence on atmospheric conditions, the distinct brightness of
the clouds, and the low spectral dependence in the reflected radiance from the clouds [32].

To select only spatially homogeneous clouds, we apply a DCC-detection routine with the IR
brightness temperature (TB) threshold suggested by Doelling et al. [27] and an adaption of the UV–VIS
threshold. Combining thermal and reflective signals is expected to facilitate the selection of suitable
DCCs because each radiative property provides different types of information on the clouds [33,34].
In Section 2, to evaluate the applicability of DCC calibration, we firstly check whether DCCs occur
over the TWP region in high enough numbers to provide reliable statistical parameters. Because the
GEMS does not cover the IR region, we use TB and reflectivity data from the Advanced Himawari
Imager (AHI) onboard a geostationary weather satellite (Himawari-8) to derive simple climatology for
DCCs over the TWP region. After confirming that there are a sufficient number of DCCs over the TWP
region, UV–VIS hyperspectral data from the Ozone Monitoring Instrument (OMI) onboard Aura and
the Tropospheric Monitoring Instrument (TROPOMI) onboard Sentinel-5 Precursor (S5P) are used as a
proxy for the GEMS for the spectral analysis of DCCs. In Section 3, we compare OMI and TROPOMI
DCCs to confirm whether the detected DCCs reflect a sufficiently stable and bright signal to reduce the
different sensor characteristics as having homogeneous spectral features. Based on these results, DCC
detection thresholds are tested to optimize detection for further characterization of cloud reflectivity.
In Section 4, we verify the effectiveness of the optimized DCC detection using TROPOMI observations
and cloud properties from TROPOMI Level-2 data products. Preliminary results and the limitations of
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our proposed method are also presented in this section. In Section 5, conclusions are presented with
the remarks on the future research.

2. Data and Methods

2.1. UV–VIS Hyperspectral Sensor

2.1.1. GEMS

The GEMS covers the Asia-Pacific region (5◦S–45◦N and 75◦E–145◦E), observing the Earth in an
east-west direction with a fixed north–south field of view (FOV) of 7.73◦ [2]. For the retrieval of the
concentrations of atmospheric gases (O3, NO2, SO2, and HCHO) and aerosol properties, the GEMS has
been designed to provide a continuous spectrum from 300 to 500 nm, with a spectral resolution of
better than 0.6 nm every 0.2 nm. As the first hyperspectral UV–VIS sensor onboard a GEO satellite,
the GEMS is expected to provide critical information for the monitoring of the regional transport of
atmospheric chemicals at hourly intervals during the daytime as part of the GEO constellation [35].

Prior to the launch of the satellite, on-ground sensor characterization and calibration have been
conducted during the preparatory phase for the GEMS. While in orbit, the GEMS relies on the onboard
calibration consisting of solar diffusers and LED to evaluate and maintain calibration quality. As part
of the onboard calibration system, the LED serves as a stable light source to monitor the non-linearity
of the electronic response and the aliveness of each pixel at the detector level. Solar measurements
have also been designed to monitor and calibrate changes in the sensor response with two transmissive
diffusers: a working and reference diffuser. The working diffuser has been designed to observe the sun
on a daily basis which makes it to gradually degrade over the course of the mission. Thus, a reference
diffuser identical to the working diffuser but observing the sun only once every six months has been
included in the calibration system. However, because most components of the sensor are expected
to degrade over time, it is important to isolate the degradation of each component of the sensor
and accurately calibrate the changes. Because onboard calibration has been incorporated into the
calibration system, an independent method for evaluating the overall performance of the calibration
system would be useful for maintaining the data quality of the GEMS in the long-term as a back-up
calibration strategy.

2.1.2. OMI and TROPOMI

The OMI and TROPOMI are hyperspectral sensors that encompass both the spectral range and
the observation area of the GEMS. Operating in a sun-synchronous polar orbit, both sensors take
radiance measurements in the ascending node of the satellites at around the local solar time (LST) of
13:30. The top-level specifications for the GEMS, OMI, and TROPOMI are summarized in Table 1.
Launched in October 2017, the TROPOMI has stricter data quality requirements compared to other
sensors. Because the spatial and spectral resolution of the GEMS is quite similar to the resolution
of the TROPOMI, the GEMS and TROPOMI are strongly expected to be reciprocal candidates for
inter-calibration once the GEMS goes into operation.



Remote Sens. 2020, 12, 446 4 of 22

Table 1. Sensor specifications for the GEMS, OMI, and TROPOMI.

Sensor GEMS OMI TROPOMI

Orbit type Geosynchronous
(nadir at 128◦E)

Sun-synchronous
mean LST – 13:45)

Sun-synchronous
(mean LST – 13:35)

Spectral range 300–500 nm
UV-2 307–383 nm Band 3 320–405 nm
VIS 349–504 nm Band 4 405–500 nm

Spectral resolution < 0.60 nm
UV-2 0.42 nm Band 3

0.55 nmVIS 0.63 nm Band 4

Spectral sampling < 0.20 nm/pixel UV-2 0.14 nm/pixel Band 3 0.20
nm/pixelVIS 0.21 nm/pixel Band 4

Spatial resolution 3.5 × 8 km2

(at Seoul)
13 × 24 km2

(along × across track)
5.5 × 3.5 km2

(along × across track)

* The spatial resolution of TROPOMI Band 3-4 has been updated from 7 to 5.5 km along track since 6 August
2019 [36]. UV-2 and VIS indicate the Level 1B products of OMI while Band 3 and Band 4 indicate the products
of TROPOMI.

2.2. DCC Climatology

To check whether there are sufficient DCCs available within the GEMS field of regards (FOR),
especially over the TWP region, we apply a conventional DCC-detection approach using threshold
tests for TB and the uniformity of the clouds [26]. The threshold values used for each test and the
constraints for the observation angles and spatial coverage are summarized in Table 2. For the TB test,
we use an 11-µm window channel with a threshold of 205 K, which is set considering the trade-off

between the precision of DCC detection and the number of detected DCCs as presented by previous
studies [27,28]. In addition, for the uniformity test, a relaxed threshold value (from 1 K to 2 K) is
used to account for the lower spatial resolution of the GEMS. The relaxation of the threshold could
broaden the range of available data with little change to the effectiveness of the DCC detection [28].
The maximum solar and viewing zenith angle is also limited to 40◦ because DCC reflectivity changes
considerably when the solar and viewing angles are too large [21].

Table 2. DCC detection thresholds.

Condition Threshold

Infrared brightness temperature (TBIR) TBIR < 205 K
Spatial uniformity (TBIR) Standard deviation of TBIR < 2 K
Spatial uniformity (RVIS) Standard deviation of RVIS < 0.03

Solar and viewing zenith angle (θ0 and θ) θ0 < 40◦, θ < 40◦

GEMS observation area 5◦S–45◦N, 75◦E–145◦E

2.2.1. AHI Data Processing

AHI measurements are used because this imager onboard a GEO satellite provides VIS (R0.47)
and IR (TB10.4) channels at a higher temporal resolution while fully covering the TWP region with
its full-disk observation (see Table 3). Because R0.47 has a higher spatial resolution than TB10.4,
spatially averaged R0.47 is employed. To test the availability of DCCs under GEMS observation
conditions, the spatial resolution of the GEMS is simulated using 4 × 4 pixels for each of the VIS and
IR channels, while the mean of TB10.4 and the standard deviations of R0.47 and TB10.4 are used for
DCC detection.
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Table 3. AHI VIS and IR channels for DCC detection.

