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Abstract: With the development of polarimetric synthetic aperture radar (PolSAR), quantitative
parameter inversion has been seen great progress, especially in the field of soil parameter inversion,
which has achieved good results for applications. However, PolSAR data is also often many terabytes
large. This huge amount of data also directly affects the efficiency of the inversion. Therefore,
the efficiency of soil moisture and roughness inversion has become a problem in the application of
this PolSAR technique. A parallel realization based on a graphics processing unit (GPU) for multiple
inversion models of PolSAR data is proposed in this paper. This method utilizes the high-performance
parallel computing capability of a GPU to optimize the realization of the surface inversion models for
polarimetric SAR data. Three classical forward scattering models and their corresponding inversion
algorithms are analyzed. They are different in terms of polarimetric data requirements, application
situation, as well as inversion performance. Specifically, the inversion process of PolSAR data is
mainly improved by the use of the high concurrent threads of GPU. According to the inversion process,
various optimization strategies are applied, such as the parallel task allocation, and optimizations of
instruction level, data storage, data transmission between CPU and GPU. The advantages of a GPU
in processing computationally-intensive data are shown in the data experiments, where the efficiency
of soil roughness and moisture inversion is increased by one or two orders of magnitude.
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1. Introduction

Soil moisture and roughness are important parameters in the fields of agriculture, ecology,
meteorology, and hydrology. They are widely used in farmland irrigation management, climate
prediction, and drought monitoring [1]. For example, in the agricultural area, soil water content and
roughness directly affect crop growth [2]. The correct assessment of soil moisture is also the basis of
hydrological modeling [3]. In the meteorological field, soil water content is an essential component of
the land–atmosphere boundary energy budget [4,5]. Therefore, the inversion of soil water content and
roughness has become a research hotspot for scholars.

With the increase in the number of global satellites, the application of ground exploration has
become increasingly common [6–8]. But low resolution is also a major problem for exploration [9,10].
The development of science and technology has promoted the rapid development of synthetic aperture
radar (SAR) techniques, through which the quality and resolution of radar imaging has been significantly
improved. However, in the process of ground detection, the anti-interference of SAR is very low, and the
detection process is easily affected. Both GIS and remote sensing assistance information are used for soil
moisture estimation [11]. Multi-satellite collaboration can also improve spatio-temporal resolution [12].
By means of dual/multi/full polarization, the polarized synthetic aperture radar (PolSAR) has a good
detection effect and high resolution [13]. PolSAR plays an important role in geographic surveying,
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geological hazard monitoring, vegetation monitoring, and other applications [14]. The applications of
PolSAR data can be generally divided into two categories, which are qualitative and quantitative ones.
For qualitative applications, the PolSAR technique has a great advantage in unsupervised classification
due to the inherent scattering mechanisms contained in PolSAR data. This kind of physical scattering
information can be directly used for land cover classification which need no training.

For quantitative applications, PolSAR has a profound impact on the study of parameter inversion.
Here PolSAR provides the relations between observations of multi-polarimetric channels with system
parameters and object parameters, which is more stable than single polarimetric channel observation.
Soil parameter estimation is a representative quantitative application of PolSAR data, since it covers
both geometrical and physical parameters. In the study of bare soil parameters, scholars at home
and abroad have developed a variety of soil parameter inversion models. These models are broadly
divided into theoretical scattering models and empirical scattering models. The theoretical models
include physical optics (PO) models, geometrical optics (GO) models, and integral equation methods
(IEM). The theoretical models are based on the assumptions that the naturally exposed surface is a
uniform half-space dielectric layer, so the accuracy of these models is limited [9,14,15]. Some scholars
have studied the accuracy of the inversion model [16–18]. However, its complicated form makes it
very difficult to obtain the roughness and water content parameters directly from the polarization
imagery. Therefore, combining theoretical model analysis and polarization data sets, establishing an
empirical relationship between various echo parameters and surface parameters has become the main
way to obtain surface parameters [19,20]. The empirical and semi-empirical models include small
perturbation methods (SPM), Dubois, Oh, and other models. By comparing the calculated result with
the actual external measurement, then with the adjustment of the parameters, the soil parameters
calculated by the model are more in line with the actual situation [21]. In order to obtain more accurate
results, the X-Bragg model based on full polarization is also proposed. The model is based on the
eigenvalues and eigenvectors of the polarization coherence matrix. However, the high-resolution
PolSAR massive imagery becomes the bottleneck of computing efficiency.

