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Abstract: Rapid urbanization is one of the most concerning issues in the 21st century because of its
significant impacts on various fields, including agriculture, forestry, ecology, and climate. The urban
heat island (UHI) phenomenon, highly related to the rapid urbanization, has attracted considerable
attention from both academic scholars and governmental policymakers because of its direct influence
on citizens’ daily life. Land surface temperature (LST) is a widely used indicator to assess the intensity
of UHI significantly affected by the local land use/cover (LULC). In this study, we used the Landsat
time-series data to derive the LULC composition and LST distribution maps of Nanjing in 2000, 2014,
and 2018. A correlation analysis was carried out to check the relationship between LST and the
density of each class of LULC. We found out that cropland and forest in Nanjing are helping to cool
the city with different degrees of cooling effects depending on the location and LULC composition.
Then, a Cellar Automata (CA)-Markov model was applied to predict the LULC conditions of Nanjing
in 2030 and 2050. Based on the simulated LULC maps and the relationship between LST and LULC,
we delineated high- and moderate-LST related risk areas in the city of Nanjing. Our findings are
valuable for the local government to reorganize the future development zones in a way to control the
urban climate environment and to keep a healthy social life within the city.

Keywords: Cellar Automata-Markov model; future simulation; land surface temperature; Nanjing;
urban heat island; urban land use/cover

1. Introduction

Following the rapid development of urbanization and industrialization, the quantity, structure,
and degree of land use/cover (LULC) have been significantly changed over the past years, especially
in developing countries [1,2]. Meanwhile, the urban heat island (UHI) phenomenon has become
severely causing excessive consumption of energy, an increase of air pollutants, and deterioration of
the environment [3]. Therefore, by determining the relationship between land surface temperature
(LST) and LULC distribution, we can evaluate the impact of urbanization on LST, which is crucial for
sustainable urban development.

The key physical drivers of the UHI are fivefold as summarized by Coffel et al. [4]: (1) the increase
of flat and cemented surface at the expense of frictional surfaces in urban areas, which leads to the
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reduction in the efficiency of convective heat transfer between the surface and lower atmosphere causing
an intensified UHI mainly in humid regions as pointed out by Zhao et al. [5]; (2) the loss of vegetation
cover results in less evaporative cooling effects; (3) the increased energy absorption capacities caused
by a lower albedo; (4) the enhanced capacities of energy storage as a consequence of used artificial
materials; and finally (5) the anthropogenic waste heat released from homes, industrial facilities,
and transportation means. Other researchers have linked the observed variations of urban climate
with the effects of urban morphology given the importance of ventilation in dispersing pollutants and
disseminating heat [6,7]. Most of the abovementioned factors are related to LULC changes resulted
from fast and extensive unplanned urbanization leading to an expansion in impervious surfaces,
which further aggravates the soil moisture deficit and causes a decrease of evapotranspiration [8].
Consequently, LST is always higher in urban areas than in rural areas [9]. In recent years, however,
these temperature differences have become even higher due to the distance gap between urban and
rural areas [10–12]. Based on these conditions, examining the relationship between LULC and LST is
essential to find ways to relieve UHI impacts on urban environments.

Remote sensing techniques have been used to retrieve LST from satellite images, which enabled the
analysis of the dynamic conditions in different areas [13]. Some studies have examined the relationship
between LST and indicators such as Normalized Difference Vegetation Index (NDVI), Normalized
Difference Built-up Index (NDBI), and Normalized Difference Water Index (NDWI) [14,15]. It is worth
mentioning that several limitations have been pointed out when comparing LST with these indicators
as different LULC types have different surface reflectance and roughness which affect LST values.
Additionally, seasonality, time of the day, and research methods are also aspects that can influence
the accuracy of extracting LST [16]. Moreover, planned and traditional cities have different urban
structures, which also impacts the LST [17]. Controlling the LST in the central area is crucial for
people’s health, living environment, and sustainable development. On the other hand, LULC change is
a long-term process that is influenced by human activities, historical trends, natural disasters, and city
planning. Therefore, it is essential for re-planning the LULC distribution to decrease LST to moderate
levels and consequently to establish sustainable development for the future.