AHI Ch01 (R0.47) Ch13 (TB10.4)

Channel VIS IR (window channel)
Wavelength 0.47 µm 10.4 µm

Spatial resolution 1 × 1 km2 2 × 2 km2

Observation interval Every 10 min
Spatial coverage Full-disk scan (nadir at 140.7◦E)

2.2.2. Frequency Distribution

DCC climatology data from the AHI for July 2016 to June 2017 with a spatial grid and sampling
frequency that matches that of the GEMS are collected. In the Asia-Pacific region, most DCCs are
observed near the tropics and are distributed quite evenly over the GEMS observation area, as reported
in previous studies [37–39]. In Figure 1, the spatial distribution of the frequency of DCCs exhibits
a unique arc-shaped boundary, which is attributed to the limitations imposed by the current study
(i.e., the viewing zenith angle (θ) should be smaller than 40◦). Given that the viewing zenith angle is a
fixed value over time for each pixel of a GEO sensor, the spatial distribution may be limited to those
pixels that satisfy the angle condition.

Figure 1. Frequency distribution of DCCs matched to the GEMS FOV over the GEMS observation area
from AHI data taken at three-day intervals for the period July 2016–June 2017. Here, the frequency is
calculated as the number of DCCs occurring over the year at three-day intervals at each AHI grid point
binned to 8 × 8 km2.

Figure 2 shows the temporal variation in the number of DCCs observed in a single observation
scene. On a specific day, most DCCs are detected at noon (02:00–04:00 UTC) when the sun directly
passes over the target area. This can be attributed to the constraint on the solar zenith angle for DCC
detection because the solar zenith angle is also limited in the same way as the viewing zenith angle.
The constraint along with the seasonal deep convection in the Northern Hemisphere might also cause
the seasonal variation in the frequency of DCCs. As shown in Figure 2b, DCCs mostly occur from late
summer to early autumn over the TWP region because atmospheric convection is strongly dependent
on high moisture levels and the latent heat that accumulates during summer [38,40–42].
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Figure 2. (a) Hourly and (b) monthly distribution of the number of DCCs observed in a single scene
over the GEMS observation area corresponding to the GEMS FOV from AHI data taken at three-day
intervals for the period July 2016–June 2017. The yellow and blue boxes represent the lower and upper
quartile to the median, respectively.

Even with the limitation imposed by the viewing angular geometry and the seasonality, the average
number of DCCs in a single observation scene is still larger than 200 pixels even in the month with the
minimum frequency. Because the GEMS observes the Earth eight times a day, at least 50,000 DCCs
can be detected a month from the GEMS when using the conventional DCC-detection approach with
collocated AHI data. This number could be higher if the Advanced Meteorological Imager (AMI)
onboard GEO-KOMPSAT-2A (GK2A) is used, which is stationed over 128.2◦E as with the GEMS; thus,
the coverage could be expanded further to the west.

2.3. DCC Reflectivity Spectrum

After confirming the availability of DCCs over the GEMS coverage area, DCC reflectivity spectra
obtained from the OMI and TROPOMI are compared to confirm that the DCC measurements show
similar spectral features and a sufficiently stable signal to be compared across different sensor
characteristics and optical paths. In the UV–VIS spectral region, the reflected radiation from ice clouds
is significantly affected by the angle condition [43], and this means it is important to precisely detect
DCCs for the accurate characterization of cloud reflectivity.

2.3.1. Collocation Process

Because the OMI and TROPOMI only cover the UV–VIS and UV–SWIR spectral regions,
respectively, DCC detection for both sensors could be performed with the collocated VIS and IR
channels of the AHI. For the collocation between GEO and LEO sensors, we apply the collocation
criteria suggested by the Global Space-based Inter-Calibration System (GSICS) community [44].
Because collocated LEO and GEO data are not directly compared in this study, the viewing angle does
not match between the sensors. As shown in Figure 3, hyperspectral data satisfying the spatial and
angle conditions (see Table 2) are collected first, and then the AHI VIS and IR channels matching the
temporal collocation criteria are called. With the collected data, AHI pixels observed at nearly the same
time (∆t < 5 min) as the OMI and TROPOMI pixels are collocated when the pixels simultaneously
satisfy the spatial threshold (located within a half of shorter FOV of a LEO sensor). With the collocated
AHI pixels, the average TB10.4 and the standard deviations of TB10.4 and R0.47 are employed for
DCC detection.
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Figure 3. Flow chart of the collocation process between a UV–VIS hyperspectral sensor and a VIS–IR
imager for the generation of DCC data. Mean and standard deviation (SD) are calculated with AHI
pixels satisfying the spatiotemporal collocation criteria.

2.3.2. Apparent Reflectivity of DCCs

The GEMS, OMI, and TROPOMI provide the spectral radiance data that are used as input for the
retrieval of geophysical information from the atmosphere. Because the uncertainty in the measured
radiance due to the optical path of the instrument could be mitigated by using irradiance, which has
the same optical depth [45], here, we use reflectivity for the spectral analysis. Because the OMI and
TROPOMI provide solar observations once a day, timely matched irradiance with radiance is used to
calculate the reflectivity. The radiance measured over the DCCs can be written as:

Iλ(θ0,θ, ϕ) = Rλ(θ0,θ, ϕ)
Fλ
π

e−(
µ+µ0
µµ0

)τλ(z) (1)

where Iλ(θ0,θ, ϕ) is the measured upwelling radiance at wavelength λ with solar zenith angle θ0,
satellite zenith angle θ, and relative azimuth angle ϕ. The measured radiance is strongly affected by
cloud reflectivity Rλ(θ0,θ, ϕ) and incoming solar irradiance Fλ at the top of the atmosphere (TOA).
The equation also includes the attenuation caused by atmospheric extinction occurring when the
incoming and outgoing radiation passes through the atmosphere. The atmospheric optical depth
τλ(z) from the cloud top altitude z to the TOA is determined by both absorption and scattering.
Here, we consider only Rayleigh scattering to simplify the problem and neglect the backscattered
radiation from the atmosphere above the DCCs. The angle component µ is the cosine of the zenith
angle. Thus, cloud reflectivity using the measured radiance and irradiance can be given as:

Rλ(θ0,θ, ϕ) =
πIλ(θ0,θ, ϕ)

Fλ
e(
µ+µ0
µµ0

)τλ(z) (2)

Here, the optical depth τλ(z) is estimated using the approximation suggested by Bodhaine et al. [46]
that considers the altitude and Rayleigh scattering in the atmosphere. The cloud altitude is set to
approximately 16 km because the cloud top of DCCs nearly reaches the tropopause in the equatorial
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region [31,47]. This means that the optical depth of the atmosphere above the clouds is within the
range of 0.0005–0.0025 from 300 to 500 nm. Because Mie scattering and atmospheric absorption in the
upper troposphere are not included in the calculation, the reflectivity is the apparent reflectivity of the
DCCs, though it is referred to as simply DCC reflectivity in this study.