The efficient processing speed of soil moisture retrieval can help make timely decisions in the
real-time application of geological exploration [4]. In recent years, the development of high-performance
technologies has solved the computing-intensive problem, especially the GPU parallel method, e.g.,
hybrid OpenMP-CUDA based PDE source inversion [22], multiplication regular comparison source
(MR-CSI) graphic processing unit (GPU) parallel optimization [23], GPU 2D and 3D multi-frequency
regularization comparison source [24], parallel optimization of multi-scale MAS systems, and GPU-based
accelerated TMI [25]. Parallel computing research of large-scale grounded grid PC cluster is realized [26].
In the heterogeneous soil model, OpenMP parallel optimization is used for multi-core parallelism
implementation [27]. In our previous work, various parallel mechanisms have been introduced to
accelerate the SAR raw data simulation, including clouding computing, GPU parallel, CPU parallel,
and hybrid CPU/GPU parallel [28–35]. As far as the inversion algorithms are concerned, the time cost
is only minute-level. Compared with the hybrid CPU/GPU parallel accelerating, the GPU parallel is
expected to be a better choice for balancing the algorithm complexity and efficiency. Therefore, single
GPU has been employed to implement the massive parallel parameter inversion for PolSAR imagery.

This paper studies the Dubois, Oh, and X-Bragg model inversion algorithms, which basically covers
all widely used empirical models. Among them, the Dubois and Oh models use scattering coefficients
of two or three polarimetric channels, which is only the amplitude information, while the X-Bragg
model utilizes the full polarimetric scattering matrix including both amplitude and phase information.
In fact, the higher data requirement of models has, the better performance it achieves. When the full
polarimetric scattering matrix is available, Oh and X-Bragg models can be used. However, for the
surface with vegetation and non-unneglectable slope, X-Bragg model should be chosen with priority.
When we have amplitude data of polarimetric channels, Dubois and Oh models could be employed. In
the case that only dual polarimetric data is available (HH,VV), then the Dubois model is left. It should
be noted that with the Dubois model, good results are obtained under the condition that the incidence
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angle is larger than 30 degrees. The scattering models themselves are a forward model, that is, from the
input object parameters and observation parameters to the scattering matrix or coefficients. However,
if we want to retrieve the soil roughness and moisture from the data, the corresponding inversion
algorithms are needed. We mainly analyze the optimization of the three algorithms for soil inversion
based on the GPU parallel method. Therefore, the contributions of this paper are mainly reflected in the
parallel design (GPU thread allocation strategy), parallel optimization for computing-intensive issue
(instruction optimization), and parallel optimization for data-intensive issue (storage optimization and
data type conversion). Through the three aspects of parallel acceleration, 14×–169× speedups can be
achieved for the three inversion models.

The rest of this paper is organized as follows. In Section 2, the three inversion algorithms are
specifically introduced, including the Dubois model, Oh model, and X-Bragg model. In Section 3,
the sequential algorithm analysis and the proposed parallel methods are presented. In Section 4,
the experimental results and analysis are presented. The conclusion is given in the final section.

2. Inversion Algorithm

2.1. Dubois Model

In 1995, Dubois proposed an empirical model that only requires the same polarization backscatter
coefficients σ0

HH and σ0
VV to extract the root mean square height and water content of the bare soil.

The model was built using the datasets collected by a truck-mounted scatterometer at the University
of Michigan and the RASAM scatterometer at the University of Bern. Through the measurement of
the scatterometer and the data, the local incident angle and frequency, the dielectric constant and the
surface roughness are mapped to the co-polarized scattering coefficient. Studies have found that this
relationship is close to the tangent of the angle of incidence. The algorithm is applied to SAR data
(AIRSAR and SIR-C) to prove its robustness [36].

The empirical formula is as follows:

σ0
HH = 10−2.75 ∗ cos1.5θ

sin5θ
∗ 100.028∗εr∗tanθ(ks ∗ sinθ)1.4 ∗ λ0.7 (1)

σ0
VV = 10−2.37 ∗ cos3θ

sin3θ
∗ 100.046∗εr∗tanθ(ks ∗ sinθ)1.1 ∗ λ0.7 (2)

where θ is the local incidence angle, εr is the real part of the dielectric constant, ks the normalized
surface roughness and λ the wavelength.

The volume water content of soil mv can be calculated from the relationship between εr and mv:

mv = 4.3 ∗ 10−6ε3
r − 5.5 ∗ 10−4ε2

r + 2.92 ∗ 10−2εr − 5.3 ∗ 10−2 (3)

The effective range of the inversion model for estimating surface parameters is mv ≤ 35%, ks ≤ 2.5
and θ ≥ 30◦.

