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Abstract: Refocusing ground manoeuvring targets with complex motions in synthetic aperture
radar (SAR) remains a challenging objective because of the large range of cell migration (RCM) and
time-varying Doppler frequency modulation (DFM). By exploiting the geometric information of RCM
and two-dimensional (2-D) coherently integrated gain, a fast ground manoeuvring target refocusing
method using principal component analysis (PCA) and high-order motion parameter estimation
is proposed. First, an efficient phase difference (PD) method and PCA are utilized to correct the
RCM, and then, the energy of the ground manoeuvring target is concentrated into the same range bin.
Second, by utilizing the coherently integrated cubic phase function (CICPF) that was developed in our
previous work, the motion parameters are obtained accurately, and the manoeuvring target is thus well
refocused into a sharp peak point based on the estimated motion parameters. The proposed method
is of low computational complexity because it avoids time-consuming search and interpolation
operations and demonstrates an improved anti-noise performance due to fully exploiting the 2-D
coherent accumulation characteristics for estimating motion parameters and enhanced refocused
imaging results for manoeuvring targets due to adopting the high-order motion model. Finally,
experiments are conducted using simulated and real SAR data to show the performance of the
proposed method.

Keywords: synthetic aperture radar (SAR); manoeuvring target refocusing; principal component
analysis (PCA); coherently integrated cubic phase functions (CICPF)

1. Introduction

Since the introduction of synthetic aperture radar (SAR), it has found wide applications in many
civilian and military applications due to its ability to generate high-resolution microwave images
of observed scenes [1–3]. To meet increasing demands, the detection, identification, and tracking
of ground-moving targets (GMTs) are of great significance for surveillance systems [4–6]. Reports
have shown that a long synthetic aperture time is needed to produce a high-quality GMT imaging
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result, which is helpful to recognize a GMT. For ground moving targets with complex motions,
defocusing occurs because of the large range of cell migration (RCM) and time-varying Doppler
frequency migration (DFM) produced by the longer dwell time and complex motions. Moreover,
for a single-phase centre SAR, it is actually not just hard but impossible to uniquely determine the
complicated motion of a target. There is a degeneracy in phase contributions for different types of
motion. For the purpose of generating a clear SAR image of the manoeuvring target, the RCM and
DFM must be compensated with high accuracy.

RCM correction, which generally includes range curvature and range walk correction, is an
essential step in ground manoeuvring target refocusing. The purpose of RCM correction is to
concentrate the energy of the moving target into the same range bin without using any a priori
knowledge, which is the prerequisite to obtain a satisfactory performance of the subsequent DFM
compensation. Over the years, many techniques have been developed to realize RCM correction, and
RCM correction approaches are generally categorized into four groups. Keystone-based methods
are the first category, where the first-order Keystone transform (KT) is well-known [7–9]. A beat
frequency coherent accumulation and KT (BFCA-KT) method was proposed in [10] to correct the RCM,
where the slow time axis of KT is readjusted by interpolation to remove the interaction between the
slow time and the range frequency. Currently, improved versions of this method are often used to
remove RMs without using any prior information. To further improve the performance of this method,
the second-order KT (SOKT) [11,12] and Doppler Keystone [13] were also developed. However,
because of interpolation, all KT-based methods suffer from large computational loads and accuracy
loss. Radon transform (RT)- and Hough transform (HT)-based approaches belong to the second group
and include the Radon-Fourier transform (RFT) [14], Radon-fractional Fourier transform (RFRFT) [15],
HT-fractional Fourier transform (HT-FRFT) [16], Radon–Wigner–Ville distribution (WVD) [17], and
Radon ambiguity function [18]. However, although these methods are effective, they suffer from a
large computational load due to the multidimensional search used. For the third group, to explore the
prior knowledge in the SAR system, a stationary phase, a two-dimensional (2-D) matched filtering
method [19] was used, and subsequently, a geometry-information-aided method [20] and symmetric
Doppler view-based approaches [21] were also proposed. These approaches are conducted based
on the assumption that no a priori information of motion parameters is available. However, these
approaches only consider a moderate manoeuvring target. In modern applications, a long synthetic
aperture time is usually needed to generate a high-resolution image, and at the same time, a large
RCM and a high-order DFM phase are generated as a result. Hence, the abovementioned approaches
may no longer be suitable for such a situation. Utilizing time-frequency tools, short-time Fourier
transform [22,23], WVD transform [24], high-order ambiguity function (HAF) [25], and 2-D product
HAF (PHAF) [26] have been developed to represent the fourth group. Reports have indicated that, in
the case of the signal to clutter and noise ratio (SCNR), time-frequency analysis-based methods produce
a good performance. Even so, the cross-term interferences caused by the nonlinear transformation
remain an issue. It has been concluded that these discussed methods are no longer considered because
of their heavy computational burden and inferior imaging performance in the low signal-to-noise
ratio (SNR) circumstance. Therefore, when using these methods to correct the RCM, the accuracy and
computational load must be carefully considered for ground manoeuvring targets.

