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Abstract: In this study, aquatic plants in a small reservoir were detected using multispectral UAV
(Unmanned Aerial Vehicle) imagery and various vegetation indices. A Firefly UAV, which has both
fixed-wing and rotary-wing flight modes, was flown over the study site four times. A RedEdge
camera was mounted on the UAV to acquire multispectral images. These images were used to
analyze the NDVI (Normalized Difference Vegetation Index), ENDVI (Enhance Normalized Difference
Vegetation Index), NDREI (Normalized Difference RedEdge Index), NGRDI (Normalized Green-Red
Difference Index), and GNDVI (Green Normalized Difference Vegetation Index). As for multispectral
characteristics, waterside plants showed the highest reflectance in Rnir, while floating plants had a
higher reflectance in Rre. During the hottest season (on 25 June), the vegetation indices were the
highest, and the habitat expanded near the edge of the reservoir. Among the vegetation indices,
NDVI was the highest and NGRDI was the lowest. In particular, NGRDI had a higher value on the
water surface and was not useful for detecting aquatic plants. NDVI and GNDVI, which showed
the clearest difference between aquatic plants and water surface, were determined to be the most
effective vegetation indices for detecting aquatic plants. Accordingly, the vegetation indices using
multispectral UAV imagery turned out to be effective for detecting aquatic plants. A further study will
be accompanied by a field survey in order to acquire and analyze more accurate imagery information.

Keywords: unmanned aircraft vehicle; remote sensing; vegetation index; aquatic plants; GIS;
multi-spectral

1. Introduction

It is widely known that aquatic plants in water bodies such as rivers and reservoirs can improve
water quality [1–3]. In particular, floating plants live on the water surface rather than rooting in soil; as
their leaves and stems float on the water surface, floating plants block light penetration, hinder the
photosynthesis of phytoplankton, and reduce the concentration of chlorophyll-a, thereby suppressing
green algae [4]. Recently, the ability of aquatic plants to improve water quality has been utilized to
purify polluted rivers or reservoirs from an ecological perspective [5], and various studies are being
conducted to investigate the distribution of aquatic plants living in water.

Field surveys have been the conventional method for identifying vegetation. The salient advantage
of this method is the careful observation of plant species. However, if a large area is investigated, then
field surveys require a large amount of labor, cost, and time [6,7]. In particular, as aquatic plants often
live in inaccessible regions, direct field surveys are not as effective as expected.

Recently, the remote sensing method, which uses satellite images or UAVs (unmanned aerial
vehicles) to survey and monitor vegetation in a target area, has been actively adopted instead of field
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surveys. As satellites can periodically provide imagery while moving in an orbit, they are very useful
for analyzing patterns of ecosystem change [8,9]. Furthermore, a wide area stretching from a few
meters to kilometers can be analyzed within a short time [10]. Nevertheless, as most satellite images
have a middle or low spatial resolution, they are not sufficient for the precise analysis of plant species or
small-scale ecosystems [11–13]. To solve this problem, UAVs are actively used for surveys [14,15]. Since
UAVs are operated at lower altitudes than satellites, higher resolution images can be acquired [16,17],
enabling plant species or habitats to be precisely analyzed [18,19]. Moreover, UAVs can be operated to
freely acquire information about any area at any time desired, and can be effectively used to monitor
inaccessible regions, for which satellite imagery cannot be acquired; additionally, they can identify the
impact of environmental factors like heavy rainfall, snowfall, and heat waves [20].

Vegetation surveys using UAVs mainly obtain high resolution images and analyze the unique
spectral information of plants to classify plant species or identify the distribution of habitats [7,13,
16,21–24]. For such an analysis, a vegetation index (VI) is usually applied, which is derived from
the characteristics of various spectral wavelengths [25–27]. The vegetation index is an indicator that
quantifies the presence or absence of vegetation, the greenness of land cover, or the vitality of vegetation.
Currently, the vegetation index is utilized not only for monitoring plant habitats, but also in various
areas including the analysis of drought and environmental change [28,29]. However, most previous
studies have applied the vegetation index to inland forest or agricultural areas, whereas only a few
studies have dealt with aquatic plants. This is important because, as aquatic plants float on the water
surface, they may have different spectral properties than those of land plants.