2.2. Oh Model

At the University of Michigan, based on the analysis of the classical theoretical scattering
model Kirchhoff approximation (KA) and SPM, Y. Oh, K.Sarabandi, and F.T. Ulaby developed this
semi-empirical model in 1992. The model uses full-polarization data (LCX POLARSCAT) measured
by an on-board network analysis scatterometer at three frequencies (1.5, 4.5, and 9.5 GHz), as well
as comprehensive and accurate surface measurements, with incident angles ranging from 10◦ to
70◦ [36,37].

The model proposes a clear cross-polarization and co-polarization backscatter ratio function.
The empirical equation is:
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P =
σ0

HV
σ0

VV
= 0.23

√
Γ0(1− e−ks) (4)

Q =
σ0

HH
σ0

VV
= (1− (

2θ

π
)

1
3Γ0 ∗ e−ks)2 (5)

where P and Q represent the cross-polarization and co-polarization backscatter ratios (i.e., σ0
HV

σ0
VV

and

σ0
HH

σ0
VV

), θ is the local incident angle, and ks is the root mean square height (i.e., roughness) after the

wavelength is normalized, and Γ0 is the Fresnel reflection coefficient.

Γ0 =

∣∣∣∣1−√εr

1 +
√

εr

∣∣∣∣ . (6)

By combining Equations (4)–(6) we can obtain the mathematical Equation (7):

xn =
a
(xn−1)

2

3 (1− bxn−1) + c[
2xn−1

3 ln(a)(1− bxn−1)− b
]

a
(xn−1)

2

3 .
(7)

Among them, x = 1
Γ0 , b = q

0.23 , a = 2θ
π and c =

√
p− 1. x is obtained by the iterative method in the

program, and then the Fresnel reflectivity Γ0 and Fresnel reflection coefficient εr can be obtained, as
well as the soil roughness (ks) and soil moisture (mv). In general, the model shows good agreement on
ground measurements within a certain range, where ks ∈ [0.1, 6],mv ∈ [9, 31].

2.3. X-Bragg Model

X-Bragg model is an SPM-based polarimetric scattering model. It utilizes the coherency matrix of
full polarimetric data, including the phase information. Firstly, from the side of polarimetric coherency
matrix, which contains the second order moment of scattering process shown in Equation (8), can be
diagonalized by an unitary similarity transformation of the following form [38]:

[T] = [U3][Λ][U3]
−1 (8)

where

[Λ] =

λ1 0 0
0 λ2 0
0 0 λ3

 , [U3] = [~e1,~e2,~e3] (9)

[Λ] is a diagonal matrix whose elements are [T] real non-negative eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3; [U3]

is an eigenvector matrix whose columns correspond to orthogonal eigenvectors~e1,~e2 and~e3. In this
way the coherency matrix T is written as

[T] = [U3][Λ][U3]
−1 = λ1(~e1 ·~e+1 ) + λ2(~e2 ·~e+2 ) + λ2(~e3 ·~e+3 ). (10)

The diagonalization of the coherency matrix directly produces three important physical features.
Firstly with the obtained eigenvalues, the scattering probability pi are computed by normalizing
the eigenvalues.

pi =
λi

λ1 + λ2 + λ3
(11)

Then two of the physical features are defined as follows, which are polarization scattering entropy H
and scattering anisotropy A

H = −
3

∑
i=1

pilog3 pi, A =
p2 − p3

p2 + p3
. (12)
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The third important parameter is obtained from the eigenvector of [T]. Each feature vector~ei can
be represented by five angles [31]. The ~βi angle can be interpreted as the rotation of the corresponding
feature vector~ei in a plane perpendicular to the scattering plane, while ϕ1i, ϕ2i, and ϕ3i explain the
phase relationship between the ~ei elements. In this work, the average scattering angle α is more
important, which is defined as

~ei =
[
cosαiexp(iϕ1i) sinαicosβiexp(iϕ2i) sinαisinβiexp(iϕ3i)

]
(13)

α = p1α1 + p2α2 + p3α3. (14)

To extend the Bragg scattering model to a wider range of roughness conditions, the Bragg coherency
matrix [T] is rotated around a plane perpendicular to the scattering plane. The rough surface is modeled
as a reflective symmetry depolarizer, as shown in Equation (15). A configuration averaging is performed
on a given distribution β of P(β):

[T(β)] =

1 0 0
0 cos2β −sin2β

0 sin2β cos2β




〈∣∣σ0
HH + σ0

VV

∣∣2〉 〈
(σ0

HH − σ0
VV)(σ

0
HH + σ0

VV)
∗〉 0〈

(σ0
HH + σ0

VV)(σ
0
HH − σ0

VV)
∗〉 〈∣∣σ0

HH − σ0
VV

∣∣2〉 0

0 0 0


1 0 0

0 cos2β sin2β

0 −sin2β cos2β


(15)

[T] =
∫ 2π

0
[T(β)]P(β)dβ. (16)

Indeed, Figure 1 shows the corresponding spatial relationship of the surface slope in detail.

