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Abstract: Exploring the relevance between images and their respective natural language descriptions,
due to its paramount importance, is regarded as the next frontier in the general computer vision
literature. Thus, recently several works have attempted to map visual attributes onto their
corresponding textual tenor with certain success. However, this line of research has not been
widespread in the remote sensing community. On this point, our contribution is three-pronged.
First, we construct a new dataset for text-image matching tasks, termed TextRS, by collecting images
from four well-known different scene datasets, namely AID, Merced, PatternNet, and NWPU datasets.
Each image is annotated by five different sentences. All the five sentences were allocated by five people
to evidence the diversity. Second, we put forth a novel Deep Bidirectional Triplet Network (DBTN)
for text to image matching. Unlike traditional remote sensing image-to-image retrieval, our paradigm
seeks to carry out the retrieval by matching text to image representations. To achieve that, we
propose to learn a bidirectional triplet network, which is composed of Long Short Term Memory
network (LSTM) and pre-trained Convolutional Neural Networks (CNNs) based on (EfficientNet-B2,
ResNet-50, Inception-v3, and VGG16). Third, we top the proposed architecture with an average fusion
strategy to fuse the features pertaining to the five image sentences, which enables learning of more
robust embedding. The performances of the method expressed in terms Recall@K representing the
presence of the relevant image among the top K retrieved images to the query text shows promising
results as it yields 17.20%, 51.39%, and 73.02% for K = 1, 5, and 10, respectively.

Keywords: remote sensing; text image matching; triplet networks; EfficientNets; LSTM network

1. Introduction

The steady accessibility of remote sensing data, particularly high resolution images, has animated
remarkable research outputs in the remote sensing community. Two of the most active topics in
this regard refer to image classification and retrieval [1–5]. Image classification aims to assign scene
images to a discrete set of land use/land cover classes depending on the image content [6–10]. Recently,
with rapidly expanded remote sensing acquisition technologies, both quantity and quality of remote
sensing data have been increased. In this context, content-based image retrieval (CBIR) has become
a paramount research subject in order to meet the increasing need for the efficient organization and
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management of massive volumes of remote sensing data, which has been a long lasting challenge in
the community of remote sensing.

In the last decades, great efforts have been made to develop effective and precise retrieval
approaches to search for interest information across large archives of remote sensing. A typical CBIR
system involves two main steps [11], namely feature extraction and matching, where the most relevant
images from the archive are retrieved. In this regard, both extraction of features as well as matching
play a pivotal role in controlling the efficiency of a retrieval system [12].

Content-based remote sensing image retrieval is a particular application of CBIR, in the field
of remote sensing. However, the remote sensing community seems to put the emphasis more on
devising powerful features due to the fact that image retrieval systems performance relies greatly
on the effectiveness of the extracted features [13]. In this respect, remote sensing image retrieval
approaches rely on handcrafted features and deep-learning.

As per handcrafted features, low-level features are harnessed to depict the semantic tenor of
remote sensing images, and it is possible to draw them from either local or global regions of the image.
Color features [14,15], texture features [2,16,17], and shape features [18] are widely applied as global
features. On other hand, local features tend to emphasize the description on local regions instead
of looking at the image as a whole. There are various algorithms for describing local image regions
such as the scale-invariant feature transform (SIFT) and speed up robust features (SURF) [19,20].
The bag-of-word (BOW) model [21], and the vector of aggregated local descriptors (VLAD) [22] are
generally proposed to encode local features into a fixed-size image signature via a codebook/dictionary
of keypoint/feature vectors.

Recently, remote sensing images have been witnessing a steady increase due to the prominent
technological progress of remote sensors [23]. Therefore, huge volumes of data with various spatial
dimensions and spectral channels can be availed [24]. On this point, handcrafted features may be
personalized and successfully tailored to small chunks of data; they do not meet, however, the standards
of practical contexts where the size and complexity of data increases. Nowadays, deep learning
strategies, which aim to learn automatically the discriminative and representative features, are highly
effective in large-scale image recognition [25–27], object detection [28,29], semantic segmentation [30,31],
and scene classification [32]. Furthermore, recurrent neural networks (RNNs) have achieved immense
success with various tasks in sequential data analysis as recognition of action [33,34] and image
captioning [35]. Recent research shows that image retrieval approaches work particularly well by
exploiting deep neural networks. For example, the authors in [36] introduced a content-based remote
sensing image retrieval approach depending on deep metric learning using a triplet network. The
proposed approach has shown promising results compared to prior state-of-the-art approaches. The
work in [37] presented an unsupervised deep feature learning method for the retrieval task of remote
sensing images. Yang et al. [38] proposed a dynamic kernel with a deep convolutional neural network
(CNN) for image retrieval. It focuses on matching patches between the filters and relevant images
and removing the ones for irrelevant pairs. Furthermore, deep hashing neural network strategies are
adopted in some works for large-scale remote sensing image retrieval [39]. Li et al. [40] presented a
new unsupervised hashing method, the aim of which is to build an effective hash function. In another
work, Li et al. [41], investigated cross-source remote sensing image retrieval via source-invariant deep
hashing CNNs, which automatically extract the semantic feature for multispectral data.