This study evaluated a UAV-based method of surveying the distribution of aquatic plant habitats
in a small reservoir located in Gyeongju-si, Republic of Korea. The analysis proceeded as follows:
(1) multispectral UAV images were acquired and the spectral characteristics for aquatic plants and
water surface were analyzed, and (2) various vegetation indices used in the existing studies were
analyzed to see what method was appropriate for surveying the habitats of aquatic plants.

2. Materials and Methods

2.1. Study Reservoir

This study was conducted for the region of Hayeombulji (N35.801, E129.186), located in
Gyeongju-si, Gyeongsangbuk-do, Republic of Korea (Figure 1). Hayeombulji has an area of 47.103 m2,
a diameter of about 230 m, and a depth of 4 ~ 5 m [30]. With regard to the climate, the reservoir has
four distinct seasons. In the summer, during which a large amount of agricultural activity takes place,
the temperature reaches up to approximately 30 ◦C, and the reservoir water is extensively used for
agriculture. Accordingly, aquatic plant habitats need to be analyzed in order to ensure a supply of
clean water for agricultural purposes.
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rotary-wing mode is adopted during the taking-off and landing phases, which enables the vertical 
movement of the UAV. After take-off, the UAV flies horizontally in the fixed-wing flight mode, 
during which imagery is acquired. Consequently, the Firefly has relatively long flight times, thereby 
addressing a disadvantage of rotary-wing UAVs as well as requiring relatively little space for take-
off and landing, overcoming a disadvantage of fixed-wing UAVs. The MicaSense RedEdge 
multispectral camera (MicaSense Inc., Seattle, WA, USA) has five spectral wavelength bands (blue, 
green, red, near IR, RedEdge). The detailed specifications of the Firefly UAV and the MicaSense 
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Figure 1. Study area.

2.2. UAV Imagery Acquisition and Processing

In this study, a RedEdge multispectral camera from MicaSense was mounted on a Firefly to
obtain UAV imagery (Figure 2). The Firefly uses both rotary-wing and fixed-wing flight modes.
The rotary-wing mode is adopted during the taking-off and landing phases, which enables the vertical
movement of the UAV. After take-off, the UAV flies horizontally in the fixed-wing flight mode, during
which imagery is acquired. Consequently, the Firefly has relatively long flight times, thereby addressing
a disadvantage of rotary-wing UAVs as well as requiring relatively little space for take-off and landing,
overcoming a disadvantage of fixed-wing UAVs. The MicaSense RedEdge multispectral camera
(MicaSense Inc., Seattle, WA, USA) has five spectral wavelength bands (blue, green, red, near IR,
RedEdge). The detailed specifications of the Firefly UAV and the MicaSense RedEdge multispectral
camera are presented in Tables 1–3.
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Table 1. Specifications of the Firefly UAV.

Division Contents

Flying speed 50 ~ 60 km/h
Weight 4.1 kg (included camera and battery)

Flying time 45 min
Weather condition wind speed under 10 m/s

Elevation 10 ~ 1000 m (standard: 150 m)
Resolution 1 ~ 25 cm

Table 2. Spectral bands of the MicaSense RedEdge multispectral camera.

Band Number Band Name Center Wavelength (nm) Bandwidth FWHM (nm)

1 Blue 475 20
2 Green 560 20
3 Red 668 10
4 Near IR 840 40
5 Red Edge 717 10

Source: MicaSense RedEdge Multispectral Camera User Manual.

Table 3. Specifications of the MicaSense RedEdge multispectral camera.