ᵦ
Surface

Azimuthal Oriented Surface

Scattering Plane

Sensor

Figure 1. Surface slope diagram.

The width of the assumed distribution corresponds to the amount of roughness disturbance of
the modeled surface [38]. Assuming P(β) to be a uniform distribution about zero with width β1:

P(β) =

{
1

2β1
|β| ≤ β1

0 ≤ β1 ≤ π
2

. (17)

The coherency matrix for the rough surface becomes:

[T] =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 =

 C1 C2sinc(2β1) 0
C2sinc(2β1) C3(1 + sinc(4β1)) 0

0 0 C3(1− sinc(4β1))

 (18)



Remote Sens. 2020, 12, 415 6 of 17

the coefficients C1, C2 and C3 describing the Bragg components of the surface are given by

C1 = σ0
HH + (σ0

VV)
2, C2 = (σ0

HH + σ0
VV)((σ

0
HH)

∗ − (σ0
VV)

∗), C3 =
∣∣∣σ0

HH − σ0
VV

∣∣∣2 /2. (19)

For the soil roughness estimation, ks can be calculated by Equation (20)

ks = 1− A. (20)

With the obtained roughness ks, the corresponding entropy H and α angle values are stored in the
look-up-table (LUT) by Equations (12) and (14). Using this LUT, the dielectric constant value can be
obtained directly from the estimated entropy H and α angle values. Thus, the corresponding moisture
mv is obtained.

3. Proposed Parallel Inversion Methods

3.1. Inversion Algorithms Analysis

These three inversion algorithms based on Dubois, Oh, and X-Bragg scattering algorithms differ
in the aspects of input data, valid ranges, features, and computation complexity, as do the parallel
processing methods applied to them, as shown in Figures 2 and 3.
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Figure 2. Dubois and Oh inversion algorithm optimization framework.

Half warp

A block(16*16)

Thread independent 

calculation

Thread independen

Core

Input

d pe end independend d inindedependnden
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Figure 3. Thread allocation strategy.

For the inversion of the Dubois algorithm, it is straight and simple from the algorithm equations.
At first, the dielectric constant is computed then the surface roughness is calculated. It requires only the
scattering coefficients of HH and VV channels, hence they could be applied widely in the presence of
the dual pol data availability of many airborne and spaceborne platform. However, it should be noticed
that only when the incidence angle is larger than 30 degrees, the algorithm has reliable inversion results.
According to Equations (1)–(3), the algorithm complexity is calculated as O(n), where n indicates
the number of PolSAR image pixels. Although the algorithm complexity is ordinary, there are many
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time-consuming functions including trigonometric and exponential functions, which may reduce the
acceleration efficiency.

The Oh algorithm utilizes the full polarimetric scattering coefficients. While for inversion, the
Fresnel coefficient is first obtained by an iterative process, following that, the dielectric constant and
roughness are computed consequently. Oh has a large valid range of roughness and moisture among
the empirical inversion models. When the amplitudes of full polarimetric SAR data are available, it can
be applied. According to Equation (4)–(7), its algorithm complexity can be approximated as O(m · n),
where m is the number of iterative calculation, and is set to 100 in the experiments. Compared to the
Dubois algorithm in computing efficiency, the advantage is that the trigonometric function calculations
are avoided, and the disadvantage is that the iterative calculation should be performed.

The X-Bragg algorithm is considered to extend the Bragg scattering algorithm for a slight
roughness in the soil surface. It has a wider valid range for the roughness parameter, and is also not
sensitive to the existence of slope. The X-Bragg algorithm is the real full polarimetric algorithm for soil
surface, which utilizes both the amplitude and the phase information of full polarimetric channels.
However, the inversion of this algorithm is not straightforward. The main steps are to compute the
roughness from anisotropy, to construct the two-dimensional space of entropy and mean alpha, then
to find out the dielectric constant by use of look-up-table (LUT) under certain conditions of incident
angle and roughness. According to Equations (8)–(20), the algorithm complexity can be simplified
as d ·O(l · n), where d indicates the algorithm complexity of matrix diagonalization, l represents the
dimension of lookup table. Based on the above complexity analysis, it can be seen that the X-Bragg
algorithm is the most complicated calculation, and is worthy of deep optimization.