After correcting the RCM, azimuth time-varying DFM compensation should be conducted,
for which many algorithms have been developed. In [27], based on HT and the polynomial Fourier
transformation (PFT), a moving target imaging algorithm was developed, termed HT-PFT, but it
failed to consider the range curvature effect. In [28], using the third-order motion formulation for
manoeuvring targets and the pseudo-WVD approach, a low complex motion parameter estimation
approach was developed via simple polynomial fitting. However, when the SCNR is low, the estimation
error is unavoidable because it is not easy to extract the trajectories of the target in the time-frequency
plane. Furthermore, similar to the polynomial phase signal (PPS)-based approaches, its performance
is still not satisfactory because the RM is not considered. In [29], using the SOKT, a method was
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proposed to generate the image of a ground manoeuvring target by using the SAR technique based on
the Hough-generalized high-order ambiguity function (Hough-GHAF). However, the performance of
SOKT degrades when Doppler ambiguity occurs. It was also noted that the performance of the GHAF
deteriorates when the SCNR is low since it utilizes a non-coherent accumulation and a high-order
multilinear function. In [30], a generalized Radon-Fourier transform (GRFT) was described in which
the coherent accumulation and third-order phase model are utilized to process a manoeuvring target.
However, a 3-D search was used, which indicates a high computational complexity. Similarly, in [30],
a generalized Keystone transform (KT) and generalized dechirp process (GKTGDP) method [31] was
proposed in which a third-order Keystone transform is conducted, and then, to obtain the estimation
of the third-order phase, a 2-D search is performed in each range frequency bin. This search process is
obviously not efficient.

To address the aforementioned issues, a fast ground manoeuvring target refocusing approach
based on principal component analysis (PCA) and the estimation of high-order motion parameters
is proposed in this paper. First, the phase difference (PD) operation is applied to mitigate the effects
of RCM and DFM by reducing their order, and the Doppler ambiguity is overcome simultaneously.
Subsequently, by exploiting the geometric information of the RCM, an efficient PCA operation is
explored to correct the residual RCM, and the energy of the target is thus concentrated into one
range bin. Second, using the motion parameter estimation by the coherently integrated cubic phase
function (CICPF), the high-order DFM is compensated and a well-refocused image of the manoeuvring
target is obtained. In comparison with the current methods, the proposed approach presents a low
computational complexity because it avoids the search and interpolation operation, an enhanced
anti-noise performance because it exploits the 2-D coherent accumulation characteristics in estimating
motion parameters, and well-refocused imaging results for manoeuvring targets because it adopts a
high-order motion model. Finally, both simulated and real airborne SAR data processing results are
provided to demonstrate the performance of the proposed method. To be specific, the real airborne
SAR used in this work is a C-band radar working in the broadside mode.

The organization of this paper is as follows. In Section 2, the geometry of the airborne SAR
manoeuvring target and echo formulation are provided. The detailed development process of the
proposed approach and the computational complexity analysis are introduced in Section 3. Section 4
presents the experimental results of the simulation and real data to show the viability of the proposed
method. In Section 5, the work is concluded.