Specifications

Weight 150 g
Dimensions 2.1 cm × 6.6 cm × 4.6 cm

Ground sample distance 8.2 cm/pixel (per band) at 120 m
Capture speed 1 capture per second (all bands), 12-bit RAW

Source: MicaSense RedEdge Multispectral Camera User Manual.

UAV imagery was acquired four times (25 April, 20 May, 25 June, and 24 October 2018). The flight
path was set using Firefly 6 Planner, which is the dedicated software for the Firefly UAV, and considered
geographic features around the study area (Figure 3). During the first flight on 25 April 2018, the flight
path was set, and the UAV was operated in the same path for the remaining flights. While the UAV
was operated, the duplication rate, flight time, and flight altitude were set to 80%, about 20 min, and
150 m, respectively. Before each flight, the reflectance panel was used to calibrate the reflectance of
the multispectral imagery. The operation of the UAV was initiated by pressing the start button in
Firefly 6 Planner. With the UAV flight, 338 images were acquired for each spectral wavelength band.
Five orthoimages were fabricated in each spectral wavelength band from images obtained from the
UAV by using Pix4D Software 2.1 (Pix4D: Lausanne, Switzerland, 2016). The analysis process consists
of orthoimages through initial processing, point cloud, mesh generation, orthomosaic, and image
correction using reflection panel information.

2.3. Analysis of UAV Imagery

2.3.1. Vegetation Index

As shown in Table 2, a total of five vegetation indices were analyzed. These indices were NDVI
(normalized difference vegetation index), ENDVI (extended normalized difference vegetation index),
NDREI (normalized difference red edge index), NGRDI (normalized green-red difference index), and
GNDVI (green normalized difference vegetation index). Five vegetation indices were selected because
they are widely used for extracting vegetation areas in previous studies and can be analyzed using the
spectral wavelength bands acquired from the RedEdge M sensor. For the analysis method, the Raster
Calculator Tool in ArcGIS Ver. 10.2 was applied to the orthoimages of each spectral wavelength band,
as shown in Table 4.
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Figure 3. Flight path setting and the UAV operation using Firefly 6 Planner S/W.

Table 4. Vegetation indices using multi-spectral imagery.

Name Abbreviation Formula Value Range Reference

Blue Rb Rb -
Green Rg Rg -
Red Rr Rr -
RedEdge Rre Rre -
Near-infrared Rnir Rnir -
Normalized Difference
Vegetation Index NDVI (Rnir-Rr)/(Rnir+Rr) −1 ~ 1 [31]

Enhance Normalized
Difference Vegetation Index ENDVI [(Rnir + Rg) − (2 × Rb)]/[(Rnir

+ Rg) + (2 × Rb)] −1 ~ 1 [32]

Normalized Difference
RedEdge Index NDREI (Rnir − Rre)/(Rnir + Rre) −1 ~ 1 [33]

Normalized Green-Red
Difference Index NGRDI (Rg − Rr)/(Rg + Rr) −1 ~ 1 [34]

Green NDVI GNDVI (Rnir − Rg)/(Rnir + Rg) −1 ~ 1 [35]

2.3.2. Profile Analysis

A profile analysis was performed to identify the characteristics of spectral wavelength bands and
vegetation indices with respect to the covering characteristics of water space such as aquatic plants and
water surface. Polyline features were created in ArcGIS 10.2 at 1 m intervals for some sections of the
study area, which included both aquatic plants and the water surface (Figure 4), while the reflectance
of a spectral wavelength band and the mean vegetation index for each section were calculated using
zonal statistics tools. Subsequently, the mean values were calculated for the polyline features, and the
reflectance of the spectral wavelength band and the characteristics of vegetation indices were analyzed
according to the presence of aquatic plants.
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3. Results