According to the differences of the three inversion schemes, the key points of parallel computing
are thread allocation, data storage, and instruction optimization. For the Dubois and Oh algorithms,
two optimization methods were used in our experiment: thread allocation and instruction optimization.
For the X-Bragg algorithm, we used a variety of optimization methods such as thread allocation, storage
optimization, and instruction optimization.

3.2. GPU-Based Dubois and Oh Parallel Inversion

In principle, the Dubois algorithm can be seen as a simplification of the Oh inversion algorithm, so
the optimization methods of the two inversion algorithms are roughly the same. The implementation
of these two inversion algorithms includes the following parts: data acquisition, data preprocessing,
inversion algorithm implementation, and data output. The calculation process of the inversion model
is optimized in parallel, which can efficiently achieve the inversion of soil water content and roughness.
The overall framework of the inversion algorithm is as follows:

In Figure 2, the black dotted frame is the part that needs to be optimized. The number of cycles of
the calculation process is determined by the amount of data. This article uses two ways to optimize:

(1) Thread allocation: In the thread allocation process, the computing power of the hardware needs to
be considered. In this experimental environment, each block can be allocated up to 1024 threads,
which does not mean that the number of threads per block is as high as possible. The amount
of data used in the experiment is much larger than 1024, and the pixels remain independent
during the calculation, so all threads are independent. Warp is the basic transmission unit of SM
(streaming multiprocessor), and a warp has 32 threads. Therefore, the size of each thread block in
this experiment is 16 * 16. And the problem of limited storage space for threads is solved. This
size ensures the full utilization of each scheduling unit and the threads have sufficient memory. It
can make computing more efficient. Figure 3 shows the detailed thread allocation.

(2) Instruction optimization: In Equations (1), (2), and (7), there are a large number of trigonometric
and power functions. When parallel optimization is used, these functions are not applicable.
In the CUDA runtime, there are some corresponding mathematical functions, and the calculation
efficiency is higher under the condition of partial precision loss. For example, to replace the
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function sin(.) with the function __sin f (.). The calculation time of the inversion can be reduced
by using the __sin f (.) function, which is an internal function of GPU.

3.3. GPU-Based X-Bragg Parallel Inversion

According to the principle of the analytic algorithm, X-Bragg is different from the other two
inversion algorithms, and the lookup table is calculated before all data preprocessing. This table is
used to find out the corresponding soil moisture under certain conditions of incidence angle and
roughness. Figure 4 below shows the overall framework of the inversion algorithm based on X-Bragg.
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Figure 4. X-Bragg algorithm framework.

There are three main parts in the graph. The first one is to calculate the H and α according to
X-Bragg algorithm, then H and α are stored in the lookup table. The second part is that the raw data
needs to be spatially averaged for preprocessing etc. The third part is the inversion process of X-Bragg
algorithm. This part solves the [T] matrix for each corresponding pixel, and calculates real non-negative
eigenvalues λ1, λ2, λ3, and orthogonal eigenvectors~e1,~e2, and~e3. Then the entropy H and α angle
are computed corresponding to the eigenvalues and eigenvectors. Following that, the soil roughness
can be calculated by scattering anisotropy A (ks), and finally with the obtained entropy H and α angle
corresponding to the lookup table, soil moisture (mv) is inverted.

The size of data used in this experiment was 7981× 1837. After testing and averaging six times,
the calculation time for each process is obtained. The calculation time of the first part is about 15 ms,
and the calculation time of the second and third parts are about 7247 ms and 330,582 ms, respectively.
The total computation time is 337,844 ms, in which the third part accounts for 97.85% of the total time.
In the local environment, it takes more than five minutes to proceed with data of size 7981× 1837, which
indicates that X-Bragg algorithm inversion is inefficient and parallelism. Since the third part of the time
affects the real-time processing of the inversion, it is considered as the main part for optimization.

Figure 5 describes in detail the flowchart of CPU/GPU collaborative processing based on
inversion algorithms.