3. Results

3.1. DCCs Detected Using the OMI and TROPOMI

Figure 4 shows the DCCs identified using OMI and TROPOMI data for a particular cloudy scene
(3 July 2018 06:10 UTC and 3 July 2018 06:40 UTC, respectively). The TROPOMI observes the Earth
about 30 min earlier than the OMI, thus, the cloud distributions are slightly different. As shown in
the figure, the number of DCCs obtained from the OMI–AHI collocations is appreciably smaller than
that from the TROPOMI–AHI collocations. One of the main reasons for this difference is the lower
spatial resolution of the OMI. An OMI pixel is about 15 times larger than a TROPOMI pixel, thus,
many of the small-scale DCCs detected as DCCs using TROPOMI data are missed by the OMI because
of the threshold and uniformity tests. The lower spatial resolution of the OMI for small-scale DCCs
increases not only the TB but also the spatial variability in the IR and VIS channels, leading the pixel to
be labeled as a non-DCC.

Figure 4. DCCs plotted on an AHI R0.47 image: (a) OMI DCCs (orange dots) on 3 July 2018 06:10 UTC
and (b) TROPOMI DCCs (blue dots) on 3 July 2018 06:40 UTC.

Data quality issues that arise during the long-term operation of the OMI also affect the
availability of OMI observations. For instance, the row anomaly (RA) effect [32] renders nearly
a quarter of all OMI pixels (especially those close to the nadir observations) unavailable for analysis.
Figure 5 shows the measured reflectivity of the OMI as a function of the position (i.e., row) of
the detector (i.e., the charge-coupled device, CCD) and the reflectivity spectrum affected by the
RA effect. The measurements in rows 24–41 contaminated by the RA effect are eliminated during
data processing. However, as shown in Figure 5a, the reflectivity for the row numbers close to the
nadir port is also significantly lower, even though the rows are not flagged as RA-affected pixels.
When these observations are detected together as DCCs, the reflectivity spectrum is significantly
lower compared to the DCC reflectivity of the TROPOMI. Thus, in this study, the pixels in rows 41–48
are also eliminated, which are possibly affected by the RA effect but which are not flagged as such
(https://projects.knmi.nl/omi/research/product/rowanomaly-messages.php). As shown in Figure 5b,
with the elimination of the measurements in the CCD rows close to the nadir (41–48), the mean
reflectivity becomes much closer to the DCC reflectivity of the TROPOMI. Because the rows close to

https://projects.knmi.nl/omi/research/product/rowanomaly-messages.php
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the nadir port generally have a low viewing zenith angle, which satisfies the angle condition for DCC
detection, the RA effect significantly influences the availability of DCC observations from the OMI.

Figure 5. (a) DCC R0.354 binned depending on the position of the detector in the OMI. The shaded red
box indicates the RA flagged rows in the northern region of the orbit. (b) The DCC mean reflectivity
spectrum of the OMI (the UV-2 product) containing the RA-affected observations in comparison with
TROPOMI DCCs

3.2. DCC Reflectivity Spectrum

The DCC spectra of the OMI and TROPOMI observed over a year at 10-day intervals are presented
in Figure 6, which shows the mean and standard deviation of the radiance and reflectivity at each
wavelength. Solar measurements observed on the same day and the scan angle position (i.e., the position
on the detector) of each DCC measurement are also displayed together. Because of the previously
mentioned data quality issues, the number of DCCs from OMI observations over the year is only
3% of that from TROPOMI observations. However, even with this considerable difference in the
number of measurements, the mean reflectivity of the OMI and TROPOMI is very similar at about 0.90
and 0.85, respectively, with nearly invariant spectral features except for both ends of the wavelength
range. The spectral features at both ends are attributed to ozone absorption (300–345 nm) and the pixel
saturation of the TROPOMI (450–500 nm) [36]. The results indicate that the DCCs observed by the
satellite sensor reflect a mostly stable signal even with differences in sensor characteristics, the number
of measurements, and the observation angle geometry.

However, some differences are also observed between the spectra of the OMI and TROPOMI.
At shorter wavelengths, TROPOMI reflectivity is slightly higher than that of the OMI; as the wavelength
increases, this difference becomes much smaller. This might be caused by the degradation of the
diffuser in the solar measurements of the TROPOMI because this degradation is more significant at
shorter wavelengths. This degradation is to be addressed in future updates of TROPOMI L1B data in
early 2020, as announced in the S5P validation report [36]. TROPOMI DCCs also have less spectral
noise because the OMI solar measurements have more spectral noise across all wavelengths, as shown
in Figure 6a. There are also sharp peaks at 393 and 397 nm corresponding to the Ca II K and Ca
II H Fraunhofer lines, respectively, which are caused by the beam-filling effect of the atmosphere
above the clouds. Because rotational Raman scattering occurs in the atmosphere, scattered radiation is
added to the upwelling radiation from the clouds [48]. However, OMI reflectivity exhibits negative
peaks, which appears unrealistic considering that the beam-filling effect predominantly occurs with
radiance. These peaks are caused by missing data at particular wavelengths for OMI irradiance.
When calculating reflectivity, missing data are approximated by linear interpolation, which may not
accurately reproduce the spectral features, especially for higher peaks.

These results indicate that the TROPOMI still requires further minor updates but that DCCs
are a promising target given the theoretically well-matched spectral features and lower spectral
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noise. The abundance of data is also an advantage of using the measurements in further research.
However, even with the well-explained spectral features, DCC measurements still exhibit large
systematic differences, as indicated by the standard deviations in Figure 6c, reaching nearly 10% and
12% for the OMI and TROPOMI, respectively. Because this systematic difference increases as the
number of measurements increases, the TROPOMI has a higher systematic difference than the OMI.
This indicates that, as the observation period becomes longer, the difference among the DCCs could
increase considerably. The difference might be too large to regard the DCC detection properly done
and this also make the characterization of the cloud reflectivity complicated without knowing the
reason of the difference. Thus, in Section 3.3, the thresholds for conventional DCC detection are tested
to reduce the systematic differences in DCC measurements and improve the accuracy of DCC detection.
Because the OMI has some data-quality issues, we use only TROPOMI and AHI observations for
this analysis.

Figure 6. Mean and standard deviation of the (a) irradiance, (b) radiance, and (c) reflectivity spectra of
OMI and TROPOMI DCCs observed for the period July 2018–June 2019 at 10-day intervals. The solid
and dashed lines represent the mean and standard deviation at each wavelength, respectively.
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3.3. Improvement in DCC Detection

3.3.1. Comparison of VIS and IR Radiation

Figures 7 and 8 present the characteristics of the DCCs detected by the VIS and IR channels.
This comparison provides insights into whether DCC detection is accurate when detecting only the
colder and brighter cloud cores. Figure 7 shows the horizontal distribution of DCCs found over
Typhoon Chaba in October 2016. For a one-to-one comparison, an AHI R0.47 image is binned to match
the spatial resolution of TB10.4. As shown in Figure 7a, DCCs (identified as blue dots) are mainly found
over the typhoon center, which has a cold TB10.4, with a symmetrical distribution around the center.
However, Figure 7b, which presents the DCCs detected over the R0.47 image, is interesting in that the
blue dots over the right side of the typhoon center have a lower R0.47 of about 0.7. These are thin cirrus
clouds that have spread out from the typhoon center following strong upper air outflow. Because these
cirrus clouds have colder cloud tops composed of ice particles, the clouds are detected as DCCs using
the conventional detection method even though their reflectivity is much lower than genuine DCCs.

Figure 7. AHI DCCs plotted as blue dots on (a) 2-km AHI TB10.4 and (b) 2-km R0.47 images of Typhoon
Chaba (3 October 2016 03:30 UTC)

Figure 8. Two-dimensional histogram of DCCs detected using AHI R0.47 and TB10.4 over the GEMS
observation area with AHI data taken at three-day intervals for the period July 2016–June 2017.