Simulating the future LULC should be proposed under a particular environment, such as study area,
future plan, economic demand, and sustainable development strategy [18]. Simulating future LULC
studies have been considered as valuable because they provide critical insights to city planners [19].
Nanjing, with a history of over 2500 years, is the ancient capital of six Chinese dynasties. The city plan
has attracted extensive interest because of its necessity in combining cultural and historical aspects
with modernity. In 2000, the Nanjing Bureau of Planning and Natural Resources released new urban
planning for sustainable development purposes [20]. Therefore, the time period between 2000 and
2018 was selected for monitoring LULC change in this study, whereas 2030 and 2050 were selected as
target years to simulate future LULC patterns and to assess LST related risk areas.

This study aims at simulating future LULC changes in Nanjing in 2030 and 2050 and discussing
future LST distribution with the purpose of providing a valuable reference to city planners about
vulnerable areas to high LST in order to take the necessary measures to define new planning
policies. To achieve that, we first discuss the spatiotemporal changes of LULC in Nanjing from 2000
to 2018. We then analyze the LULC impacts on LST composition and propose sustainable urban
planning initiatives.

2. Materials and Methods

2.1. Study Area

In this study, we take Nanjing (Figure 1), the capital of Jiangsu province in China, as the study
area. It is one of the most important cities in the Yangtze Delta with political, economic, and cultural
significance. The city has over 2500 years of historical background, which has shaped the LULC change
process. From 1978, Nanjing, like other Chinese cities, has experienced breakneck urbanization as
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a result of the Chinese economic reform. According to the National Bureau of Statistics, the total
population of Nanjing increased from 6.13 million in 2000 to 8.34 million in 2018, with an annual
increase rate of 12.28% [21]. In 2016, the area of the built-up in Nanjing expanded to 773.79 km2,
pushing the city to rank as the ninth-largest among all Chinese cities [21].

Nanjing has a subtropical monsoon climate with an average annual temperature of 16.1◦C and
annual precipitation of 1106.8 mm in 2017 [22]. The Yangtse River is crossing the area from southwest
to east. In this study, a range of 31◦34′–32◦33′N and 118◦15′–119◦20′E, which is the central part of
Nanjing city is decided as the study area (Figure 1). The topography of the study area ranges between
an elevation of -92 m and 441 m with hilly and mountainous areas surrounding the city from almost
all directions.
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Figure 1. Location map of Nanjing.

2.2. Workflow

The workflow of this study is shown in Figure 2. The final objectives are to simulate the future
LULC development in 2030 and 2050 and to assess the risk of high LST distribution in order to support
urban planning initiatives and sustainable development in the study area. To achieve these goals,
several steps have been conducted. First, we applied the maximum likelihood classification to extract
LULC maps from Landsat images. The principle of maximum likelihood supervised classification
is based on training samples and is used to classify pixels into suitable LULC categories [23,24].
The selection of training samples was based on our previous knowledge of the geographical settings
of the study area. Second, we conducted an urban-gradient analysis to monitor the urbanization
trends in Nanjing. Third, we retrieved LST maps and conducted the regression analysis with LULC
maps to examine the existing relationship. Lastly, we simulated the LULC in 2030 and 2050 using a
hybrid model of Markov and CA models with the aim of assessing the LST related risk areas as a final
step [25,26].
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2.3. Data Processing

LULC and LST maps were extracted from three Landsat images captured on September 16, 2000
(Landsat 7 ETM+), November 18, 2014 (Landsat 8 OLI/TIRS) and October 12, 2018 (Landsat 8 OLI/TIRS)
(Table 1). All the images were obtained from the United States Geological Survey (USGS) [27]. To avoid
cloud-coverage issues, images were acquired during the autumn season with a cloud-coverage of less
than 10%. Additionally, it is worth mentioning that seasonal variations also influence NDVI and LST
values. Usually, from March to November, it is easy to distinguish the differences in LST intensities
between different LULC classes [28]. Consequently, in this study, all the Landsat images were collected
between these two months to exclude any possible seasonal variability effects.