3.1. Spectral Characteristics of Aquatic Plants

Figure 5 illustrates the reflectance of each spectral wavelength band, which was obtained through
the profile analysis. On 25 April, the closer to location A (i.e., the reservoir edge), higher reflectance was
shown in every wavelength band. In particular, Rnir and Rre had a higher reflectance than the remaining
wavelength bands. In the other areas, there was no significant difference in terms of reflectance among
the spectral wavelength bands. In contrast to the reflectance recorded on 25 April, those recorded on
both 20 May and 25 June displayed peaks in many areas. This was because the habitats of waterside
plants and floating plants had expanded, which resulted in an increase of reflectance in areas including
such habitats. In particular, the waterside plants had the highest reflectance in Rnir, while the floating
plants showed a high reflectance in Rre. Accordingly, the waterside plants and the floating plants
had different reflectance patterns in each spectral wavelength band (Figure 5a). Unlike the other
spectral band, Rr and Rb did not show any significant change of reflectance. The waterside plants
had a similar pattern in every wavelength band. On the other hand, the floating plants showed an
increasing and decreasing pattern only in Rnir, Rre, and Rg, but displayed no significant change in
Rr and Rb. As the floating plants are submerged in water or afloat on water, they tend to be much
more affected by spectral reflectance and thus may show a different characteristic of reflectance in each
spectral wavelength band from the waterside plants that are not submerged in water. Consequently,
the reflectance characteristics in each spectral wavelength band were clearly different according to the
type of aquatic plants and habitats. Moreover, among the aquatic plants, the floating plants and the
waterside plants showed a significant difference in terms of reflectance in each spectral wavelength
band according to habitat.
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3.2. Results of Vegetation Index Analysis

Figure 6 presents the analysis results of various vegetation indices. The mean values of the
vegetation indices were lowest on April 25 (NDVI: 0.139, ENDVI: 0.095, NDREI: 0.086, NGRDI: 0.123,
GNDVI: 0.017), but highest on June 25 (NDVI: 0.820, ENDVI: 0.368, NDREI: 0.164, NGRDI: 0.198,
GNDVI: 0.222) (Figure 7). This indicates that the aquatic plants drastically proliferated for about two
months. South Korea has hot summer days in June, where the highest temperature reaches up to
approximately 30 ◦C and plants proliferate; the aquatic plants of the reservoir followed this trend, and
vegetation indices seemed to be highest in this season. The areas with a vegetation index of 0.4 or
above tended to gradually expand from the edge to the interior of the reservoir, indicating that the
habitats of aquatic plants spread in the same direction. In comparison to that in June, the vegetation
indices recorded on October 24 drastically decreased; this corresponded with the gradual temperature
decrease in fall (NDVI: 0.388, ENDVI: 0.361, NDREI: 0.148, NGRDI: 0.200, GNDVI: 0.203).
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Regarding the trends of each vegetation index, the mean values changed by only about 0.1 from
April 25 (NDVI: 0.139, ENDVI: 0.095, NDREI: 0.086, NGRDI: 0.123, GNDVI: 0.017) to May 20 (NDVI:
0.140, ENDVI: 0.101, NDREI: 0.076, NGRDI: 0.072, GNDVI: 0.071). However, on June 25, the NDVI and
the other vegetation indices (ENDVI: 0.451, NDREI: 0.656, NGRDI: 0.622, GNDVI: 0.598) displayed
a significant difference. The NDVI was calculated by using Rnir and Rr. As is clear from Figure 5,
the aquatic plants had the highest reflectance in Rnir and the lowest one in Rr. In other words, the
difference in terms of reflectance was largest between these two wavelength bands. Accordingly, the
NDVI was higher than any other vegetation indices.
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On the other hand, the GNDVI and NDREI were low. On April 25 and on May 20, when the
aquatic plants had not yet proliferated, GNDVI was the lowest (0.017 on April 25, 0.071 on May 20).
On June 25 and on October 24, when the aquatic plants had proliferated, NDREI was the lowest (0.164
on June 25, 0.148 on October 24). The GNDVI was calculated based on Rnir and Rg. As the difference
between Rnir and Rg was larger than the one between Rnir and Rre, which are used to calculate NDREI,
the GNDVI was greater than the NDREI. As shown in Figure 6, most parts of the reservoir had a
GNDVI of −0.2 or below on April 25 and on May 20. On the other hand, NDREI was between −0.2
and 0 over a large area. Accordingly, the mean value of the GNDVI was lower than that of NDREI.
On June 25 and on October 24, many parts of the reservoir had a GNDVI of 0.4 or above, while only
the reservoir edge had an increased NDREI, although the other areas did not.