It is worthwhile mentioning that the aforementioned image retrieval methods are single label
retrieval approaches, where the query image and the images to be retrieved are labelled by a single
class label. Although these approaches have been applied with a certain amount of success, they tend
to abstract the rich semantic tenor of a remote sensing image into a single label.

In order to moderate the semantic gap and enhance the retrieval performance, recent remote
sensing research proposed multi-label approaches. For instance, the work in [12] presented a
multi-label method, making use of a semi-supervised graph-theoretic technique in order to improve
the region-based retrieval method [42]. Zhou et al. [43] proposed a multi-label retrieval technique
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by training a CNN for semantic segmentation and feature generation. Shao et al. [11] constructed a
dense labeling remote sensing dataset to evaluate the performance of retrieval techniques based on
traditional handcrafted feature as well as deep learning-based ones. Dai et al. [44] discussed the use of
multiple hyperspectral image retrieval labels and introduced a multi-label scheme that incorporates
spatial and spectral features.

It is evident that the multi-label scenario is generally favored (over the single label case) on
account of its abundant semantic information. However, it remains limited due to the discrete nature
of labels pertaining to a given image. This suggests a further endeavor to model the relation among
objects/labels using an image description. With the rapid advancement of computer vision and natural
language processing (NLP), machines began to understand, slowly but surely, the semantics of images.

Current computer vision literature suggests that, instead of tackling the problem from an
image-to-image matching perspective, cross-modal text-image learning seems to offer a more concrete
alternative. This concept has manifested itself lately in the form of image captioning, which stems as a
crossover where computer vision meets NLP. Basically, it consists of generating a sequential textual
narration of visual data, similar to how humans perceive it. In fact, image captioning is considered
as a subtle aid for image grasping, as a description generation model should capture not only the
objects/scenes presented in the image, but it should also be capable of expressing how the objects/scenes
relate to each other in a textual sentence.

The leading deep learning techniques, for image captioning, can be categorized into two streams.
One stream adopts encoder–decoder, an end-to-end fashion [45,46] where a CNN is typically considered
as the encoder and an RNN as the decoder, often a Long-Short Term Memory (LSTM) [47]. Rather
than translating between various languages, such techniques translate from a visual representation to
language. The visual representation is extracted via a pre-trained CNN [48]. Translation is achieved by
RNNs based language models. The major usefulness of this method is that the whole system adopts
end to end learning [47]. Xu et al. [35] went one step further by introducing the attention mechanism,
which enables the decoder to concentrate on specific portions of the input image when generating a
word. The other stream adopts a compositional framework, such as [49] for instance, which divided
the task of generating the caption into various parts: detection of the words by a CNN, generating the
caption candidates, and re-ranking the sentence by a deep multimodal similarity model.

With respect to image captioning, the computer vision literature suggests several contributions
mainly based on deep learning. For instance, You et al. [50] combined top-down (i.e., image-to-words)
and bottom-up (i.e., joining several relevant words into a meaningful image description) approaches
via CNN and RNN models for image captioning, which revealed interesting experimental results.
Chen et al. [51] proposed an alternative architecture based on spatial and channel-wise attention for
image captioning. In other works, a common deep model called a bi-directional spatial–semantic
attention network was introduced [52,53], where an embedding and a similarity network were adopted
to model the bidirectional relations between pairs of text and image. Zhang and Lu [54] proposed a
projection classification loss that classified the vector projection of representations from one form to
another by improving the norm-softmax loss. Huang et al. [52] addressed the problem of image text
matching in bi-direction by making use of attention networks.

So far, it can be noted that computer vision has been accumulating a steady research basis in the
context of image captioning [47,50,55]. In remote sensing, however, contributions have barely begun
to move in this direction, often regarded as the ‘next frontier’ in computer vision. Lu et al. [56] for
instance, proposed a similar concept as in [51] by combining CNNs (for image representation) and
LSTM network for sentence generation in remote sensing images. Shi et al. [57] leveraged a fully
convolutional architecture for remote sensing image description. Zhang et al. [58] adopted an attribute
attention strategy to produce remote sensing image description, and investigated the effect of the
attributes derived from remote sensing images on the attention system.