Table 1. List of Landsat images selected for the study.

Date Path/Row Weather Air
Temperature

Wind
Speed

Wind
Direction

Landsat-7 ETM+ 16 September 2000 120/038 Cloud Cover 0% *

Landsat-8 OLI/TIRS 18 November 2014 120/038 Sunny/Cloudy 15 ◦C/5 ◦C 3.5–7.9 m/s East

Landsat-8 OLI/TIRS 12 October 2018 120/038 Cloudy 21 ◦C/12 ◦C 3.5–7.9 m/s Northeasterly

* No historical weather data in 2000.

Other auxiliary data, mainly the modeling variables for driving LULC changes, were collected as
well, including the central business district (CBD), main roads, water areas, protected areas, Digital
Elevation Model (DEM) and slope (See Figure A1 in Appendix A). The CBD is located in the central
region of the study area, which has potential effects on economic development and urbanization.
The main roads are always recognized as one of the essential factors influencing urban construction.
The permanent water bodies and protected areas were selected for their quasi-stable status during the
LULC change process as these areas are difficult to be converted into other LULC types. The DEM and
slope data were considered due to the varied terrain topography of the study area, characterized by the
disparity in elevation. The DEM was obtained from the USGS which was used to extract the slope map.

2.4. LST Retrieval

LST is a crucial factor that can reflect the surface temperature among different LULC types.
For retrieving LST maps from Landsat images, several steps need to be conducted. Initially, the Digital
Numbers (DNs) of thermal bands (band 6 in Landsat TM and ETM+, and band 10 in Landsat OLI/TIRS)
should be converted into radiance values [29–31]. These values should be collected for calculating the



Remote Sens. 2020, 12, 440 5 of 17

at-satellite brightness temperature [3,32]. All images have been undergone atmospheric and emissivity
correction procedures prior to the analysis. In this study, the preprocessed band 6 of Landsat 7 in 2000
and band 10 of Landsat 8 in 2014 and 2018 were used for expressing at-satellite brightness temperature
in Kelvin. The mathematic equation of land surface emissivity (ε) can be expressed as follows [33]:

ε = 0.004× Pv + 0.986 (1)

where Pv is the proportion of vegetation, which can be calculated using the following equation:

Pv = (
NDVI jr −NDVImin

NDVImax −NDVImin
)

2

(2)

where NDVI refers to the Normalized Difference Vegetation Index, which reflects the vegetation density
of land. It can be derived from the red and near-infrared bands of Landsat images [34] using the
following formula:

NDVI = (NIR−RED)/(NIR + RED) (3)

Lastly, LST values can be calculated using the following equation [35]:

LST = TB/[1 + (λ× TB/ρ) ln ε] (4)

where TB is band 6 in Landsat ETM+, and band 10 in Landsat OLI/TIRS; λ is the wavelength of
emitted radiance (11.5 µm for Landsat ETM+ band 6 and 10.8 µm for Landsat OLI/TIRS band 10) [36];
ρ = h × c/σ (1.438 × 10−2 mK), σ = the Boltzmann constant (1.38 × 10−23 J/K), h = Planck’s constant
(6.626 × 10−34 Js), and c = velocity of light (2.998 × 108 m/s); and is the land surface emissivity, which can
be obtained by Equation (1).