The difference in the radiative properties of the DCCs is also demonstrated in Figure 8,
which presents a two-dimensional histogram of R0.47 and TB10.4 of the DCCs. Based on the histogram,
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it can be inferred that an increase in TB10.4 also increases the skewness of the distribution of R0.47.
This may be due to the increase in the proportion of detected DCCs with a lower reflectivity. This also
indicates that DCCs usually have colder cloud tops, a higher reflectivity, and an optically thicker
vertical structure, while cloud edges and cirrus clouds have similar colder but darker cloud tops.
Consequently, these results show that TB10.4 might be less effective as a DCC detection threshold,
especially for UV–VIS measurements.

One of the few attempts to use DCCs for the monitoring of a UV–VIS hyperspectral sensor used
only the UV reflectivity threshold for DCC detection [32]. In that study, OMI pixels with a higher
reflectivity at 354 nm (R0.354 > 0.9) were identified as DCCs and then used for the monitoring of the
temporal stability of the radiometric calibration of the OMI. At 354 nm, ozone absorption becomes
weaker while Rayleigh scattering becomes stronger, and these interactions with the atmosphere reduce
the proportion of the directly transmitted light from the clouds which shows higher angle dependence
even though the dependence is not very significant over bright clouds [34]. Even with this simple form
of detection, the average cloud reflectivity was fairly constant regardless of the wavelength (which is a
characteristic of DCC reflectivity), and thus, they used DCC reflectivity for the long-term monitoring
of spectral dependence in sensor performance. However, DCC reflectivity still exhibited seasonal
and inter-annual variation, which was attributed to differences in cloudiness, angle dependence,
and residual atmospheric effects (refer to Figure 32 in [32]). Although it is not easy to quantify, it is
highly possible that these attributions could be increased when the detected DCCs are bright but
low-lying warm clouds. For example, the optical path for warm clouds is much longer than that for
DCCs, causing increased variability in the measured reflectivity due to the increased contribution from
tropospheric air. By the same token, the angular variation of the measured reflectivity also increases
with increasing optical depth.

To further clarify the issues associated with warm clouds, Figures 9 and 10 show the spatial
distribution of TB10.4 and R0.47 in warm clouds and the spectral reflectivity of clouds with different
TB10.4 values, respectively. This demonstrates the importance of the IR threshold for the accurate
detection of DCCs, especially in relation to high-altitude clouds with minimal influence from the
troposphere. The blue dots in Figure 9 show DCCs with high reflectivity (TROPOMI R0.354 > 0.9) and
warm IR temperatures (AHI TB10.4 > 260 K). In this case, most of the blue dots are located over the
cloud edges with bright reflectivity, although their temperatures are much warmer than the nearby
convection core. Thus, if we use the UV–VIS radiation threshold only, it would be difficult to screen
out bright but warm clouds that are close to the cloud core.

Figure 9. TROPOMI cloud pixels (AHI TB10.4 > 260 K, TROPOMI R0.354 > 0.9) plotted as blue dots on
(a) 2-km AHI TB10.4 and (b) 2-km R0.47 images (20 June 2019 04:30 UTC).
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Figure 10. (a) Mean reflectivity spectrum of TROPOMI DCCs detected using UV reflectivity (TROPOMI
R0.354 > 0.9) and (b) spectral anomaly spectra (i: each DCC pixel, λ: wavelength). The black and blue
lines represent a cold and warm IR temperature, respectively.

Figure 10 shows the reflectivity spectrum of bright DCCs with different brightness temperatures.
The blue line in Figure 10a represents the average reflectivity spectrum of the blue dots in Figure 9,
while the black line represents that of the clouds satisfying the conventional DCC detection thresholds.
The reflectivity spectrum including bright but warm clouds (blue line) clearly has a smaller reflectivity
compared to the bright and cold clouds, which is attributed to the radiative interaction with the
tropospheric atmosphere. The tropospheric effects in the measured reflectivity is also presented in
Figure 10b because the beam-filling effect increases cloud reflectivity with greater rotational Raman
scattering from the tropospheric atmosphere [48].

The results in Figure 8, Figure 9, Figure 10 make it clear that using VIS and IR information together
could effectively screen out cirrus clouds and cloud edges as well as ensure the detection of only colder
cloud tops for the better utilization of DCC reflectivity.

3.3.2. DCC Detection with Additional VIS Reflectivity

Based on the previous analysis, we develop an updated DCC detection approach utilizing both
reflectivity and TB. In order to adapt the reflectivity test, it is important to set an appropriate threshold
for reflectivity; a stricter threshold (e.g., 0.9) could produce more stable statistics but reduce the
availability of the data, while a more relaxed threshold (e.g., 0.6) could increase the number of data
points but increase the variability. Thus, the optimal reflectivity threshold for DCC detection needs to
be set by weighing both sides (i.e., data availability and the stability of the reflectivity distribution).
Here, we choose an optimal value by analyzing the variation in statistical parameters as a function of
different threshold values.

Figure 11a,b presents the DCC frequency distribution for TROPOMI R0.354 with the addition of the
AHI R0.47 threshold and the uniformity threshold for AHI R0.47, respectively. The use of R0.354 is based
on a previous implementation with the OMI [32]. As shown in Figure 11a, applying the AHI R0.47 test
reduces the spread of the TROPOMI R0.354 distribution and generates a distribution that closely follows
a normal distribution. However, some low-reflectivity data remains because of the atmospheric effects
and collocation uncertainty between the AHI and TROPOMI measurements. Figure 11b also shows
that cloud pixels with higher spatial inhomogeneity account for a large proportion of the center of
the distribution. This means that the overshooting tops near the cloud core may have a lower spatial
uniformity, which cannot be eliminated by the reflectivity threshold.
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Figure 11. Frequency distribution of TROPOMI R354 with an additional AHI R0.47 restriction for data
from July 2018–June 2019 taken at five-day intervals.

Table 4 presents the statistics for TROPOMI DCC R0.354 with the application of different AHI
R0.47 thresholds to determine the optimal threshold that produces a fairly normal distribution without
eliminating too many observations. TROPOMI R0.354 is also applied together as the detection threshold
to reduce collocation uncertainty by restricting the tail of the distribution (TROPOMI R0.354 > 0.7).
The results show that, as the AHI R0.47 threshold increases, the distribution becomes very close to
normal even though the number of detected DCCs decreases exponentially. The standard deviation
of the reflectivity decreases linearly and the VIS threshold increases when the kurtosis increases
exponentially. Interestingly, only skewness converges at a particular AHI R0.47 threshold (0.64).
Because TROPOMI R0.354 reflectivity is skewed to the left due to the darker cirrus clouds with a lower
reflectivity, the skewness of the distribution has a negative value regardless of the AHI R0.47 threshold.

Table 4. Statistics for TROPOMI DCC R0.354 depending on the addition of an AHI R0.47 threshold for
DCC detection compared to the conventional DCC detection (w/o column) using DCC measurements
for July 2018–June 2019 taken at five-day intervals.