As we have previously reviewed, the mainstream of the remote sensing works focuses mainly
on scenarios of single label, whereas in practice images may contain many classes simultaneously.
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In the quest for tackling this bottleneck, recent works attempted to allocate multiple labels to a single
query image. Nevertheless, coherence among the labels in such cases remains questionable since
multiple labels are assigned to an image regardless of their relativity. Therefore, these methods do
not specify (or else model) explicitly the relation between the different objects in a given image for
a better understanding of its content. Evidently, remote sensing image description has witnessed
rather scarce attention in this sense. This may be explained by the fact that remote sensing images
exhibit a wide range of morphological complexities and scale changes, which render text to/from image
retrieval intricate.

In this paper we propose a solution based DBTN for solving the text-to-image matching problem.
It is worth mentioning that this work is inspired from [53]. The major contributions of this work can be
highlighted as follows:

• Departing from the fact that the task of text-image retrieval/matching is a new topic in the remote
sensing community, we deem it necessary to build a benchmark dataset for remote sensing image
description. Our dataset will constitute a benchmark for future research in this respect.

• We propose a DBTN architecture to address the problem of text image matching, which to the best
of our knowledge, has never been posed in remote sensing prior-art thus far.

• We tie the single models into fusion schemes that can improve the overall performance through
adopting the five sentences.

The paper includes five sections, where the structure of the paper is as follows. In Section 2,
we introduce the proposed DBTN method. Section 3 presents the TextRS dataset and the experimental
results followed by discussions in Section 4. Finally, Section 5 provides conclusions and directions for
future developments.

2. Description of the Proposed Method

Assume a training set D = {Xi, Yi}
N
i=1 composed of N images with their matching sentences.

In particular, to each training image Xi we associated a set of M matching sentences Yi =
{
y1

i , . . . , yK
i

}
.

In the test phase, given a query sentence tq, we aimed to retrieve the most relevant image in the
training set D. Figure 1 shows a general description of the proposed DBTN method composed of
image and text encoding branches that aimed to learn appropriate image and text embeddings f (Xi)

and g(Ti), respectively, by optimizing a bidirectional triplet loss. Detailed descriptions are provided in
the next sub-sections.

Remote Sens. 2020, 12, 405 4 of 19 

 

As we have previously reviewed, the mainstream of the remote sensing works focuses mainly 
on scenarios of single label, whereas in practice images may contain many classes simultaneously. In 
the quest for tackling this bottleneck, recent works attempted to allocate multiple labels to a single 
query image. Nevertheless, coherence among the labels in such cases remains questionable since 
multiple labels are assigned to an image regardless of their relativity. Therefore, these methods do 
not specify (or else model) explicitly the relation between the different objects in a given image for a 
better understanding of its content. Evidently, remote sensing image description has witnessed 
rather scarce attention in this sense. This may be explained by the fact that remote sensing images 
exhibit a wide range of morphological complexities and scale changes, which render text to/from 
image retrieval intricate. 

In this paper we propose a solution based DBTN for solving the text-to-image matching 
problem. It is worth mentioning that this work is inspired from [53]. The major contributions of this 
work can be highlighted as follows: 

• Departing from the fact that the task of text-image retrieval/matching is a new topic in the 
remote sensing community, we deem it necessary to build a benchmark dataset for remote 
sensing image description. Our dataset will constitute a benchmark for future research in this 
respect. 

• We propose a DBTN architecture to address the problem of text image matching, which to the 
best of our knowledge, has never been posed in remote sensing prior-art thus far. 

• We tie the single models into fusion schemes that can improve the overall performance 
through adopting the five sentences. 

The paper includes five sections, where the structure of the paper is as follows. In Section 2, we 
introduce the proposed DBTN method. Section 3 presents the TextRS dataset and the experimental 
results followed by discussions in Section 4. Finally, Section 5 provides conclusions and directions 
for future developments. 

2. Description of the Proposed Method  

Assume a training set 𝒟 = ሼ𝑋௜, 𝑌௜ሽ௜ୀଵே  composed of N images with their matching sentences. In 
particular, to each training image 𝑋௜ we associated a set of M matching sentences 𝑌௜ = ሼ𝑦௜ଵ, … , 𝑦௜௄ሽ. 
In the test phase, given a query sentence 𝑡௤, we aimed to retrieve the most relevant image in the 
training set 𝒟. Figure 1 shows a general description of the proposed DBTN method composed of 
image and text encoding branches that aimed to learn appropriate image and text embeddings 𝑓(𝑋௜) 
and 𝑔(𝑇௜), respectively, by optimizing a bidirectional triplet loss. Detailed descriptions are provided 
in the next sub-sections. 

 

(a) 

Figure 1. Cont.



Remote Sens. 2020, 12, 405 5 of 19
Remote Sens. 2020, 12, 405 5 of 19 

 

 

 

(b) 

Figure 1. Flowchart of the proposed Deep Bidirectional Triplet Network (DBTN): 
 (a) text as anchor, (b) image as anchor. 