2.5. LULC Classification

LULC classification is a significant challenge when it comes to obtaining complex LULC distribution
information from Landsat data [18,37]. Several classification methods have been employed in different
studies depending on the target area and the spatial resolution of the satellite images [38–40]. From a
performance perspective, the maximum likelihood supervised classification method provides an
accurate outcome [23]. Therefore, we selected it as the primary classification method in this study.
Based on the statistic features of remote sensing data, the maximum likelihood supervised classification
method can calculate the mean value and variance to establish a function. According to this function,
each pixel can verify their belonging category by plugging it into this equation.

The maximum likelihood supervised classification method was employed to classify LULC maps
using ArcGIS 10.4 software. Based on the purpose of this study, four LULC categories were considered,
namely built-up, cropland, green, and water. The built-up category includes impervious surfaces
such as buildings, roads, airports, parking lots, and sidewalks. The cropland category consists of
agricultural lands without tree canopy. The category of green comprises forest, woodland, shrubland,
grassland, and green spaces with the tree canopy. The water category contains all water bodies, such
as rivers, lakes, ponds, reservoirs, and wetlands. The number of training samples selected on Landsat
images for classification was 368, 395, and 386 for 2000, 2014, and 2018, respectively. The range of
pixels’ size is between 80 and 140 for all the training samples. Finally, an accuracy assessment was
conducted to confirm the exactitude of the LULC maps.

2.6. Urban-Rural Gradient Analysis

A prefecture-level city always consists of several spaces. Each space serves certain or multiple
urban purposes. Since these sectors have different characteristics, their LULC composition differs.
Keeping in mind that LULC composition strongly influences the future development potential in
terms of sustainability and economy, it is essential to analyze the LULC composition for each zone to
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perceive the future trends of LULC. Urban-rural gradient analysis is a method to analyze the spatial
distribution of different LULC classes by predefined distance ranges from the city center all the way
to the nearby rural areas [1,39]. The method can help to understand the urbanization structure and
discover further opportunities for potential development in the city. In this study, 50 ring buffers were
created from the city center to the rural areas in Nanjing with a distance interval of 1 km.

2.7. Markov Model

Markov model is a stochastic model that can trace the changing process from one state to another.
The future state is only influenced by the current state, and each state should keep the same time
step [41]. Markov model can be applied to reflect the change of LULC process [25,42]: (1) all the LULC
types can change from each other under the historical influence; (2) LULC change is a complicated
process which is influenced by several parameters and cannot be described by simple functions;
and (3) the transformation of LULC is stable during the time period. Based on its characteristics,
the Markov model is an essential method for simulating future LULC changes. Therefore, it was
considered for the LULC simulation. The Markov process can be written as follows:

P(n) = P(n−1)Pi j (5)

where P(n) is the transition state probability in time period n, and P(n−1) is the current state probability
in time period n− 1.

During the LULC transition process in the Markov model, the condition of LULC in the next time
period is only influenced by the current state and the transition rule subordinated to the transition
probability matrix [43]. The original transition probability matrices can be calculated from LULC maps,
and the LULC category in a one-time period should be defined before employing the Markov model.
This can be expressed as follows:

Pi j =


P11 · · · P1n

...
. . .

...
Pn1 · · · Pnn

 (6)

where Pi j refers to the transformation probability matrix of LULC changes occurred from ith category
into jth within one time period, and n is the land use category in the study area. P should meet the
following condition:

0 ≤ Pi j ≤ 1 (7)

n∑
i=1

Pi j = 1 (8)

By considering that LULC maps do not keep the same time period, the “Hazard rate approach”
was applied during the Markov process. The per unit time transition matrix should be calculated using
the following equation:

Hi j =
Pi j∑T

t=0,tn+1−tn=∆s Ni∆S
(9)

where Hi j is the hazard rate in one year.
In this study, the transition probability matrix from 2014 to 2018 was calculated using the Markov

model at first. Next, the hazard rate approach was combined with a Markov model to extract a one-year
transition probability matrix from 2014 to 2018. Finally, the employed model was set to calculate
the one-year transition probability matrix 12 and 32 times to simulate the LULC map in 2030 and
2050, respectively.
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2.8. Cellular Automata-Markov Model