AHI R0.47 w/o 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76

Count 91630 90752 89861 88286 86138 83569 80475 76696 71469 64857

Mean 0.916 0.917 0.919 0.922 0.925 0.929 0.933 0.938 0.943 0.949
Median 0.932 0.933 0.934 0.936 0.938 0.940 0.943 0.946 0.951 0.956
Mode* 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960

SD* 0.076 0.074 0.072 0.070 0.067 0.063 0.060 0.057 0.053 0.050

Skewness −0.779 −0.769 −0.765 −0.761 −0.767 −0.780 −0.803 −0.848 −0.917 −1.021
Kurtosis -0.027 -0.008 0.029 0.110 0.255 0.448 0.706 1.056 1.570 2.225

* The bin size used to calculate the mode is set to 0.01. SD indicates the standard deviation.

Table 5 presents the statistics for TROPOMI DCC R0.354 with the application of different thresholds
for the uniformity test for AHI R0.47. As shown in Table 5, the central value and the spread of
the distribution changes only slightly with the different thresholds for the uniformity test for R0.47.
The kurtosis and skewness also change as the uniformity increases, though they do not change
dramatically, as with the reflectivity threshold.
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Table 5. Statistics for TROPOMI DCC R0.354 depending on the uniformity threshold for AHI R0.47 for
DCC detection compared to the conventional DCC detection (w/o column) using DCC measurements
for July 2018–June 2019 taken at five-day intervals.

SD* of AHI
R0.47

w/o 0.025 0.024 0.023 0.022 0.021 0.020 0.019 0.018 0.017

Count 91630 84159 82454 80629 78626 76557 74241 71737 69135 66243

Mean 0.916 0.916 0.916 0.916 0.916 0.916 0.916 0.916 0.916 0.916
Median 0.932 0.933 0.933 0.933 0.933 0.933 0.933 0.932 0.932 0.932
Mode* 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960

SD* 0.076 0.075 0.075 0.075 0.074 0.074 0.074 0.074 0.074 0.074

Skewness −0.779 −0.788 −0.789 −0.792 −0.793 −0.795 −0.797 −0.796 −0.795 −0.797
Kurtosis −0.027 −0.002 0.006 0.012 0.017 0.019 0.026 0.025 0.023 0.026

* The bin size used to calculate the mode is set to 0.01. SD indicates the standard deviation.

In summary, the skewness of distribution of TROPOMI R0.354 might become close to 0 with a
brighter AHI R0.47 threshold until the number of DCCs is significantly lower. When it comes to spatial
inhomogeneity, some DCCs with a relatively low uniformity are eliminated with the stricter uniformity
test mostly at the center of the distribution. Because the AHI R0.47 threshold and the uniformity
test might simultaneously affect the statistics for the reflectivity distribution of TROPOMI R0.354,
the optimal threshold value for DCC detection needs to be set considering both effects. Figure 12a,b
show the number of available DCCs and the skewness of the distribution, respectively, as a function of
the detection thresholds. Considering the distribution of each variable, the optimal thresholds for AHI
R0.47 and the uniformity test for DCC detection are set at 0.70 and 0.018, respectively, because at that
point, the available number of DCCs is still high even with a relatively low skewness of −0.70.

Figure 12. (a) Skewness and (b) the number of DCCs as a function of the AHI R0.47 and uniformity test
for DCC detection using DCC measurements for July 2018–June 2019 taken at 5-day intervals.

4. Discussion

4.1. Verification of the Updated DCC Detection Method

The results in Section 3 show that DCCs have different radiative properties depending on the
way to detect the DCCs. For the thermal threshold test, it would be most effective to screen out the
low-altitude clouds, in this case warm clouds having longer optical path lengths. VIS reflectivity can
also be a useful indicator for detecting only optically thick clouds that are bright enough to reflect most
of the incoming radiation. Using both radiative properties, DCC detection can be improved further to
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detect only optically thick and high-altitude cloud targets that exhibit homogeneous spectral features
and higher reflectivity with lower variation.

4.1.1. Spectral Analysis of DCC Reflectivity

Figure 13 highlights the advantages of applying the updated DCC detection method with the
threshold values suggested in Section 3.3.2. The DCC mean reflectivity spectra at the Fraunhofer lines
are presented to compare the spectral features of the DCCs detected by different detection methods,
including the UV threshold test (TROPOMI R0.354 > 0.9) and the IR threshold test (AHI BT10.4 < 205 K).
In Figure 13a, the mean reflectivity spectra show similar spectral features but differences in reflectivity
as the DCCs detected using the UV threshold test show the highest values. However, in Figure 13b,
the spectral features of anomaly spectra exhibit more variance when only the UV detection threshold is
used. In the figure, the DCCs detected using the updated DCC detection method have lower peaks at
the Fraunhofer lines, which indicates that the atmosphere above the clouds might be much thinner
when the DCCs are detected using the thermal radiation threshold.

Figure 13. (a) Mean reflectivity and (b) anomaly spectra (i: each DCC pixel; λ: wavelength) of DCCs
detected using different DCC detection threshold tests. The blue, red, orange lines represent the UV
threshold test only, the updated DCC detection method, and the IR threshold test only, respectively.
DCC measurements are from July 2018–June 2019 taken at five-day intervals.

4.1.2. Cloud Properties of DCCs

The cloud properties obtained from TROPOMI Level 2 cloud products are presented in this section
in order to identify the practical range of cloud properties for the DCCs detected using different DCC
detection threshold tests. Cloud optical thickness and cloud top height are used for this analysis because
these properties represent the optical and physical features of the clouds, respectively. The cloud
properties are retrieved from the O2 A-band at 760 nm, while the clouds are treated as scattering
layers [49]. In Figure 14a, the optical thickness of the DCCs detected using the IR detection threshold
is lower than that of the DCCs detected using the UV detection threshold. However, as shown
in Figure 14b, the cloud top height is much higher when the IR threshold test is used for DCC
detection. These results indicate that the UV and IR DCC detection thresholds complement each other
in limiting various cloud properties while accurately detecting only those DCCs with homogeneous
cloud properties. These results closely correspond with the analysis in Section 3.3.
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Figure 14. Same as Figure 13 for histograms of (a) cloud optical thickness and (b) cloud top height
from the TROPOMI Level -2 cloud product for DCCs.

4.2. Feasibility and Limitations

In this section, we present the feasibility of using DCC calibration for a UV and VIS hyperspectral
sensor based on our updated DCC detection method. As mentioned in Section 1, DCC calibration
has been generally used with meteorological sensors to update radiometric calibration coefficients,
which typically change over the course of the operation period. A meteorological sensor can be
calibrated with the well-calibrated sensor after the normalization of various observation conditions,
such as the angle dependence, spectral response functions, and different center wavelengths. DCC
calibration for environmental sensors still has a long way to go in terms of normalization, but in this
study, we present preliminary results for the temporal variability in the TROPOMI DCC observations.

Figure 15a presents the seasonal distribution of TROPOMI DCCs for data collected over the period
of a year with probability density functions (PDFs). Even though the number of DCCs is not sufficient to
calculate a representative PDF for the observations, the PDFs have similar distribution patterns regardless
of the number of DCCs in each season. However, given that distribution modes are generally used to
monitor the calibration accuracy of meteorological sensors, the PDF modes are too variable since the
bidirectional reflectivity of the DCCs and the disparity in the cloud optical properties have not been
sufficiently accounted for so far. However, the temporal variability caused by these uncertainties could
cancel each other out as the reflectivity ratio between two different wavelengths represents in Figure 15b.
The ratio of DCC reflectivity at 354 and 397 nm is used because reflectivity at 397 nm (Ca II H line)
is affected both by scattered and directly transmitted light. Even with the highly expected variability,
the ratio of the mean reflectivity at both wavelengths appears relatively stable within 0.99–1.01.