Consequently, the vegetation indices had different trends according to the proliferation time of
aquatic plants. This seems to be because of the characteristics of spectral wavelength bands, which
were used to calculate the vegetation indices. Thus, such characteristics of spectral wavelength bands
and vegetation indices need to be carefully analyzed and utilized in order to detect aquatic plants.

3.3. Characteristics of Aquatic Plant Vegetation Indices

Figure 8 presents the profile analysis results for each season and vegetation index. Generally, the
vegetation indices had different trends according to the season. In areas where aquatic plants were
detected, the NDVI was the highest, followed by the ENDVI and GNDVI. On April 25 and on May 20,
the GNDVI was higher than the ENDVI. In contrast, on June 25 and on October 24, the ENDVI was
higher than the GNDVI. The NGRDI of aquatic plants was low, but nevertheless higher than the NDVI,
ENDVI, and GNDVI on the water surface. As shown in Figure 5, the reflectance did not significantly
vary among the wavelength bands on the water surface. However, since the aquatic plants had a high
reflectance in Rnir and Rre, the NGRDI, which is calculated using Rg and Rr, was low in the aquatic
plants, but high on the water surface.

Similar to the previously described analysis results, the vegetation indices were the highest on
June 25 (NDVI: 0.448, ENDVI: 0.414, NDREI: 0.178, NGRDI: 0.209, GNDVI: 0.285). In particular, the
NDVI, ENDVI, and GNDVI showed a significant difference from the values recorded on April 25,
when the aquatic plants had not yet proliferated (NDVI: 0.334, ENDVI: 0.339, NDREI: 0.130, NGRDI:
0.086, GNDVI: 0.304). Additionally, for areas where floating plants appeared and where the vegetation
indices on the water surface had been low, the indices recorded on June 25 were high (Figure 8c).
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A statistical analysis was performed to derive a vegetation index that could be used to detect
aquatic plants, as shown in Table 5. The determination of an appropriate vegetation index was based
on the fact that the difference of the vegetation index between the aquatic plant and the water surface
increased along with the standard deviation of the index. In fact, the NDVI (0.091 on April 25, 0.122 on
May 20, 0.211 on June 25, 0.145 on October 24) and GNDVI (0.122 on April 25, 0.123 on May 20, 0.207
on June 25, 0.221 on October 24) had a larger standard deviation than the other vegetation indices.
Accordingly, NDVI and GNDVI seemed to be more effective than the other indices for detecting
aquatic plants.
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Table 5. Profile analysis result: mean value, maximum and minimum values, and standard deviation
(S.D.) of each vegetation index.

Date NDVI ENDVI NDREI NGRDI GNDVI

25 April 2018

Mean 0.104 0.075 0.048 0.123 −0.019
Max. 0.526 0.459 0.218 0.206 0.431
Min. 0.059 −0.015 −0.040 −0.037 −0.019
S.D. 0.091 0.067 0.047 0.053 0.122

20 May 2018

Mean 0.147 0.099 0.074 0.075 0.075
Max. 0.558 0.417 0.291 0.128 0.476
Min. −0.023 −0.021 −0.033 −0.035 −0.095
S.D. 0.122 0.076 0.069 0.018 0.123

25 June 2018

Mean 0.448 0.414 0.178 0.209 0.285
Max. 0.868 0.792 0.533 0.458 0.709
Min. 0.084 0.170 0.014 −0.101 −0.077
S.D. 0.211 0.163 0.128 0.095 0.207