The CA-Markov model is a hybrid model combining Markov and cellular automata models.
Because of its ability to allocate spatial information of landscape, it has been widely used in land cover
modeling and landscape prediction [1,44]. It has already gained an excellent reputation and has a
prospective future in several fields, for instance: computer science, mathematics, and geographical
science [45,46]. The CA-Markov model can be applied to spatiotemporally simulate future LULC
distribution. The CA model is established of spatial cells, which are all independent and interactive
with each other. The transition process of the CA model also can reflect the interaction among spatial
cells. Because of these characteristics, it has also been applied for simulating the LULC process [47,48].
In the CA model, all cells should obey the specific transition rules. The transition rules employed a
3 × 3 neighborhood to affect the central cell condition in the future. Using the CA model to simulate
the future LULC, the property of LULC types should be considered, for instance, the built-up area
cannot transfer into the water in the near future [25].

LULC change is a complex process affected by historic trends, environmental effects, transition
rules, and land use policy. To comprehensively simulate the LULC process, the CA model and the
Markov model were combined to provide spatiotemporal changes. The following equation illustrates
the cell changing process from time t to time t + 1 [49]:

C(i, j)t+1 = f
(
C(i, j)t × TS(i, j)t × TP(i, j)t ×NI(i, j)t

)
(10)

where C(i, j)t+1 is the state of cell (i, j) at time t + 1, C(i, j)t is the state of cell (i, j) at time t, TS(i, j)t is
the transition suitability of cell (i, j) at time t, TP(i, j)t is the transition probability of cell (i, j) at time t,
and NI(i, j)t is the interaction by surrounding cells under the transition rules.

3. Results

3.1. LULC Composition along the Urban-rural Gradient Analysis

Figure 3 shows the LULC maps of Nanjing in 2000, 2014, and 2018, respectively. It can be observed
that built-up areas are concentrated in the central area and had been expanding from 2000 to 2018.
The proportion of built-up increased from 5.91% in 2000 to 16.80% in 2014 and 22.85% in 2018 (Table 2).
Cropland areas are mainly located in rural areas. As a result of the expansion of urban areas to meet the
growing urbanization demand, cropland areas decreased from 713,951.55 ha in 2000 to 556,336.68 ha in
2018 (Table 2). On the other hand, no changes have been observed for green areas during the study
period, and this is due to the location of these areas in the mountains. Similarly, no huge changes were
witnessed in the total area of water bodies consisted mainly of the Yangtse River.
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Table 2. Land use/cover (LULC) composition of Nanjing in 2000, 2014, and 2018.

2000 2014 2018

ha % of the total ha % of the total ha % of the total

Built-up 59,077.53 5.91 168,096.42 16.80 228,589.65 22.85
Cropland 713,951.55 71.37 605,133.45 60.49 556,366.68 55.64

Green 147,854.43 14.78 156,286.53 15.62 153,940.05 15.39
Water 79,516.53 7.95 70,883.64 7.09 61,503.66 6.15

The results of the urban-rural gradient analysis are shown in Figure 4. In general, the percentage
of built-up areas decreased from the city center to rural areas. Compared with 2000, the proportion
of built-up areas increased from 9 to 13 km in 2014 and 2018. Accordingly, it also can be found that
built-up areas have expanded from the city center to the surrounding areas from 2000 to 2018 (Figure 3).
On the contrary, cropland is increasing from the city center to the rural areas in all three years with a
slight decrease of 10% in its total share from 2000 to 2018. The percentage of green fluctuated largely
from 2000 to 2018, especially from 1 to 15 km. Water bodies remained stable in the study area from
2000 to 2018.
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3.2. Relationship between LST and LULC