Figure 15. Cont.
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Figure 15. (a) Probability density function for TROPOMI R0.354 over time (MAM: March to May; JJA:
June to August; SON: September to November; DJF: December to February) and (b) time series of mean
reflectivity ratio of R0.354 and R0.397 (grey diamonds are individual values) for the DCCs detected using
the updated DCC detection method.

5. Conclusions

As the first UV–VIS hyperspectral sensor onboard a GEO satellite, the GEMS covers the Asia-Pacific
region, including the TWP region. To develop a vicarious calibration approach based on the current
availability of calibration targets, the present study tests DCCs to determine whether optically thick
clouds provide a sufficiently stable and bright signal to allow the radiometric calibration of sensors
with different hardware characteristics and observation conditions especially in the UV–VIS spectral
region. For feasibility testing, the VIS and IR channels of the AHI are used with UV–VIS hyperspectral
data from the OMI and TROPOMI, as a surrogate for the GEMS. To mitigate the calibration uncertainty
caused by degradation and high-frequency perturbations of the instrument optical paths, reflectivity
(i.e., the ratio between radiance and irradiance) is used. The cloud reflectivity is calculated by taking
account of the solar zenith angle, the satellite zenith angle, and Rayleigh scattering above the clouds.

To ensure a sufficient number of DCCs over the GEMS observation area, AHI data from a year-long
period that match the spatial and temporal resolution of the GEMS are analyzed. The DCCs detected
using the conventional approach (i.e., thermal temperature tests and uniformity tests) have a clear
seasonality, with a maximum in September and a minimum in April. Spatially, the viewing zenith
angle also limits the number of DCCs because the AHI observes the target area with a higher viewing
zenith angle compared to the GEMS. This limitation of the satellite zenith angle is expected to be
improved with the AMI onboard GK2A, which has the potential to be collocated with the GEMS as
stationed nearby at 128.2◦E. Even with these limitations, DCCs occur in more than 200 pixels on average
in a single observation scene, which appears to be sufficient for the proposed statistical approach
considering the observation frequency and the spatial resolution of the GEMS.

Although the number of DCCs detected by the OMI and TROPOMI is significantly different,
mainly due to the poor spatial resolution and degraded quality of OMI data, a comparison between
the estimated spectral reflectivity of the DCCs shows comparable results even with clear differences in
sensor characteristics, viewing geometry, and the number of data points. Given that more accurate
calibration is essential for achieving the final goal of the mission, the results look promising in terms
of applying the proposed method to various UV and VIS environmental sensors for inter-calibration.
However, a closer inspection of the reflectivity spectra shows that there is high variability in the
standard deviation (up to 10%), which is mainly due to the false classification of thin cirrus clouds
as DCCs, which have a cold cloud temperature with a low optical depth. Furthermore, inspection of
an alternative approach using only reflectivity tests for DCC detection leads to the false detection of
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warm clouds having a high reflectivity and a lower cloud top altitude. Thus, we devise an updated
DCC detection approach using both thermal and reflectivity tests to screen out cold, thin cirrus clouds
and bright, warm clouds. Based on the variation in the statistical parameters of DCC reflectivity
with different reflectivity threshold values, the threshold value for the reflectivity test is determined
to be 0.7, which produces a distribution close to normal with the location values of the distribution
converging and retains as many observations as possible. However, certain issues remain that lead to a
spread in reflectivity caused by the variation in cloud properties and angle dependence, including the
bidirectional reflectivity distribution of DCCs. The long-term variability in DCC reflectivity based
on the updated detection method needs to be analyzed, with the results used to minimize such
variation and to demonstrate the applicability of the new approach for hyperspectral UV–VIS sensors.
Additionally, since the updated DCC detection can still be dependent on the calibration accuracy of the
meteorological sensor such as AHI (further AMI), it must also be investigated hereafter to properly
perform the DCC calibration for the environmental sensors.

Author Contributions: M.-H.A. designed and supervised the study; Y.L. performed the experiments, analyzed
the data, and prepared the manuscript; M.K. contributed to the analysis of results. All authors contributed to the
edition of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF), funded by the Ministry of Education (2018R1A6A1A08025520). Also, this research
was supported by the Korea Ministry of Environment (MOE) as “Public Technology Program based Environmental
Policy (2017000160002).

Acknowledgments: We would like to thank the National Meteorological Satellite Center (NMSC) of the Korea
Meteorological Administration (KMA) for providing the AHI Level 1B data. The valuable comments from the
anonymous reviewers are also greatly helpful to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, H.-O.; Kim, H.-S.; Lim, H.-S.; Choi, H.-J. Space-Based Earth Observation Activities in South Korea
[Space Agencies]. IEEE Geosci. Remote Sens. Mag. 2015, 3, 34–39. [CrossRef]

2. Choi, W.J.; Moon, K.-J.; Yoon, J.; Cho, A.; Kim, S.; Lee, S.; Ko, D.H.; Kim, J.; Ahn, M.H.; Kim, D.-R.; et al.
Introducing the geostationary environment monitoring spectrometer. J. Appl. Remote Sens. 2019, 13, 1.
[CrossRef]

3. Veefkind, J.P.; De Leeuw, G.; Stammes, P.; Koelemeijer, R.B.A. Regional distribution of aerosol over land,
derived from ATSR-2 and GOME. Remote Sens. Environ. 2000, 74, 377–386. [CrossRef]

4. Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.L. Validation of the land-surface temperature products retrieved
from terra moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 2002, 83, 163–180.
[CrossRef]

5. Boersma, K.F.; Eskes, H.J.; Veefkind, J.P.; Brinksma, E.J.; Van Der A, R.J.; Sneep, M.; Van Den Oord, G.H.J.;
Levelt, P.F.; Stammes, P.; Gleason, J.F.; et al. Atmospheric Chemistry and Physics Near-real time retrieval of
tropospheric NO2 from OMI. Atmos. Chem. Phys 2007, 7, 2103–2118. [CrossRef]

6. Gloudemans, A.M.S.; Schrijver, H.; Hasekamp, O.P.; Aben, I. Error analysis for CO and CH4 total column
retrievals from SCIAMACHY 2.3 µm spectra. Atmos. Chem. Phys. 2008, 8, 3999–4017. [CrossRef]

7. Loyola, D.G.; Koukouli, M.E.; Valks, P.; Balis, D.S.; Hao, N.; Van Roozendael, M.; Spurr, R.J.D.; Zimmer, W.;
Kiemle, S.; Lerot, C.; et al. The GOME-2 total column ozone product: Retrieval algorithm and ground-based
validation. J. Geophys. Res. Atmos. 2011, 116, 1–11. [CrossRef]

8. Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval algorithm for
CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse
gases observing satellite. Atmos. Meas. Tech. 2011, 4, 717–734. [CrossRef]

9. Dinguirard, M.; Slater, P.N. Calibration of space-multispectral imaging sensors: A review. Remote Sens.
Environ. 1999, 68, 194–205. [CrossRef]

http://dx.doi.org/10.1109/MGRS.2014.2382652
http://dx.doi.org/10.1117/1.JRS.13.019901
http://dx.doi.org/10.1016/S0034-4257(00)00106-1
http://dx.doi.org/10.1016/S0034-4257(02)00093-7
http://dx.doi.org/10.5194/acp-7-2103-2007
http://dx.doi.org/10.5194/acp-8-3999-2008
http://dx.doi.org/10.1029/2010JD014675
http://dx.doi.org/10.5194/amt-4-717-2011
http://dx.doi.org/10.1016/S0034-4257(98)00111-4


Remote Sens. 2020, 12, 446 20 of 22

10. Kowalewski, M.G.; Jaross, G.; Cebula, R.P.; Taylor, S.L.; van den Oord, G.H.J.; Dobber, M.R.; Dirksen, R.
Evaluation of the Ozone Monitoring Instrument’s pre-launch radiometric calibration using in-flight data. In
Proceedings of the Optics and Photonics 2005, San Diego, CA, USA, 22 August 2005.