2. Geometric and Signal Model for Ground Manoeuvring Target

The geometric configuration between an airborne platform with velocity vp at a height of H and a
ground manoeuvring target is given in Figure 1. In the slow time ∆Ts, the ground manoeuvring target
P
(
xp , yp , zp

)
moves from point a to point b, where va, aa are the along-track velocity and acceleration,

respectively, and vr, ar denote the cross-track velocity and acceleration, respectively, as shown in
Figure 1, RB and Rs(ta) represent the closest slant range and instantaneous slant range from the radar
platform to the ground manoeuvring target, respectively, and ta denotes the azimuth slow time.

According to Figure 1, for azimuth time ta, the instantaneous coordinates of the radar platform and
the ground manoeuvring target can be written as

(
vpta, 0, H

)
and

(
vata + aat2

a/2, yp + vrta + art2
a/2, 0

)
,

respectively. After applying the third-order Taylor series expansion, the instantaneous range Rs(ta)

is [27]
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+

(
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(1)

where b1, b2 and b3 denote the first-, second-, and third-order coefficients of the instantaneous slant,
respectively, under the assumption of

(
vp − va

)
∆Ts � RB [27], [32,33]. In Equation (1), the detailed

expressions of each variable are
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It is interesting to note that the third-order coefficient is considered in the signal model in
Equation (2). This term is important to generate clear images because of the increased aperture time in
the current SAR systems [27,32]. The conventional approaches using the second-order signal model are
invalid. In what follows, a novel approach for SAR ground manoeuvring target imaging and motion
parameter estimation is introduced where the high-order phase signal model is necessary.
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Figure 1. Illustration of airborne synthetic aperture radar (SAR) of a manoeuvring target. 
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Suppose the radar transmits a linear frequency modulated (LFM) signal [7], which is

st(tr) = wr(tr)exp
[
j2π

(
fctr + Krt2

r /2
)]

(3)

where tr is the range fast-time variable, fc is the carrier frequency, Kr is the chirp rate of the LFM signal,
and, wr(tr) is the range envelope function.

After conducting the Fourier transform (FT) for the variable tr in Equation (3) and removing the
range modulation term, the received echo of the ground manoeuvring target is

s( fr; ta) = σsWr( fr)wa(ta)exp
[
− j 4π( fr+ fc)Rs(ta)

c

]
= σsWr( fr)wa(ta)exp

[
− j

4π( fr+ fc)(RB+b1ta+b2t2
a+b3t3

a)
c

] (4)

where fr is the range frequency variable, σs denotes the complex reflective coefficient of the manoeuvring
target, c is the speed of light, and Wr(·) and wa(·) are the range and azimuth envelope functions in the
range frequency domain and azimuth time domain, respectively.

Inspecting Equation (4) reveals that the RCM contains three terms: the range walk, range curvature,
and high-order (≥ 3) range migration, and because of their existence, the trajectory of the manoeuvring
target spans across different range cells. Therefore, to obtain a well-refocused imaging result of the
manoeuvring target, the large RCM and nonstationary DFM must be corrected and compensated
in advance.

3. Description of the Proposed Method

In this section, on the basis of the geometric and signal configuration presented in Section 2,
an effective ground manoeuvring target refocusing approach combined with PCA and high-order
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motion parameter estimation is proposed. Before the time-varying DFM parameter estimation, the
RCM correction is introduced.

3.1. RCM Correction

From Equation (4), in each range cell, the signal in terms of the slow-time variable ta axis can be
modelled as a polynomial phase signal (PPS) that is obtained at fr = f ′r as

s(ta) = sr( fr = f ′r ; ta)

= σsWr( fr)wa(ta)exp
[
− j

4π( f ′r + fc)(RB+b1ta+b2t2
a+b3t3

a)
c

]
= σsWr( fr)wa(ta)exp

(
− j2π

(
a0 + a1ta + a2t2

a + a3t3
a

)) (5)

where a0 = 2( f ′r + fc)RB/c, ai = 2( f ′r + fc)bi/c, and i = 1, 2, 3 are the coefficients of the PPS. In
Equation (5), the coefficients ai, i = 0, 1, 2, 3 are responsible for the RCM and DFM of the ground
maneuvering target. This indicates that if we can lower the order in the PPS signal, the RCM and
azimuth DFM can be corrected effectively.