The spatial pattern of NDVI of Nanjing for 2000, 2014, and 2018 are presented in Figure 5.
The NDVI values are ranging between −0.50 and 0.82 in 2000, −1 and 0.93 in 2014, −0.85 and 0.91 in
2018, respectively. Based on LULC maps illustrated in Figure 3, areas with the lowest NDVI values are
mainly covered by water. On the other hand, the highest values of NDVI are mainly spread across
mountainous areas, which correspond to forest areas. In general, NDVI maps are always influenced by
LULC distribution and vegetation conditions.
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The LST maps of the study area for 2000, 2014, and 2018 are shown in Figure 6. On September 16,
2000, the LST of Nanjing ranged between 10.67 ◦C and 53.89 ◦C, with a mean value of 27.30 ◦C.
On November 18, 2014, the LST ranged from 21.33 ◦C to 42.73 ◦C, with a mean value of 30.71 ◦C.
And on October 12, 2018, the LST ranged between 0.82 ◦C and 36.99 ◦C, with a mean value of 20.83 ◦C.
The LST value was influenced by several uncertain factors, such as water content, sunlight, wind
velocity, and precipitation. All the ranges of LST maps in the three years have been normalized to a
range from 0 to 1. Compared with the LULC maps (Figure 3), areas with the highest values of LST are
mainly covered by built-up from 2000 to 2018. In contrast, cropland and green areas have the lowest
LST values, which might indicate their contribution to cooling the city.
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To further prove the relationship between LULC, NDVI, and LST, a space lattice with a total of
625 points (2000, 2014, and 2018) was drawn from LULC, NDVI and LST maps. All LST values were
normalized into a 0–1 scale to reduce the influence of uncertainties. It can be observed that the pattern
of LULC dots of 2000 is different than the ones of 2014 and 2018. In 2000, most of LULC dots are
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clustered within the same range values of NDVI (i.e. 0–0.75) and LST (i.e. 0.5–0.75). Contrarily, larger
ranges of LST (i.e. 0.25–0.75) can be observed during 2014 and 2018. In Figure 7, the locations of
water dots are easy to distinguish from other LULC types as they are scattered with negative values
of NDVI and LST values inferior to 0.5. The built-up dots are concentrated with high LST values.
Contrarily, green dots have obviously high NDVI values with low LST values. To clearly understand
the correlation between LULC and LST, we summarized the statistical values of the sample points in
Table 3. We observed a continuous trend that built-up has the highest mean LST, followed by cropland,
green, and water in the three years. In addition, the standard deviation ranged between 1.81◦C (green)
and 2.30 ◦C (water) in 2000, between 1.48 ◦C (water) and 2.21 ◦C (built-up) in 2014, and between 1.48 ◦C
(built-up) and 2.97 ◦C (water) in 2018.
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Table 3. Statistical results of categorized LST (◦C) of Nanjing in 2000, 2014, and 2018.

Mean Value Maximum Value Minimum Value Standard Deviation

2000
Built-up 30.84 36.83 26.68 2.08

Cropland 27.25 33.04 11.67 2.11
Green 27.00 32.08 23.53 1.81
Water 24.12 31.15 15.19 2.30

2014
Built-up 32.62 37.44 26.56 2.21

Cropland 30.60 35.33 27.03 1.68
Green 30.75 37.24 28.04 1.49
Water 28.77 33.45 26.21 1.48

2018
Built-up 21.26 25.60 17.30 1.48

Cropland 21.15 26.43 16.67 1.72
Green 20.35 27.24 13.84 2.61
Water 19.24 24.10 13.18 2.97