2.1. Image Encoding Module 

The image encoding module uses a pre-trained CNN augmented with an additional network to 
learn the visual features 𝑓(𝑋௜) of the image (Figure 2). To learn informative features and suppress 
less relevant ones, this extra network applies a channel attention layer termed squeeze excitation 
(SE) to the activation maps layer obtained after the 3 × 3 convolution layer. The goal is to enhance 
further the representation of the features by grasping the significance of each feature map among all 
extracted feature maps. As illustrated in Figure 2, the squeeze operation produces features of 
dimension (1,1,128) by means of global average pooling (GAP), which are then fed to a fully 
connected layer to reduce the dimension by 1/16. Then the produced feature vector s calibrates the 
feature maps of each channel (V) by channel-wise scale operation. SE works as shown below [59]: 𝑠 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 ൬𝑊ଶ ቀ𝑅𝑒𝐿𝑈൫𝑊ଵ(𝑉)൯ቁ൰ (1) 𝑉ௌா = 𝑠 ⊙ 𝑉 (2) 

where 𝑠 is the scaling factor, ⊙ refers to the channel-wise multiplication, and 𝑉 represents the 
feature maps obtained from a particular layer of the pre-trained CNN. Then the resulting activation 
maps 𝑉ௌா are fed to a GAP followed by a fully connected and 𝑙ଶ-normalization for feature rescaling 
yielding the features 𝑓(𝑋௜). 
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(b) image as anchor.

2.1. Image Encoding Module

The image encoding module uses a pre-trained CNN augmented with an additional network to
learn the visual features f (Xi) of the image (Figure 2). To learn informative features and suppress less
relevant ones, this extra network applies a channel attention layer termed squeeze excitation (SE) to
the activation maps layer obtained after the 3 × 3 convolution layer. The goal is to enhance further the
representation of the features by grasping the significance of each feature map among all extracted
feature maps. As illustrated in Figure 2, the squeeze operation produces features of dimension (1,1,128)
by means of global average pooling (GAP), which are then fed to a fully connected layer to reduce the
dimension by 1/16. Then the produced feature vector s calibrates the feature maps of each channel (V)
by channel-wise scale operation. SE works as shown below [59]:

s = Sigmoid(W2(ReLU(W1(V)))) (1)

VSE = s�V (2)

where s is the scaling factor, � refers to the channel-wise multiplication, and V represents the feature
maps obtained from a particular layer of the pre-trained CNN. Then the resulting activation maps VSE
are fed to a GAP followed by a fully connected and l2-normalization for feature rescaling yielding the
features f (Xi).

As pre-trained CNNs, we adopted in this work different CNNs including VGG16, inception_v3,
ResNet50, and EfficientNet. The VGG16 was proposed in 2014 and has 16-layers [27]. Such network
was trained on the imagenet dataset to classify 1.2 million RGB images of size 224 × 224 pixel into 1000
classes. The inception-v3 network [60], introduced by Google, contains 42 layers as well as three kinds
of inception modules, which comprise convolution kernels with sizes of 5 × 5 to 1 × 1. Such modules
seek to reduce the parameters number. The Residual network (ResNet) [25] is a 50-layer network
with shortcut connection. This network was proposed for deeper networks to solve the problem of
vanishing gradients. Finally, EfficientNets, which are new state-of-the-art models with up to 10 times
better efficiency (faster as well as smaller), were developed recently by a research team from Google [61]
to scale up CNNs using a simple compound coefficient. Differently from traditional approaches that
scale network dimensions (width, depth, and resolution) individually, EfficientNet tries to scale each
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dimension in a balanced way using a stationary set of scaling coefficients evenly. Practically, the
performance of the model can be enhanced by scaling individual dimensions. Further, enhancing the
entire performance can be achieved through scaling each dimension uniformly, which leads to higher
accuracy and efficiency.
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The word embedding layer receives a sequence of integers representing the words in the sentence
and transforms them into representations, where similar words should have similar encodings. Then
the outputs of this layer are fed to LSTM [62] for modeling the entire sentence based on their long-term
dependency learning capacity. Figure 4 shows the architecture of LSTM, with its four types of gates at
each time step t in the memory cell. These gates are the input gate it, the update gate ct, the output
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gate ot, and the forget gate ft. For each time step, these gates receive as input the hidden state ht−1 and
the current input yt. Then, the cell memory recursively updates itself based on its previous values and
forget and update gates.Remote Sens. 2020, 12, 405 8 of 19 
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The working mechanism of LSTM is given below (for simplicity, we omit the image index i) [62]:

it = sigmoid(Wi.[ht−1, yt]) (3)

ft = sigmoid
(
W f .[ht−1, yt]

)
(4)

c̃t = tanh
(
Wg [ht−1, yt]