From estimation theory, the PD method is widely used to reduce the order in PPS, and the PD is
defined by [34,35]

PD1[n; τ1] = x(n + τ1)x∗(n− τ1)

PD2[n; τ1, τ2] = PD1[n + τ2; τ1]
[
PD1[n− τ2; τ1]

]∗
...

PDQ
[
n; τ1, τ2, · · · , τQ

]
= PDQ−1

[
n + τQ; τ1, τ2, · · · , τQ−1

]
×

[
PDQ−1

[
n− τQ; τ1, τ2, · · · , τQ−1

]]∗
(6)

where τi, i = 1, 2 · · ·Q is the lag variable and (∗) is the complex conjugate. The rule of selecting the lag
variable τi needs to satisfy the constraint of τi = mPRT, m = 1, 2, 3 · · ·N.

After applying Equation (6), the result using the PD technique is

sPD( fr; ta) = PD1[s( fr; ta)] = s( fr; ta + τ1)s( fr; ta − τ1)
∗

= σ′sexp
[
− j 4π( fr+ fc)

c

(
2b1τ1 + 2b3τ3

1 + 4b2τ1ta + 6b3τ1t2
a

)]
+ PDl,c−terms( fr; ta)︸               ︷︷               ︸

cross−term
= σ′s[Wr( fr)]

2wa(ta + τ1)wa(ta − τ1)

×exp
[
− j4π fr

c

(
2b1τ1 + 2b3τ3

1 + 4b2τ1ta + 6b3τ1t2
a

)]
×exp

[
− j4π
λ

(
2b1τ1 + 2b3τ3

1 + 4b2τ1ta + 6b3τ1t2
a

)]
+ PDl,c−terms( fr; ta)︸               ︷︷               ︸

cross−term

(7)

where σ′s = σ2
s [Wr( fr)]

2wa(ta + τ1)wa(ta − τ1) and PDl,c−terms( fr; ta) denotes the cross-term after the PD
operation. The terms, 2b1τ1 + 2b3τ3

1, 4b2τ1ta and 6b3τ1t2
a are now the RCM and DFM coefficients.

From Equation (7), after PD operation, the RCM is migrated, and the order of the azimuth
time-varying DFM is now two. Moreover, the new range curvature Rqrcm = 6b3τ1t2

a is determined
by the coefficient b3. Using the simulation settings in Table 1, the maximum value of Rqrcm during
the synthesis aperture time is max

{
Rqrcm(ta)

}
=

∣∣∣6b3τ1t2
a

∣∣∣
|ta=±

Ta
2 ,τ1=8PRT| = 0.002786, where the delay

variable τ1 is selected as 8PRT. Therefore, the range curvature after PD operation can be omitted
since it does not exceed half of the range resolution cell of ρr = c/Br = 0.15m, where Br denotes the
transmitted signal bandwidth.

Although the range curvature can be ignored, the linear RCM (that is, the range walk term)
determined by 4b2τ1ta is still out of the range that is allowed and needs to be compensated.
There are many approaches that can be utilized to remove the linear RCM term, such as the RT
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method [14,15,17,18], HT method [16,27], and information entropy [36]. It is well known that these
methods can be used to estimate the slope of the linear RCM, which is the basis for its compensation.
Another approach uses KT-based methods [7–10], which are readjusted by interpolation to remove
the coupling between the range frequency and the slow time to correct the linear RCM. However,
these methods suffer from large computational loads and accuracy loss because of the interpolation
used and multidimensional search steps required, which is not suitable for real-time implementation.
To overcome the difficulties mentioned above, in this work, an efficient linear RCM correction method
based on PCA is proposed by exploiting the geometric information of RCM.