In Figure 5, Ndieli is the step size of the inverted dielectric constant. Nbeta is the step size of the
roughness angle in the inversion. Through the preliminary test, the display driver stopped responding
during the calculation because of the execution time of the kernel function is too long. So the kernel
function is divided into three parts: (1) Entropy H and α angle are calculated by high concurrent
multithreading; (2) the position of the pixel corresponding to the scatter table is determined, and
the entropy H and α angle are calculated using the zero-start consumption of the kernel function;
(3) correspond to the lookup table, the moisture (mv) and roughness (ks) efficiently are calculated.
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Figure 5. Optimization flowchart of the X-Bragg algorithm.

The pseudo code shows the details of the optimized X-Bragg inversion algorithm.

Step1:     Input polarization matrix S parameters

               for  each  GPU thread i  [0  :  Nlig*Ncol ] do

Step2:            Each thread inverts an element target

                      if (flag=1) Need to perform inversion

Step3:                   T[18]      Intermediate matrix calculated from the input matrix

Step4:             V[18] and lambda[3]      Calculation of V complex eigenvecor matrix, 

                                                                     lambda real vector by diagonalisation(3, T, V, 

                                                                     lambda)

Step5:             al[i], se[i] and valid[i]      Calculation of scattering mechanism 

                                                                      probability of occurrence and mean scattering 

  mechanism

               end for

               for  id  [0  : Ndeili ]

                      for  each  GPU thread  i  [0 :  Nlig*Ncol] do

Step6:             Braggs and Braggp      Calculation of the Bragg scattering value

            for ib [0 : Nbeta ]

Step7:                    T[18]      Calculation of the intermediate variable T[18] based on the 

 Bragg scattering value 

Step8:                    V[18] and lambda[3]      Calculation of V complex eigenvecor 

                                                                            matrix, lambda real vector by 

                                                                            diagonalisation(3, T, V, lambda)

Step9:                    pos[i]      Retrieval of minimum between entropy, alpha from (LUT) 

                 and entropy, alpha (data)

            end for

     end for

               end for

               for  each  GPU thread  i  [0 :  Nlig*Ncol] do

Step10:          Mmv_out[i]      Calculation of soil moisture according to model formula and 

               pos[i]

               end for

Step11:   Output inversion result

Parallel pseudo code of X-Bargg algorithm:

 

In pseudo code, the T matrix is calculated. V is the eigenvector and lambda is the corresponding
eigenvalue. al and se are calculated as lookup tables. pos is the position in the LUT. Nlig ∗ Ncol is the
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size of the data. Mmv_out is the output data. In the following part, a detailed optimization analysis of
the X-Bragg algorithm is performed through four points.

V1: Thread allocation optimization

The thread allocation optimization is basically consistent with the analysis of Figure 2. In Figure 4,
the experiment is divided into three kernel functions. The first reason is to calculate the time
limit. In addition, if the single thread independently calculates the entire inversion process, it
will lead to parallel branches. Considering the fact that when the entropy H and α angle are
calculated by Equations (17) and (19), there is a threshold judgment H ≤ max_H and α ≤ max_α,
while the inversion is only performed in range, so those threads do not perform inversion will be
idle. The computation resources is wasted in this way. Therefore, in our experiment the kernel
function is split before inversion, which can greatly increase the utilization rate of computing
resources and avoid the waste of resources caused by parallel branches.

V2: Storage optimization

In the pseudo code, steps 5 and 9 use three constant arrays lia _blockrange, max _en and max _al
of size 901. In the process of calculating and searching lookup tables, these three arrays are read
multiple times. In general, data is transported from CPU to GPU global memory. Each thread
needs to acquire data from the global memory for multiple times, hence the slow transmission
time leads to the bottleneck of data processing. This problem can be solved well in hardware
storage configuration. Constant memory has 64 kb of storage, and it is much larger than the size
of the three arrays. So it is possible to pre-calculate the indices and addresses of the three arrays
on CPU and uploaded them to the cached GPU constant memory, where they can be retrieved by
the thread blocks at both high bandwidth and low latency. Besides, constant memory is a good
fit for these three arrays in read-only operations. In this way, the transmission objective of the
data is changed from 1 to 2, as shown in Figure 6.
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Figure 6. Storage optimization strategy.

V3: Data type conversion optimization

In steps 4 and 8, the diagonalization function is used for multiple times. By implementing Equation
(13) [T] matrix is diagonalized by an unitary similarity transformation, and the non-negative
eigenvalue matrix [Λ] and the eigenvector matrix [U3] are obtained. This process uses intermediate
variables of double-type to make the diagonalization process more precise. But double-type data
also limits the speed of GPU operations, while float-type is more suitable than double. Under the
AIDA64 software test, the GTX 1080Ti provides a peak throughput of nearly 12.637 teraflop/s in
float precision, but is limited to 423 gigaflop/s in double precision. In the GPU, using float data
not only reduces memory consumption, but also improves data operation efficiency. Therefore,
under the condition of partial accuracy loss, the usage of float-type increases the computational
efficiency as well as saving storage resources for the hardware.