11. Jaross, G.; Warner, J. Use of Antarctica for validating reflected solar radiation measured by satellite sensors.
J. Geophys. Res. Atmos. 2008, 113, 1–13. [CrossRef]

12. Brook, A.; Dor, E. Ben Supervised vicarious calibration (SVC) of hyperspectral remote-sensing data.
Remote Sens. Environ. 2011, 115, 1543–1555. [CrossRef]

13. Sterckx, S.; Livens, S.; Adriaensen, S. Rayleigh, Deep Convective Clouds, and Cross-Sensor Desert Vicarious
Calibration Validation for the PROBA-V Mission. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1437–1452. [CrossRef]

14. Bhatt, R.; Doelling, D.R.; Wu, A.; Xiong, X.; Scarino, B.R.; Haney, C.O.; Gopalan, A. Initial stability assessment
of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets.
Remote Sens. 2014, 6, 2809–2826. [CrossRef]

15. Di Giuseppe, F.; Tompkins, A.M. Three-dimensional radiative transfer in tropical deep convective clouds.
J. Geophys. Res. D Atmos. 2003, 108, 4741. [CrossRef]

16. Luo, Z.; Liu, G.Y.; Stephens, G.L. CloudSat adding new insight into tropical penetrating convection. Geophys.
Res. Lett. 2008, 35, 2–6. [CrossRef]

17. Setvák, M.; Lindsey, D.T.; Rabin, R.M.; Wang, P.K.; Demeterová, A. Indication of water vapor transport
into the lower stratosphere above midlatitude convective storms: Meteosat Second Generation satellite
observations and radiative transfer model simulations. Atmos. Res. 2008, 89, 170–180. [CrossRef]

18. Fan, J.; Leung, L.R.; Rosenfeld, D.; Chen, Q.; Li, Z.; Zhang, J.; Yan, H. Microphysical effects determine
macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA
2013, 110, E4581–E4590. [CrossRef]

19. Loeb, N.G.; Manalo-Smith, N.; Kato, S.; Miller, W.F.; Gupta, S.K.; Minnis, P.; Wielicki, B.A. Angular
Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s
Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology.
J. Appl. Meteorol. 2003, 42, 240–265. [CrossRef]

20. Yongxiang, H.; Wielicki, B.A.; Ping, Y.; Stackhouse, P.W.; Lin, B.; Young, D.F. Application of deep convective
cloud albedo observation to satellite-based study of the terrestrial atmosphere: Monitoring the stability
of spaceborne measurements and assessing absorption anomaly. IEEE Trans. Geosci. Remote Sens.
2004, 42, 2594–2599. [CrossRef]

21. Sohn, B.-J.; Ham, S.-H.; Yang, P. Possibility of the Visible-Channel Calibration Using Deep Convective Clouds
Overshooting the TTL. J. Appl. Meteorol. Climatol. 2009, 48, 2271–2283. [CrossRef]

22. Bhatt, R.; Doelling, D.; Scarino, B.; Haney, C.; Gopalan, A. Development of Seasonal BRDF Models to Extend
the Use of Deep Convective Clouds as Invariant Targets for Satellite SWIR-Band Calibration. Remote Sens.
2017, 9, 1061. [CrossRef]

23. Schmetz, J.; Tjemkes, S.A.; Gube, M.; Van De Berg, L. Monitoring deep convection and convective overshooting
with METEOSAT. Adv. Sp. Res. 1997, 19, 433–441. [CrossRef]

24. Doelling, D.R.; Nguyen, L.; Minnis, P. On the use of deep convective clouds to calibrate AVHRR data.
In Proceedings of the Optical Science and Technology, the SPIE 49th Annual Meeting, Denver, CO, USA,
26 October 2004.

25. Minnis, P.; Doelling, D.R.; Nguyen, L.; Miller, W.F.; Chakrapani, V. Assessment of the Visible Channel Calibrations
of the VIRS on TRMM and MODIS on Aqua and Terra. J. Atmos. Ocean. Technol. 2008, 25, 385–400. [CrossRef]

26. Doelling, D.; Morstad, D.; Bhatt, R.; Scarino, B. Algorithm Theoretical Basis Document (ATBD) for Deep
Convective Cloud (DCC) technique of calibrating GEO sensors with Aqua-MODIS for GSICS. Available
online: http://gsics.atmos.umd.edu/pub/Development/AtbdCentral/GSICS_ATBD_DCC_NASA_2011_09.pdf
(accessed on 31 January 2020).

27. Doelling, D.R.; Morstad, D.; Scarino, B.R.; Bhatt, R.; Gopalan, A. The Characterization of Deep Convective
Clouds as an Invariant Calibration Target and as a Visible Calibration Technique. IEEE Trans. Geosci. Remote
Sens. 2013, 51, 1147–1159. [CrossRef]

28. Wang, W.; Cao, C. DCC Radiometric Sensitivity to Spatial Resolution, Cluster Size, and LWIR Calibration
Bias Based on VIIRS Observations. J. Atmos. Ocean. Technol. 2015, 32, 48–60. [CrossRef]

29. Wang, W.; Cao, C. Monitoring the NOAA operational VIIRS RSB and DNB calibration stability using monthly
and semi-monthly deep convective clouds time series. Remote Sens. 2016, 8, 1–19. [CrossRef]

http://dx.doi.org/10.1029/2007JD008835
http://dx.doi.org/10.1016/j.rse.2011.02.013
http://dx.doi.org/10.1109/TGRS.2012.2236682
http://dx.doi.org/10.3390/rs6042809
http://dx.doi.org/10.1029/2003JD003392
http://dx.doi.org/10.1029/2008GL035330
http://dx.doi.org/10.1016/j.atmosres.2007.11.031
http://dx.doi.org/10.1073/pnas.1316830110
http://dx.doi.org/10.1175/1520-0450(2003)042&lt;0240:ADMFTO&gt;2.0.CO;2
http://dx.doi.org/10.1109/TGRS.2004.834765
http://dx.doi.org/10.1175/2009JAMC2197.1
http://dx.doi.org/10.3390/rs9101061
http://dx.doi.org/10.1016/S0273-1177(97)00051-3
http://dx.doi.org/10.1175/2007JTECHA1021.1
http://gsics.atmos.umd.edu/pub/Development/AtbdCentral/GSICS_ATBD_DCC_NASA_2011_09.pdf
http://dx.doi.org/10.1109/TGRS.2012.2225066
http://dx.doi.org/10.1175/JTECH-D-14-00024.1
http://dx.doi.org/10.3390/rs8010032


Remote Sens. 2020, 12, 446 21 of 22

30. Yu, F.; Wu, X. Radiometric inter-calibration between Himawari-8 AHI and S-NPP viirs for the solar reflective
bands. Remote Sens. 2016, 8, 1–16. [CrossRef]