24 October 2018

Mean 0.342 0.327 0.103 0.203 0.147
Max. 0.701 0.672 0.380 0.282 0.645
Min. 0.147 0.183 −0.104 −0.094 −0.122
S.D. 0.145 0.136 0.103 0.085 0.221

When the NDVI and GNDVI were compared with each other in detail, there was no significant
difference between the NDVI and GNDVI in different habitats on April 25. However, the GNDVI was
lower than the NDVI by about 0.2 on the water surface. On May 20, the NDVI was higher than the
GNDVI by about 0.05, but both showed a similar pattern across all habitats. However, the GNDVI
was lower than the NDVI by about 0.1 on the water surface. On June 25, when the aquatic plants
had proliferated, the NDVI was higher than the GNDVI by about 0.2, although both indices generally
displayed a similar pattern. On 25 October, there was little difference between the vegetation indices
between habitats. However, on the water surface, the GNDVI was lower than the NDVI by about
0.3; in fact, the NDVI was generally higher than the GNDVI. However, as for the difference between
aquatic plants and the water surface, the GNDVI was higher than the NDVI.

Figure 9 shows the analysis results of scatter plots with the criterion of the NDVI in order to
identify vegetation index trends according to the characteristics of aquatic plants and the water surface.
On 25 April, all the vegetation indices were positively (+) correlated to the NDVI, with the exception
of the NGRDI. In particular, the ENDVI was very highly correlated to NDVI (R2 = 0.9189). The NGRDI
was negatively (−) correlated to the NDVI, but the correlation was very low (R2 = 0.1306). On 20 May,
all the vegetation indices were positively correlated to the NDVI. However, the R2 of the NGRDI
was as low as 0.1181. On 25 June, the R2 was at least 0.4 in every vegetation index. In particular, the
GNDVI and ENDVI showed a high correlation (GNDVI = 0.9168, ENDIV = 0.9715). Like the results for
25 April, all the vegetation indices were positively (+) correlated to the NDVI on 25 October, with the
exception of NGRDI.

The GNDVI, ENDVI, and NDREI were highly correlated to the NDVI and showed the same
characteristics according to the covering types of the reservoir including aquatic plants and the water
surface. On the other hand, the NGRDI had a low correlation to the NDVI and the negative correlation,
that is, the opposite tendency was shown in all seasons except for summer (25 June), where there was a
large amount of vegetation. This was because the NDVI was high in habitats, but the NGRDI was low
in aquatic plants and rather high on the water surface.
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4. Discussion

As a result of analyzing the characteristics of aquatic plants for various vegetation indices
extracted by multispectral UAV imagery, all vegetation indices except the NGRDI showed a similar
tendency, according to the presence or absence of aquatic plants. Among the existing studies using
the NGRDI, [36] calculated the NGRDI by utilizing the UAV imagery information and analyzed the
correlation between the biomass on the ground surface and the leaf area index (LAI). They reported
that the correlation coefficient (r) between the NGRDI and biomass was 0.54 ~ 0.78; furthermore, the
NGRDI from UAV imagery was cost-effective in predicting biomass. Additionally, [37] reported that
the NGRDI was more effective than NDVI in extracting N fertilization. Furthermore, [38] revealed
that NGRDI was effective in detecting green algae and biomass. Rasmussen et al. [25], Smigaj et
al. [39], Shimada et al. [40], and Li et al. [41] also utilized the NGRDI to detect fertilizer or biomass
in agricultural regions. As shown in the existing studies, since the NGRDI is derived by using the
spectral wavelength bands of Rr and Rg, it seems to be effective in detecting green algae or analyzing
the characteristics of plants in summer, where leaves are green due to the high vitality of plants.
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However, Rr and Rg did not have a significant difference with regard to the reflectance between aquatic
plants and the water surface. Accordingly, the NGRDI does not seem to be appropriate for detecting
aquatic plants.