)
(5)

ct = ft∗ ct−1 + it ∗ c̃t (6)

ot = sigmoid(Wo[ht−1, yt]) (7)

ht= ot ∗ tanh(ct) (8)

where ∗ denotes the Hadamard product, and Wi, W f , Wg, and Wo are learnable weights. In general,
we can model the hidden state ht of the LSTM as follows [62]:

ht = LSTM(ht−1, yt, rt−1) (9)

where rt−1 indicates the memory cell vector at time step t− 1.
For each branch, the output of LSTM is fed to an additional fully-connected layer yielding K

feature representation g
(
yk

i

)
, k = 1, . . . , K. Then, the final outputs of different branches are fused using

an average fusion layer to obtain a feature of dimension 128 [7]:

g(Ti) =

∑K
k=1 g(yk

i )

K
(10)

2.3. DBTN Optimization

Many machine learning and computer vision problems are based on learning a distance metric
for solving retrieval problems [63]. Inspired by achievements of deep learning in computer vision [26],
deep neural networks were used to learn how to embed discriminative features [64,65]. These methods
learn to project images or texts into a discriminative embedding space. The embedded vectors of
similar samples are closer, while they are farther to those of dissimilar samples. Then several loss
functions were developed for optimization such as triplet [65], quadruplet [66], lifted structure [67],
N-pairs [68], and angular [69] losses. In this work, we concentrate on the triplet loss, which aims to
learn a discriminative embedding for various applications such as classification [64], retrieval [70–74],
and person re-identification [75,76]. It is worth recalling that a standard triplet in image-to-image
retrieval is composed of three samples: an anchor, a positive sample (from the same category to the
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anchor), and a negative sample (from the different category to the anchor). The aim of the triplet loss is
to learn an embedding space, where anchor samples are closer to positive samples than to negative
ones by a given margin.

In our case, the network is composed of asymmetric branches, unlike standard triplet networks,
as the anchor; positive and negative samples are represented in a different way. For instance, triplets can
be formed using a text as an anchor, its corresponding image as a positive sample in addition to an
image with a different content image as a negative. Similarly, one can use an image as an anchor
associated with positive and negative textual descriptions. The aim is to learn discriminative features
for different textual descriptions and discriminative features for different visual features as well.
In addition, we should learn similar features to each image and its corresponding textual representation.
For such purpose, we propose a bidirectional triplet loss as a possible solution to the problem. The
bidirectional triplet loss is given as follows:

lDBTN = λ1L1 + λ1L2 (11)

L1 =
N∑

i=1

[∣∣∣∣∣∣∣∣g(Ti
a) − f (Xi

p) ||22−
∣∣∣∣∣∣∣∣g(Ti

a) − f (Xi
n) ||22 + α

]
+

(12)

L2 =
N∑

i=1

[∣∣∣∣∣∣∣∣ f (Xi
a) || − g(Ti

p)2
2−

∣∣∣∣∣∣∣∣ f (Xi
a) − g(Ti

n) ||22 + α
]
+

(13)

where |z|+ = max(z, 0),{\displaystyle A} and α is the margin that ensures the negative is farther away
than the positive. g(Ti

a) refers to the embedding of the anchor text, f (Xi
p) is the embedding of the

positive image, and f (Xi
n) refers to the embedding of the negative image. On the other side, f (Xi

a)

refers to the embedding of the anchor image, g(Ti
p) is the embedding of the positive text, and g(Ti

n)

refers to the embedding of the negative text. λ1 and λ2 are parameters of regularization controlling the
contribution of both terms.

The performance of DBTN heavily relies on triplet selection. Indeed, the process of training is
often so sensitive to the selected triplets, i.e., selecting the triplets randomly leads to non-convergence.
To surmount this problem, the authors in [77] proposed triplet mining, which utilized only semi-hard
triplets, where the positive pair was closer than the negative. Such valid semi-hard triplets are scarce,
and therefore semi-hard mining requires a large batch size to search for informative pairs. A framework
named smart mining was provided by Harwood et al. [78] to find out hard samples from the entire
dataset that suffered from the burden of off-line computation. Wu et al. [79] discussed the significance
of sampling and proposed a sampling technique called distance weighted sampling, which uniformly
samples negative examples by similarity. Ge et al. [80] built a hierarchal tree of all the classes to find
out hard negative pairs, which were collected via a dynamic margin. In this paper, we proposed to use
a semi-hard mining strategy, as shown in Figure 5, although other sophisticated selection mechanism
could be investigated as well. In particular, we selected triplets in an online mode based on the
following constraint [77]:

d(g(Ta), f (Xp)) < d(g(Ta), f (Xn)) < d(g(Ta), f (Xp)) + α (14)

where d(·) is the cosine distance.
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3. Experimental Results

3.1. Dataset Description

We built a dataset, named TextRS, by collecting images from four well-known different scene
datasets, namely the AID dataset, which consists of 10,000 aerial images of size 600 × 600 pixels within
30 classes collected from Google Earth imagery by different remote sensors. The Merced dataset
contains 21 classes; each class has 100 images of size 256 × 256 pixels with a resolution of 30 cm and
RGB color. Such dataset was collected from USGS. The PatternNet was gathered from high-resolution
imagery and includes 38 classes; each class contains 800 images of size 256 × 256 pixels. The NWPU
dataset is another scene dataset, which has 31,500 images and is composed of 45 scene classes.