3.3. Future LULC and LST in 2030 and 2050

The simulation results of LULC change in 2030 and 2050 are illustrated in Figure 8. Comparing the
LULC maps of 2000, 2014, and 2018 (Figure 3), it can be observed that built-up areas are expected to
continually expand and even occupy the nearby croplands surrounding them. The area percentages of
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each of the four LULC classes from 2000 to 2050 are shown in Figure 9. Same with other developing
countries, built-up areas are expanding, to meet the demand of urbanization, at the expense of cropland
that is consistently decreasing. Most of the green areas are expected to remain intact from 2018 to 2050.
During the LULC change process, water is expected to preserve its share in the total area.
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Based on the relationship between LULC and LST, the future distribution of LST has been
estimated (Figure 10). It can be observed that areas with high LST risk are expected to be distributed
mainly in the central area in 2030 resulted from the forecasted built-up distribution. Whereas, moderate
LST risk areas are anticipated to be located in several scattered settlements. The overall LST risk areas
are expected to increase from 2030 to 2050. It is projected that the high LST risk areas will be expanded
by 2050, and some new moderate LST risk areas are expected to be generated. The LST differences
between the central area and the surrounding areas are forecasted to become higher, which may
cause environmental problems that can have bad effects on human health. These simulation results
may provide insights to the local government and city planners to take corrective measures for wiser
sustainable urban development policies.
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4. Discussion

Existing studies have pointed out that the increase of LST is related to urban growth, especially in
developing countries [50]. The agglomeration and expansion of urban areas have a significant effect on
the increase of impervious surfaces [51,52]. Moreover, previous studies have found that green space
can maintain soil moisture to reduce LST [53]. In this study, we analyzed the relationship between
LULC and LST by using remote sensing data. Our results, based on quantitative analysis and spatial
distribution, showed that built-up, cropland, green, and water have different effects on LST. In addition,
an interesting result has been found, which is the fact that the central LST of built-up has been reduced
considerably from 2000 to 2018 (Figure 7). This might be attributed to the existence of natural obstacles
in the form of water bodies and green spaces (high altitude) located in the central area. Meanwhile,
built-up areas have expanded beyond these natural obstacles in almost all directions, creating what
can be called a mixed LULC area (Figure 3).

In recent years, the relationship between LST and LULC has received more and more attention
from researchers [14,54]. However, few of them have reached similar results because of regional
differences and geographical settings of the targeted areas. In this research, Nanjing was selected
as a case study reasoned by the fact that it is one of three furnace cities in China. Local people are
suffering from high temperatures during summertime. Therefore, reducing the LST to moderate levels
has become a critical target for improving the living standards and supporting future sustainable
development. In this work, by combining remote sensing techniques and geographic information
system capacities, we examined the impacts of multiple LULC categories on LST quantitatively and
spatially. Furthermore, a simulation of future land use/cover changes in 2030 and 2050 has been
conducted. ArcGIS and TerrSet software were used for LULC classification and examining LST changes
in each LULC category at different spatial scales. The Landsat data of three different years during
autumn season (2000, 2014 and 2018) of the Chinese city of Nanjing were acquired to analyze the LULC
changes and their relationship with LST.

The monitoring result shows that during the urbanization and industrialization process,
the built-up area had been expanding from the central area of the city to the suburban areas from 2000
to 2018. At the same time, the UHI phenomenon started to be observed in Nanjing. Many studies
have shown that green space can help reducing LST, especially in the central area [15,55]. Additionally,
mixed land use not only can enrich the living environment but also can decrease LST to support
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sustainable development [56,57]. Since it is prohibited to change protected green areas into other
LULC categories, no significant changes have occurred in these areas during the study period. The LST
values in these areas are lower than the ones observed in the central area.

Based on the extracted LST and LULC maps, the characteristics of UHI in Nanjing has been
discussed. According to the simulated LULC maps of 2030 and 2050, similarly to other cities in
developing countries, urban growth is expected to continue in the city (Figure 8). Additionally, maps
of the LST risk area have been extracted and have been analyzed based on the thermal radiation
characteristics of each LULC type (Figure 9). The result shows that if the urbanization sustained from
2018 to 2050, the high LST risk areas are expected to expand.

Based on the results of simulating LST risks in Nanjing, we propose the following three suggestions
to alleviate the LST increase: (1) to promote the use of renewable energy resources and environmental
protection materials: For example, using high reflectance materials on buildings’ walls or roofs to
reduce absorption from solar radiation energy, and using water permeability materials to construct the
urban roads in order to improve transpiration; (2) to build ecological cities that support sustainable
development, where urban green areas can significantly decrease LST and improve the living standards;
and (3) to properly redistribute the transportation network and to encourage the utilization of
public transportation.