Table 1. SAR system and target motion parameters.

Parameter Value

Carrier frequency 10 GHz
Nearest slant range 400 m
Range bandwidth 1 GHz

Pulse repetition frequency 1500 Hz
SAR platform velocity 200 m/s
Along-track velocity 10 m/s
Cross-track velocity 6 m/s

Along-track acceleration 3 m/s2

Cross-track acceleration 4 m/s2

After PD implementation, the energy trajectory of the manoeuvring target is transformed into a
straight line in the two-dimensional time domain, and the interaction between the slope and linear
RCM is illustrated in Figure 2, where b′1 = 4b2τ1 is the linear RCM coefficient in Equation (7), Ta is
the moving target time of duration, fs is the range sample frequency, and PRF represents the pulse
repetition frequency. From Figure 2, the slope of the straight line can be estimated as
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tan θ̂ =
∆y
∆x

=
2 fs × b′1
PRF× c

(8)

where θ̂ represents the estimation of the angle between the trajectory and the horizontal line. From
Equation (8), the linear RCM coefficient b′1 can be estimated with the known trajectory slope. That is,

b′1 =
PRF× tan θ̂× c

2 fs
. (9)

It is apparent that the estimation for the trajectory slope is the key step. To obtain the slope, the
RT method [14,15,17,18], HT method [16,27], and information entropy [36] can be used to obtain the
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slope. However, all these methods have a heavy computing load, which limits their applications in
real-time systems. Therefore, in this work, an efficient linear RCM correction method based on PCA
is developed.

PCA is generally used in determining the maximum variance direction of a given data set [37,38],
which maps a data set into another one in a new coordinate system, where the first coordinate represents
the largest variance of the data set. As depicted in Figure 3, based on this property, the largest variance
is represented by the first principal component u1 in the PCA method (the largest variance indicates
the maximum dispersion and represents the largest amount of information contained), and the main
energy direction of the data set is then determined. It is also interesting to note that targets (military
aircraft and ships) in SAR systems always present a unique direction with the largest variance because
of their elliptical geometric shapes. Based on this reason, in this work, PCA is utilized to estimate the
direction of the main energy of linear RCM, which is one of the main innovations.Remote Sens. 2020, 12, 378  7  of  21 
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Generally, for the target detection problem in SAR systems, the energy of the target is stronger than
that of the background after clutter rejection, which means that the SCNR is relatively high. Therefore,
the position of the strong scatterer in the target can be obtained by using the energy threshold of
the signal. In this work, the threshold Rthreshold is set as half of the strongest scatterer energy. Then,
by choosing the coordinates of energy points that are greater than Rthreshold, the database P is formed as

P = [p1, p2, · · · , pL] (10)

where pi = [mi, ni]
T indicates the range and azimuth coordinate of the ith energy point, and L denotes

the number of data points that satisfy the condition.
The mean vector A

(
Mx, Ny

)
for database P is defined as


Mx = 1

L

L∑
i=1

mi

Ny = 1
L

L∑
i=1

ni

(11)

where Mx and Ny denote the mean values of the range and azimuth coordinates, respectively.

The new database
¯
P is produced by subtracting the mean vector A from the matrix P as

¯
P = P−A (12)
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Constructing a covariance matrix with the database
¯
P yields

Cp =
1
L

(
¯
P
)(

¯
P
)T

(13)

In particular, Cp is a real symmetric matrix, and the eigenvalue decomposition of Cp can be
expressed as

Cp = QΛQT (14)

where Λ denotes a diagonal matrix with two eigenvalues and Q denotes the corresponding eigenvectors
for Λ. According to the previous analysis and Figure 3, it is known that the eigenvector

(
mx, ny

)
corresponding to the largest eigenvalue is the direction of the main axis. Thus, the slope of the trajectory
is then calculated as

tan θ̂ =
ny

mx
(15)

From Equations (9) and (15), the linear RCM coefficient can be accurately estimated, and then, the
linear RCM term can be corrected by using the following compensation function HRWM.