TextRS is composed of 2144 images selected randomly from the above four scene datasets.
In particular, 480, 336, 608, and 720 images were selected from AID, Merced, PatternNet, and NWPU,
respectively (16 images were selected from each class of such datasets). Then each remote sensing
image was annotated by five different sentences; therefore, the total number of sentences was 10,720,
and all the captions of this dataset were generated by five people to prove the diversity. It is worth
recalling that the choice of the five sentences was mainly motivated by other datasets developed in the
general context of computer vision literature [47,81]. During, the annotation we took into consideration
some rules that had to be followed during generation of the sentences:

• Focus on the main dominating objects (tiny ones may be useless).
• Describe what exists instead of what does not exist in the scene.
• Try not to focus on the number of objects too much but use generic descriptions such as several,

few, many, etc.
• Try not to emphasize the color of objects (e.g., blue vehicles) but rather on their existence

and density.
• When mentioning, for instance, a parking lot (in an airport), it is important to mention the word

‘airport’ as well to distinguish it from any generic parking lot (downtown for example).
• Avoid using punctuation and conjunctions.

Some samples from our dataset are shown in Figure 6.
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3.2. Performance Evaluation

We implemented the method using the keras open-source library for deep learning written in
python. For training the network, we randomly select 1714 images as training and the remaining 430
images as the test corresponding to approximately to 80% for training and 20% for testing. For training
the DBTN, we used a mini-batch size of 50 images with the Adam optimization method with a fixed
learning rate equal to 0.001 and exponential decay rates for the moment estimates equal to 0.9 and 0.999.
Additionally, we set the regularization parameters to the default values of λ1 = λ2 = 0.5. To evaluate
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the performance of the method, we used the wide recall measure, which is suitable for text-to-image
retrieval problems. In particular, we presented the results in Recall@K (R@K) terms for different values
of K (1, 5, 10), which are the percentage of ground-truth matches shown in the top K-ranked results.
We conducted the experiments on a station with an Intel Core i9 processor with a speed of 3.6 GHz and
32 GB of memory, and a Graphical Processing Unit (GPU) with 11 GB of GDDR5X memory.

3.3. Results

As mentioned in the previous sections, we used four different pre-trained CNNs for the image
encoding branch, which were EfficientNet, ResNet50, Inception_v3, and VGG16. Figure 7 illustrates
the evolution of the triplet loss function during the training phase for these different networks. We can
see that the loss function decreased gradually with an increase in the number of iterations. In general,
the model reached stable values after 40 iterations. In Figure 8 we show examples of features obtained
by the image and text encoding branches at the end of the training process.
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Table 1 illustrates the performance of DBTN using EfficientNet as a pre-trained CNN for encoding
the visual features. It could be observed with one sentence (Sent.1). The method achieved 13.02%,
40%, and 59.30% in R@1, R@5, and R@10, respectively. In contrast, when the five sentences are
fused, the performance was further improved to 17.20%, 51.39%, and 73.02% of R@1, R@5, and R@10,
respectively. Further, we computed the average of R@1, R@5, and R@10 for each sentence, and for
fusion, we observed that the average of fusion had the highest score. Table 2 shows the results obtained
using ResNet50 as the image encoder to learn the image features. We can see that the performances
in R@1, R@5, and R@10 were 10.93%, 38.60%, and 54.41%, respectively, for Sent.1, while the method
achieved 13.72%, 50.93%, and 69.06% of R@1, R@5, and R@10, respectively, with the fusion. Similarly,
from Table 3 we observed that with Inception_v3, considering the fusion, the performance was also
better than that of individual sentences. Finally, the results of using VGG16 are shown in Table 4. We can
see that for Sent.1, our method achieved 10%, 36.27%, and 51.62% of R@1, R@5, and R@10, respectively,
whereas the fusion process yielded 11.86%, 44.41%, and 63.72% of R@1, R@5, and R@10, respectively.

According to these preliminary results, one can notice that the fusing of the representations of the
five sentences produced better matching results than did using one sentence. Additionally, EfficientNet
seemed to be better compared to the other three pre-trained networks. This indicates that learning
visual features by EfficientNet was quite effective and allowed better scores to be obtained compared
to the other pre-trained CNNs.