The Chinese government has always governed and regulated urbanization. In recent years, it has
started to become aware of the risks posed by UHI on its sustainable development strategy. The sponge
city, forest city, and climate-sensitive city are examples of the proposed cities of the future. All of them
can decrease UHI by establishing built-up mixed green areas [58,59]. In this study, the government
regulations related to environment protection has been considered to reduce the LST in the future
simulation in 2030 and 2050. Compared with the past period 2000–2018, the impact of the population
on urban planning is expected to getting smaller. In contrast, the limited supply of land and economical
regulations have an increasing effect on LULC change. Therefore, to examine the current development
situation of LULC and simulate the future LULC change under the green area protection regulations,
it is possible to verify the feasibility of the current city plan to reduce the potential pressure on the
environment in the future. According to the LULC maps in 2030 and 2050 (Figure 8), the built-up
is continually increasing by occupying other LULC types. Compared with the period from 2000 to
2018, the urbanization speed has slowed down during the period from 2018 to 2050. This trend is
conforming to the existing city planning forms in China.

Establishing a sustainable development in the future is always recognized as the ultimate objective
in many LULC studies [60,61]. There are many factors that influence LST to engender the UHI
phenomenon, such as psychrometrics, temperature, and intensity of illumination [62]. Compared with
other factors, LULC is a relatively constant factor that predominantly influences the causation of UHI.
By simulating future land use/cover changes and analyzing the relationship with LST, UHI effects
can be effectively reduced. Land use/cover simulation not only can provide several scenarios of what
can be occurred in the future but also avoid disparate development between social-economic and
environmental protection.

Although increasing green space can relieve LST, there are still some limitations that should
be pointed out. There are many extraneous and uncontrollable factors influencing LST such as
precipitation, illumination, season, etc. This is the reason why LST is different day by day, even hour
by hour. In this study, we only focused on the spatiotemporal correlation land use/cover types with
LST. Therefore, in future research, we will assess the impacts of the density of green space and built-up
areas, which impact the living environment to accommodate government policy and social problems.

5. Conclusions

In this study, we monitored the spatio-temporal dynamics of land use/cover and LST of Nanjing
from 2000 to 2018. The results demonstrated that during the first 18 years of the 21st century, Nanjing
had experienced rapid urbanization with the cost of a tremendous decrease in the agricultural lands.
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The expansion of impervious surfaces resulted from the process of rapid urbanization, has caused
an increase in urban LST indicating that the UHI phenomenon has become more severe in Nanjing.
Through a correlation analysis between LST and landscape composition, we found that forest and
cropland had the highest potential in cooling the LST in Nanjing. A significant impact of water bodies
on the temperature of the surrounding areas was not recognized. The cooling effects of cropland and
forest differed when the surrounding landscape composition differed. Considering the abovementioned
findings, it would be more efficient to find a suitable combination of landscape composition that would
be more efficient in cooling the LST instead of merely increasing the cropland or forest.

The CA-Markov model was employed to simulate the land use/cover conditions of Nanjing in
2030 and 2050. From the empirical outcomes, we observed a continuous and fast urban expansion
accompanied with the loss of cropland and forest. Based on the simulation, the central areas in Nanjing
along the Yangtze River would be supposed to face severe UHI impacts in the coming future if no
effective policies or regulations are established. The results of the carried analyses are an alarming
information for the local government that the landscape of the central areas of Nanjing should be
reorganized to cope up with the expected upcoming severe effects of UHI on the residents. Our study
proposed a valuable framework to delineate and predict the risk of UHI in the future based on the
changing land use/cover conditions. The method developed in this study would be applicable in other
megacities to assess the areas with high LST risk.
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