Remote Sens. 2020, 12, 415 11 of 17

V4: Instruction optimization

In addition to the CUDA fast math optimization mentioned in the other two algorithms, loop
expansion is also used for the optimization of the X-Bragg algorithm inversion. In general, a
GPU is suitable for processing computationally intensive data, however its ability to do logical
judgment is weak. In step 4, step 5, and step 8, the diagonalization process is used multiple
times. There are a large number of loops in the process for calculating the real non-negative
eigenvalue matrix [Λ] and the eigenvector matrix [U3]. Logical judgment has also become a huge
bottleneck during GPU computing. By artificially expanding the loop within the kernel function,
the instruction consumption is reduced as much as possible. Kernel performance is improved
to get efficient calculations. In Figure 7, expanding the loop is vividly displayed. GPU is more
suitable for computing than CPU. In terms of logical judgment, CPU has higher efficiency.

for index of i = 0 : N

          Result[i] = Fun(i)

end for

Result[0] = Fun(0);

Result[1] = Fun(1);

Result[N] = Fun(N);

1] = F

N] = = F

] 

N] ] = = N] ] 

CPUUUUUUUUU

Control ALU

Cache

ALU

ALU ALU

DRAM

GPU

DRAMDRDRAMDRAMAMAM

CP

G

Figure 7. Loop unfolding optimization strategy.

4. Results

4.1. Experiment Environment

The hardware environment of experimentation includes Intel(R) core(TM) i5-3470 (CPU) and
NVIDIA GeForce GTX 1080 Ti (GPU), and the library of visual studio 2013+ CUDA 9.0 is the software
environment of the program.

4.2. Accuracy Analysis

Technically, there is no accuracy loss after these algorithms are implemented on GPU. However,
there exists a small difference in the accuracy range of CPU and GPU math functions. As for GPU,
the computing performance of single-precision floating-point data outperforms double-precision
floating-point data by a lot. Therefore, the single-precision floating-point data type is applied for
the GPU parallel design. Due to the above two reasons, the proposed methods may bring certain
calculation errors, which should be analyzed to guarantee the algorithm accuracy.

Two indicators are employed to validate the parallel methods, mean absolute error (MAE) and
root mean square error (RMSE), respectively. The pixel-wise comparisons of mv are carried out among
the three inversion models, as shown in Table 1. From the MAE and RMSE results, it can be seen
that the errors from GPU parallel are very small and can be ignored. Meanwhile, the visual result
comparisons on mv and ks are shown in Figure 8.

Table 1. Calculation error of mv with CPU and GPU methods.

Model MAE RMSE

Dubois 1.53× 10−4 0.074
Oh 1.81× 10−5 0.016

X-Bragg 2.12× 10−5 0.03
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Figure 8. The soil parameter inversion comparison of sequential and parallel optimization Oh methods.

4.3. Optimization Results of the Dubois and Oh Parallel Inversion

The test site is the Demmin area in northern Germany, and the real PolSAR data is acquired
by the ESAR airborne system of the German Aerospace Center. The original size is 7981 × 1837.
For comparison, different sizes of data are constructed by the upsampling and downsampling methods.
The principle of data construction is to set a size more suitable for each inversion algorithm, which
makes the computation more stable. In the above experimental environment, the Dubois and Oh
algorithms were tested and compared using the same set of size data. Here, four sizes of data are
tested, which are 13600× 1837, 6800× 1837, 3400× 1837, and 1700× 1837. After six tests, the average
calculation time is used as the final results. Tables 1 and 2 below show the calculation time for Dubois
and Oh algorithms at different data sizes.
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In Tables 2 and 3, the row data represents the calculation time for different sizes. The first column
indicates CPU computation time. The second column shows the transmission time of all data from
CPU to GPU. The third column is the computation time of the kernel function. The fourth column
shows the overall speedup results of the inversion based on the scattering algorithm.

Table 2. Acceleration results of Dubois inversion.

Size CPU Running Time (ms) Speedup

Calculation Data Transmission Calculation Overall

13, 600× 1837 3814 25 204 152× 17×
6800× 1837 1880 13 101 144× 16×
3400× 1837 839 6 51 139× 15×
1700× 1837 424 2 27 212× 14×

Table 3. Acceleration results of Oh inversion.