Remote Sens. 2020, 12, 405 12 of 19Remote Sens. 2020, 12, 405 12 of 19 

 

 
Figure 8. Image and text feature generated by the image and text encoding branches. 

Table 1 illustrates the performance of DBTN using EfficientNet as a pre-trained CNN for 
encoding the visual features. It could be observed with one sentence (Sent.1). The method achieved 
13.02%, 40%, and 59.30% in R@1, R@5, and R@10, respectively. In contrast, when the five sentences 
are fused, the performance was further improved to 17.20%, 51.39%, and 73.02% of R@1, R@5, and 
R@10, respectively. Further, we computed the average of R@1, R@5, and R@10 for each sentence, and 
for fusion, we observed that the average of fusion had the highest score. Table 2 shows the results 
obtained using ResNet50 as the image encoder to learn the image features. We can see that the 
performances in R@1, R@5, and R@10 were 10.93%, 38.60%, and 54.41%, respectively, for Sent.1, 
while the method achieved 13.72%, 50.93%, and 69.06% of R@1, R@5, and R@10, respectively, with 
the fusion. Similarly, from Table 3 we observed that with Inception_v3, considering the fusion, the 
performance was also better than that of individual sentences. Finally, the results of using VGG16 
are shown in Table 4. We can see that for Sent.1, our method achieved 10%, 36.27%, and 51.62% of 
R@1, R@5, and R@10, respectively, whereas the fusion process yielded 11.86%, 44.41%, and 63.72% of 
R@1, R@5, and R@10, respectively. 

Table 1. Bidirectional text image matching results on our dataset by using EfficientNet-B2. 

  Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion 
R@1 13.02 13.48 14.18 13.02 10.09 17.20 
R@5 40.00 44.18 44.18 40.93 38.60 51.39 
R@10 59.30 60.46 62.55 57.67 58.37 73.02 

Average 37.44 39.37 40.30 37.21 35.69 47.20 

Table 2. Bidirectional text image matching results on our dataset by using ResNet50. 

 Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion 
R@1 10.93 12.79 12.32 12.32 11.86 13.72 
R@5 38.60 38.37 42.58 43.02 38.19 50.93 
R@10 54.41 56.27 61.16 60.93 55.58 69.06 

Average 34.65 35.81 38.69 38.76 35.21 44.57 

Figure 8. Image and text feature generated by the image and text encoding branches.

Table 1. Bidirectional text image matching results on our dataset by using EfficientNet-B2.

Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion
R@1 13.02 13.48 14.18 13.02 10.09 17.20
R@5 40.00 44.18 44.18 40.93 38.60 51.39
R@10 59.30 60.46 62.55 57.67 58.37 73.02

Average 37.44 39.37 40.30 37.21 35.69 47.20

Table 2. Bidirectional text image matching results on our dataset by using ResNet50.

Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion
R@1 10.93 12.79 12.32 12.32 11.86 13.72
R@5 38.60 38.37 42.58 43.02 38.19 50.93
R@10 54.41 56.27 61.16 60.93 55.58 69.06

Average 34.65 35.81 38.69 38.76 35.21 44.57

Table 3. Bidirectional text image matching results on our dataset by using Inception_v3.

Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion
R@1 8.13 11.86 10.46 10.69 11.16 13.95
R@5 34.88 36.97 36.04 35.58 36.51 46.74
R@10 54.18 55.34 56.27 54.18 55.11 67.44

Average 32.40 34.72 34.26 33.48 34.26 42.71

Table 4. Bidirectional text image matching results on our dataset by using VGG16.

Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion
R@1 10.00 9.06 11.86 8.13 7.67 11.86
R@5 36.27 35.11 36. 51 34.41 33.25 44.41
R@10 51.62 51.16 56.51 51.16 47.90 63.72

Average 32.63 31.78 38.84 31.23 29.60 40.00
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To analyze the performance in detail for image retrieval given a query text, we showed many
successful and failure scenarios. For example, we could see (Figure 9) a given query text (five sentences)
with its image, and the top nine relevant retrieved images (from left to right); the image in red box
is the ground truth image of the query text (true match). We could observe that our method output
reasonable relevant images, where all nine images had almost the same content (objects). In these four
scenarios, the rank of the retrieved true images was 1, 6, and 1, respectively.

Remote Sens. 2020, 12, 405 13 of 19 

 

Table 3. Bidirectional text image matching results on our dataset by using Inception_v3. 

 Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion 
R@1 8.13 11.86 10.46 10.69 11.16 13.95 
R@5 34.88 36.97 36.04 35.58 36.51 46.74 
R@10 54.18 55.34 56.27 54.18 55.11 67.44 

Average 32.40 34.72 34.26 33.48 34.26 42.71 

Table 4. Bidirectional text image matching results on our dataset by using VGG16. 

 Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion 
R@1 10.00 9.06 11.86 8.13 7.67 11.86 
R@5 36.27 35.11 36. 51 34.41 33.25 44.41 
R@10 51.62 51.16 56.51 51.16 47.90 63.72 

Average 32.63 31.78 38.84 31.23 29.60 40.00 

 
According to these preliminary results, one can notice that the fusing of the representations of 

the five sentences produced better matching results than did using one sentence. Additionally, 
EfficientNet seemed to be better compared to the other three pre-trained networks. This indicates 
that learning visual features by EfficientNet was quite effective and allowed better scores to be 
obtained compared to the other pre-trained CNNs. 

To analyze the performance in detail for image retrieval given a query text, we showed many 
successful and failure scenarios. For example, we could see (Figure 9) a given query text (five 
sentences) with its image, and the top nine relevant retrieved images (from left to right); the image in 
red box is the ground truth image of the query text (true match). We could observe that our method 
output reasonable relevant images, where all nine images had almost the same content (objects). In 
these four scenarios, the rank of the retrieved true images was 1, 6, and 1, respectively.  

 

 
                     (a)                                     (b)       Remote Sens. 2020, 12, 405 14 of 19 

 

 

(c) 

Figure 9. Successful scenarios (a, b and c) of text-to-image retrieval.  

In contrast, Figure 10 shows two failure scenarios. In this case, we obtained relevant and 
irrelevant images, but the true matched image was not retrieved. This gives an indication that the 
problem was not easy and requires further investigations in improving the alignment of the 
descriptions to the image content. 

 
                        (a)                                      (b)                                           

Figure 10. Unsuccessful scenarios (a and b) of text-to-image retrieval.  

Figure 9. Successful scenarios (a, b and c) of text-to-image retrieval.



Remote Sens. 2020, 12, 405 14 of 19

In contrast, Figure 10 shows two failure scenarios. In this case, we obtained relevant and irrelevant
images, but the true matched image was not retrieved. This gives an indication that the problem was
not easy and requires further investigations in improving the alignment of the descriptions to the
image content.
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4. Discussion

In this section, we analyze further the performances of DBTN using different versions of
EfficientNets, which are B0, B3, and B5. The version B0 contains 5.3 M parameters, while B3 and B5 are
deeper and have 12M and 30M parameters, respectively. The results reported in Table 5 show that
using B2 yields slightly better results compared to the other models. On the other side, B0 seems to be
less competing as it provides an average recall of 45.65 compared to 47.20 for B2.

Table 5. Bidirectional text image matching results on our dataset using different EfficientNets.

B0 B2 B3 B5
R@1 16.74 17.20 16.74 16.51
R@5 51.62 51.39 50.23 51.39

R@10 68.60 73.02 72.09 71.62
Average 45.65 47.20 46.35 46.51

Table 6 shows sensitivity analysis for bidirectional text image matching at multiple margin
values. We can observe that setting this parameter to α = 0.5 seems to be the most suitable choice.
Increasing further this value leads to a decrease in the average recall as the network tends to select
easy negative triplets.

In Table 7, we report the recall results obtained by using only one direction instead of bidirectional
training. That is, we use text-to-image (Anchor text) and image-to-text (Anchor image). Obviously, the
performance with bidirectional achieves the best results where relative similarity in one direction is
useful for retrieval in the other direction, in the sense that the model trained with text-to-image triplets
obtains a reasonable result in an image-to-text retrieval task and vice-versa. Nevertheless, the model
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trained with bi-directional triplets achieves the best result, indicating that the triplets organized in
bidirectional provide more overall information for text-to-image matching.

Table 6. Sensitivity with respect to the margin parameter α.

α

0.1 0.5 1
R@1 13 17.20 5
R@5 37.67 51.39 22.09
R@10 54.18 73.02 37.83

Table 7. Comparison between unidirectional and bidirectional loss.

Anchor Text Anchor Image Bidirectional
R@1 12.55 12.55 17.20
R@5 41.62 39.53 51.39

R@10 62.09 59.53 73.02

5. Conclusions

In this work, we proposed a novel DBTN architecture for matching textual descriptions to remote
sensing images. Different from traditional remote sensing image-to-image retrieval, our network
seeks to carry out a more challenging problem, which is text-to-image retrieval. Such a network is
composed of an image and text encoding branches and is trained using a bidirectional triplet loss.
In the experiments, we validated the method on a new benchmark data set termed TextRS. Experiments
show in general promising results in terms of the recall measure. In particular, better recall scores
were obtained by fusing the textual representations rather than using one sentence for each image.
In addition, EfficientNets allows better visual representations to be obtained compared to the other
pre-trained CNNs. For future developments, we propose to investigate image-to-text matching and
propose advanced solutions based on attention mechanisms.
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