HRWM = exp
(

j
4πb′1

c
frta

)
(16)

Multiplying Equations (7) and (16) and conducting IFT along the range frequency variable fr, the
echo signal can be represented as

s2(ta) = σ′ssin c
{

Br

[
tr −

2(2b1τ1+2b3τ
3
1)

c

]}
×exp

[
− j4π
λ

(
2b1τ1 + 2b3τ3

1 + 4b2τ1ta + 6b3τ1t2
a

)]
+ PDl,c−terms(tr; ta)︸              ︷︷              ︸

cross−term

. (17)

From Equation (17), after the aforementioned operation, the energy of the ground manoeuvring
target is concentrated into the same range gate R(ta) = 2b1τ1 + 2b3τ3

1. By doing so, the RCM has been
corrected efficiently. In the next section, the CICPF method is introduced to estimate the coefficients of
nonstationary DFM.

3.2. Motion Parameter Estimation Using CICPF

From Equation (17), after the RCM correction with efficient PD and PCA operation, the non-
stationary DFM signal is expressed as an LFM signal, given by

s3(tm) = Aexp
[
j2π

(
c0 + c1tm + c2t2

m

)]
+ n(tm) (18)

where A = σ′s denotes the signal amplitude, and c0 = −2
(
2b1τ1 + 2b3τ3

1

)
/λ, c1 = −2(4b2τ1)/λ,

c2 = −2(6b3τ1)/λ, and n(tm) denote the interference signal and noise. The key step is to estimate the
coefficients of the LFM signal in Equation (18), which is related to the DFM.

For an LFM signal, the cubic phase function (CPF) is defined as [39]

CPF
(
tm; fτ2

m

)
=

∫
s3(tm + τm)s3(tm − τm)exp

(
− j2π fτ2

m
τ2

m

)
dτ2

m

= A2exp
[
j4π

(
c0 + c1tm + c2t2

m

)]
δτ2

m

(
fτ2

m
− 2c2

)
︸                                                   ︷︷                                                   ︸

auto−terms
+CPFs,c−terms

(
tm; fτ2

m

)
+ CPFs,n−terms

(
tm; fτ2

m

)
︸                                                   ︷︷                                                   ︸

cross−terms

(19)
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where τm represents the lag-time variable, fτ2
m

denotes the frequency variable in terms of the lag-time

variable, and δ(∆) denotes the Dirac delta function. CPFs,c−terms
(
tm; fτ2

m

)
and CPFs,n−terms

(
tm; fτ2

m

)
represent the cross-terms and the noise term after CPF operation. From Equation (19), it can be
seen that the LFM signal is now accumulated in the straight line of fτ2

m
= 2c2 in the time–frequency(

tm; fτ2
m

)
domain.

Using the characteristics of the self-term energy distribution along the time axis, the product
CPF (PCPF) and integral CPF (ICPF) [40,41] are adopted to perform cross-term and spurious peak
suppression. However, these two methods only use partial autoterm energy, and both are noncoherent
integrations. In view of the shortcomings of the above two algorithms, we propose to utilize the
coherently integrated CPF (CICPF) transform [42] by further exploiting the amplitude and phase
information of the signal. With the CICPF, Equation (19) is

CICPF
(

ftm ; fτ2
m

)
= Γtm

[
CPF

(
tm; fτ2

m

)]
=

∫
CPF

(
tm; fτ2

m

)
exp

(
− j2π fτ2

m
t2
m − j2π ftm tm

)
= g

(
fτ2

m
= 2c2

)
A2exp(4πc0)δτ2

m

(
fτ2

m
− 2c2

)
δtm( ftm − 2c1)︸                                                                 ︷︷                                                                 ︸

auto−terms
+CICPFs,c−terms

(
ftm ; fτ2

m

)
+ CICPFs,n−terms

(
ftm ; fτ2

m

)
︸                                                           ︷︷                                                           ︸

cross−terms

(20)

where Γtm denotes the CICPF operation, ftm is the frequency variable about tm, and g
(