Size CPU Running Time (ms) Speedup

Calculation Data Transmission Calculation Overall

13, 600× 1837 32,698 27 298 1211× 100×
6800× 1837 15,453 13 149 1188× 95×
3400× 1837 6633 7 74 947× 82×
1700× 1837 3361 2 35 1680× 90×

Table 2 shows the optimization results of the Dubois model inversion. The performance of the
GPU has only increased by about 15 times. As the amount of data decreases, the speedup effect is
gradually weakened. This further illustrates pertinence of GPU for computationally intensive data.
The acceleration can reach hundreds of times without considering the data transmission time. In Table 3,
GPU is 100 times faster than CPU. Here, the computation time can be accelerated by thousands of times
without considering the data transmission.

In terms of algorithm, Oh is more complicated than Dubois. In CPU calculation process, Oh is
much slower than Dubois. This shows that the complexity of the calculation process has a profound
impact on GPU usage. From the two algorithms optimization results, Oh is more suitable for GPU
than Dubois. The Figure 9 is a more intuitive description of the optimization of these two algorithms.
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Figure 9. Comparison of the Dubois and Oh algorithm optimization results.
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4.4. Optimization Result of the X-Bragg Parallel Inversion

In the above experimental environment, The 15862× 1837, 7981× 1837, 3990× 1837, and 1995×
1837 size data were used in the X-Bragg algorithm. Table 4 details the calculation time of the algorithm
in different situations.

Table 4. Acceleration results of the X-Bragg inversion.

Size CPU Running Time (ms) Speedup

Final Calculation Data Transmission Calculation Overall

15, 862× 1837 66,0481 3808 368 173× 158×
7981× 1837 330,508 1911 194 172× 157×
3990× 1837 165,441 1250 97 132× 122×
1995× 1837 82,813 441 48 187× 169×

In Table 4 , CPU time is the time before optimization. The final computation time is the one after
the final optimization. As can be seen from the table, the final result is about 150 times faster than CPU.
In Figure 10, the acceleration effects of different data sizes can be clearly expressed.
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Figure 10. Acceleration performance comparison of the X-Bragg algorithm.

This experiment proposes four optimization methods based on the complexity of the algorithm.
They are thread allocation, storage optimization, data conversion, and instruction optimization,
respectively. Table 5 shows the time tested after each step optimization.

Table 5. Calculation time (ms) of the X-Bragg inversion after different optimization steps.

Size V1 V2 V3 V4

15, 862× 1837 7951 7799 4938 3808
7981× 1837 3967 3888 2453 1911
3990× 1837 2590 2511 1604 1250
1995× 1837 1052 1034 557 441

In Table 5, the first column is the optimization result after reasonable thread allocation for
hardware. The second column shows the effect after using constant memory. The third column shows
the time after type conversion optimization. The fourth column is the final optimization result after
the loop is expanded. From the first column to the fourth column optimization, the efficiency of the
process is more than doubled. The acceleration performances of X-Bragg algorithm at different data
size with different optimization methods are also shown in Figure 11.
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Figure 11. Results of using different optimization methods.

In Figure 11, bar graphs of different colors represent data of different sizes. With the implementation
of the four optimization methods, the calculation time is continuously reduced. The number on the
graph indicates the detailed calculation time (unit: ms). On the whole, the final optimization can reach
more than 150× speedup. Taking 15862× 1837 data as an example, the inversion time is reduced from
11 min to 4 s.

5. Conclusions

In this paper, three classical forward scattering models and their corresponding inversion
algorithms are analyzed. They are different in polarimetric data requirement, application situation, and
performance. Through the further analysis of the structure of the three classical inversion algorithms
based on scattering models, each algorithm is optimized, respectively. Then a framework for the parallel
inversion method for polarimetric SAR imagery based on GPU is presented. The optimization combines
the processing advantages of a GPU with computationally intensive imagery, so as to realize the parallel
design of three inversion algorithms, including the entire inversion process from data transmission,
computational instruction set, to GPU hardware structure. In the experiments, the calculation efficiency
is increased by approximately 100-fold. For all widely used empirical models, the problems of large
data volume and low computing efficiency are solved, including dual/multi/full polarization models.
Experiments with real data fully demonstrate the tremendous advantages of combining GPU and
PolSAR imagery for real-time processing. However, as far as the calculation time is concerned,
the parallel X-Bragg method is still two orders of magnitude slower than the other two methods.
In the future work, we will further optimize the diagonalization part to make it more efficient.
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