Among the vegetation indices, except the NGRDI, the most effective vegetation indices of the
aquatic plant areas were the NDVI and GNDVI. The NDVI and GNDVI were clearly distinguished as
their values were most significantly different between aquatic plants and the water surface (Figure 8).
As shown in Figure 10, in order to see whether the NDVI and GNDVI can be used to detect aquatic
plants, the NDVI and GNDVI were set to a specific value or above (NDVI: 0.35 or above, GNDVI: 0.25
or above) on 25 June when aquatic plants had proliferated, and the habitats of aquatic plants were
extracted. In comparison with the RGB images, the distribution of habitats thus extracted was similar
to the real distribution of aquatic plants, although there was a difference with regard to the aquatic
plant area (i.e., area B). Additionally, the area of aquatic plant by the NDVI was found to be larger than
that of the GNDVI (NDVI: 356.63 m2, GNDVI: 269.06 m2).
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These results show that it difficult to identify which vegetation indices are more effective in
detecting aquatic plant areas. This is because the aquatic plant area in the reservoir is unknown
accurately. However, the vegetation indices extracted from the UAV, which has been used for forest
ecosystems, can be used to monitor the habitat change of aquatic ecosystems in high resolution.
In addition, more accurate vegetation index values need to be applied in order to extract aquatic plant
areas. Additionally, the vegetation index value, according to the species of aquatic plants, should be
identified, which will need to be studied continuously in the future.

5. Conclusions

This study analyzed a method of detecting aquatic plants by utilizing multispectral UAV imagery
and various vegetation indices for a small reservoir. The results of this study can be summarized
as follows.

The vegetation indices were highest on 25 June, which corresponded to the hottest season, and
lowest on 25 April. The seasonal change of vegetation indices revealed that the habitats of aquatic
plants gradually expanded from the edge of the reservoir. When the vegetation indices were compared,
the NDVI had the highest mean value of 0.820 on 25 June, and the difference in relation to the remaining
vegetation indices was as large as approximately 0.2 ~ 0.4. On the other days, the NDVI was also the
highest, but the difference between the NDVI and the remaining indices was only about 0.1. This is
attributable to the reflectance characteristics of each spectral wavelength band. In other words, the
NDVI is calculated by using Rnir and Rr, which have the largest difference in regard to reflectance.
On the other hand, the GNDVI and NDREI belonged to the lowest group. The GNDVI was lowest
on 25 April and on 20 May, when aquatic plants had not yet proliferated. The NDREI was lowest on
25 June, when aquatic plants had proliferated.

The profile analysis showed that the NDVI and GNDVI were effective for detecting aquatic plants
since these indices had a larger deviation than the other indices. In addition, the NDVI and GNDVI
had a similar tendency according to the covering characteristics of the reservoir. However, GNDVI was
much lower than the NDVI on the water surface, indicating a clearer difference between the aquatic
plants and the water surface. Except on 25 June, the GNDVI was similar to the NDVI in aquatic plants,
but was much lower than the NDVI on the water surface.

Accordingly, for the UAV-based detection of aquatic plants, the GNDVI seems to be effective along
with the NDVI, which has been widely applied in previous studies. However, when the habitats of
aquatic plants are extracted using the NDVI and GNDVI, accurate vegetation index values of aquatic
plants need to be identified. Although this study analyzed the characteristics of spectral information
regarding aquatic plants using multispectral imagery, a field survey for verification and calibration is
also necessary for the more accurate identification of spectral characteristics.

This study has demonstrated that UAV imagery is sufficiently applicable for analyzing the
distribution of aquatic plants. This method is costly, so the necessity of a cost-effective method for
utilizing UAVs has received much attention. With this regard, the above results indicate a low cost and
high effective method for detecting aquatic plants. The method proposed in this study seems to be
applicable to the area of surveying aquatic plants. Of course, it is still necessary to verify the accuracy
of both imagery information and analysis results through a field survey. A further study will deal with
this issue and supplement the limitations of this study.
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