31. Ai, Y.; Li, J.; Shi, W.; Schmit, T.J.; Cao, C.; Li, W. Deep convective cloud characterizations from both broadband
imager and hyperspectral infrared sounder measurements. J. Geophys. Res. 2017, 122, 1700–1712. [CrossRef]

32. Schenkeveld, V.M.E.; Jaross, G.; Marchenko, S.; Haffner, D.; Kleipool, Q.L.; Rozemeijer, N.C.; Veefkind, J.P.;
Levelt, P.F. In-flight performance of the Ozone Monitoring Instrument. Atmos. Meas. Tech. 2017, 10, 1957–1986.
[CrossRef]

33. Sneep, M.; de Haan, J.F.; Stammes, P.; Wang, P.; Vanbauce, C.; Joiner, J.; Vasilkov, A.P.; Levelt, P.F. Three-way
comparison between OMI and PARASOL cloud pressure products. J. Geophys. Res. 2008, 113, 1–11. [CrossRef]

34. Vasilkov, A.; Joiner, J.; Spurr, R.; Bhartia, P.K.; Levelt, P.; Stephens, G. Evaluation of the OMI cloud pressures
derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer
simulations. J. Geophys. Res. 2008, 113, D15S19. [CrossRef]

35. Kim, J.; Jeong, U.; Ahn, M.-H.; Kim, J.H.; Park, R.J.; Lee, H.; Song, C.H.; Choi, Y.-S.; Lee, K.-H.; Yoo, J.-M.;
et al. New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer
(GEMS). Bull. Am. Meteorol. Soc. 2019, 84, 00. [CrossRef]

36. Lambert, J.-C.; Keppens, A.; Hubert, D.; Langerock, B.; Eichmann, K.-U.; Kleipool, Q.; Sneep, M.; Verhoelst, T.;
Wagner, T.; Weber, M.; et al. Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data
Products #04: April 2018–August 2019; Tropomi: De Bilt, The Netherlands, 20 April; pp. 1–125.

37. Hong, G.; Heygster, G.; Miao, J.; Kunzi, K. Detection of tropical deep convective clouds from AMSU-B water
vapor channels measurements. J. Geophys. Res. D Atmos. 2005, 110, 1–15. [CrossRef]

38. Liu, C.; Zipser, E.J.; Nesbitt, S.W. Global distribution of tropical deep convection: Different perspectives from
TRMM infrared and radar data. J. Clim. 2007, 20, 489–503. [CrossRef]

39. Sassen, K.; Wang, Z.; Liu, D. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and
CloudSat. J. Geophys. Res. 2009, 114, D00H06. [CrossRef]

40. Alcala, C.M.; Dessler, A.E. Observations of deep convection in the tropics using the Tropical Rainfall
Measuring Mission (TRMM) precipitation radar. J. Geophys. Res. Atmos. 2002, 107, 4792. [CrossRef]

41. Jiang, J.H.; Wang, B.; Goya, K.; Hocke, K.; Eckermann, S.D.; Ma, J.; Wu, D.L.; Read, W.G. Geographical
distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses.
J. Geophys. Res. Atmos. 2004, 109. [CrossRef]

42. Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.;
Guignard, A.; Heidinger, A.; et al. Assessment of Global Cloud Datasets from Satellites: Project and Database
Initiated by the GEWEX Radiation Panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [CrossRef]

43. Ahmad, Z.; Bhartia, P.K.; Krotkov, N. Spectral properties of backscattered UV radiation in cloudy atmospheres.
J. Geophys. Res. D Atmos. 2004, 109, D01201. [CrossRef]

44. Hewison, T.J.; Wu, X.; Yu, F.; Tahara, Y.; Hu, X.; Kim, D.; Koenig, M. GSICS inter-calibration of infrared channels
of geostationary imagers using metop/IASI. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1160–1170. [CrossRef]

45. Dobber, M.; Kleipool, Q.; Dirksen, R.; Levelt, P.; Jaross, G.; Taylor, S.; Kelly, T.; Flynn, L.; Leppelmeier, G.;
Rozemeijer, N. Validation of Ozone Monitoring Instrument level 1b data products. J. Geophys. Res.
2008, 113, 1–12. [CrossRef]

46. Bodhaine, B.A.; Wood, N.B.; Dutton, E.G.; Slusser, J.R. On Rayleigh optical depth calculations. J. Atmos.
Ocean. Technol. 1999, 16, 1854–1861. [CrossRef]

47. Pinto da Silva Neto, C.; Alves Barbosa, H.; Assis Beneti, C.A. A method for convective storm detection using
satellite data. Atmósfera 2016, 29, 343–358. [CrossRef]

48. Joiner, J.; Bhartia, P.K.; Cebula, R.P.; Hilsenrath, E.; McPeters, R.D.; Park, H. Rotational Raman scattering
(Ring effect) in satellite backscatter ultraviolet measurements. Appl. Opt. 1995, 34, 4513. [CrossRef] [PubMed]

49. Loyola, D.G.; Gimeno García, S.; Lutz, R.; Argyrouli, A.; Romahn, F.; Spurr, R.J.D.; Pedergnana, M.; Doicu, A.;
Molina García, V.; Schüssler, O. The operational cloud retrieval algorithms from TROPOMI on board
Sentinel-5 Precursor. Atmos. Meas. Tech 2018, 11, 409–427. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs8030165
http://dx.doi.org/10.1002/2016JD025408
http://dx.doi.org/10.5194/amt-10-1957-2017
http://dx.doi.org/10.1029/2007JD008694
http://dx.doi.org/10.1029/2007JD008689
http://dx.doi.org/10.1175/BAMS-D-18-0013.1
http://dx.doi.org/10.1029/2004JD004949
http://dx.doi.org/10.1175/JCLI4023.1
http://dx.doi.org/10.1029/2009JD011916
http://dx.doi.org/10.1029/2002JD002457
http://dx.doi.org/10.1029/2003JD003756
http://dx.doi.org/10.1175/BAMS-D-12-00117.1
http://dx.doi.org/10.1029/2003JD003395
http://dx.doi.org/10.1109/TGRS.2013.2238544
http://dx.doi.org/10.1029/2007JD008665
http://dx.doi.org/10.1175/1520-0426(1999)016&lt;1854:ORODC&gt;2.0.CO;2
http://dx.doi.org/10.20937/ATM.2016.29.04.05
http://dx.doi.org/10.1364/AO.34.004513
http://www.ncbi.nlm.nih.gov/pubmed/21052284
http://dx.doi.org/10.5194/amt-11-409-2018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	UV–VIS Hyperspectral Sensor 
	GEMS 
	OMI and TROPOMI 

	DCC Climatology 
	AHI Data Processing 
	Frequency Distribution 

	DCC Reflectivity Spectrum 
	Collocation Process 
	Apparent Reflectivity of DCCs 


	Results 
	DCCs Detected Using the OMI and TROPOMI 
	DCC Reflectivity Spectrum 
	Improvement in DCC Detection 
	Comparison of VIS and IR Radiation 
	DCC Detection with Additional VIS Reflectivity 


	Discussion 
	Verification of the Updated DCC Detection Method 
	Spectral Analysis of DCC Reflectivity 
	Cloud Properties of DCCs 

	Feasibility and Limitations 

	Conclusions 
	References