fτ2
m
= 2c2

)
=

exp
[
− j2π

(
fτ2

m
− 2c2

)
t2
m

]
. It can be seen from Equation (20) that after the CICPF operation, the energy of

autoterms accumulates into the peak point of (2c1, 2c2) in the
(

ftm ; fτ2
m

)
domain, while the cross-terms

and spurious peaks are effectively suppressed. The estimated value of the LFM signal coefficients
can be obtained according to the strong point position. Therefore, the nonstationary DFM can be
compensated accurately with the estimated parameters ĉ1 and ĉ2. The corresponding compensation
function is designed by

HAzimuth = exp
[
j
4π
λ

(
ĉ1ta + ĉ2t2

a

)]
. (21)

Multiplying Equations (17) and (21) completes the compensation of the azimuth time-varying
DFM, and finally, after conducting azimuth FT, the ground manoeuvring target refocusing is

s3(tr; ta) = σ′ssin c
{

Br

[
tr −

2(2b1τ1+2b3τ
3
1)

c

]
sin c(Bata)

}
×exp

[
− j4π
λ

(
2b1τ1 + 2b3τ3

1

)] (22)

where Ba denotes the azimuth Doppler bandwidth. It is obvious from Equation (22) that the energy of
the ground manoeuvring target has been refocused into a sharp peak point. Figure 4 shows the steps
of the proposed approach.
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4. Experimental Results and Analysis

In this section, using simulated data and airborne real SAR data, the performance of the proposed
approach for ground manoeuvring target refocusing is demonstrated, and several approaches are
implemented for comparison.

4.1. Simulation Results and Analysis

In this simulation, the simulation settings are given in Table 1. To compare the performances,
the results obtained by the HT-FrFT method in [16], HT-PFT method in [27], and BFCA-KT method
in [10] are provided as well. Figure 5a indicates the motion trajectories of the manoeuvring target
after range compression, from which the motion trajectory shows obvious existing range walk and
curvature. The corrected results of the RCM adopting the second-order matching filter and HT in the
HT-FrFT method and HT-PFT method are illustrated in Figure 5b,c, respectively. It can be seen that
the RCM is not completely corrected due to the existence of the error in radar platform velocity and
ground manoeuvring parameters. Figure 5d shows the RCM correction results with the BFCA-KT
method in [10]. It can be seen that the RCM has been completely compensated. However, it is well
known that these three approaches suffer from large computational loads and accuracy loss, which is
unfavourable in real-time implementation. The phase difference (PD) method is utilized to mitigate
the effects of RCM and DFM by reducing their order, as shown in Figure 5e, where an RCM trajectory
is formed. After PCA operation, the energies of the manoeuvring target are transformed into the same
range cell, as demonstrated in Figure 5f, which verifies the effectiveness of the proposed method. After
finishing the RCM correction, the processing result of the CPF for the manoeuvring target in the plane(
tm; fτ2

m

)
is depicted in Figure 5g, and it can be seen that, in the time–frequency plane, the energy of the

manoeuvring target accumulates along a straight line, which is parallel to the tm axis. With the CICPF
transform, the sole peak is obtained for the energy of the manoeuvring target, as indicated in Figure 5h.
The coordinate of the sole peak produces the estimation of the first-order ĉ1 and second-order ĉ2 motion
parameters, the values of which are 1.6693 and –0.0967, respectively. With the estimated parameters,
motion compensation is realized, and the well-refocused manoeuvring target is obtained in Figure 5i.
Meanwhile, the refocused result with the HT-FrFT method in [16] is depicted in Figure 5j, in which
the target is defocused since the third-order DFM coefficient is not considered and the RCM is not
fully corrected. Figure 5k illustrates the refocused image generated by the HT-PFT approach in [27],
from which the energy of the target still spreads into many range gates since the RCM is not fully
corrected. The BFCA-KT approach in [10] provides approximately the same integration quality as
the proposed method. However, compared with the BFCA-KT approach, the proposed method has a
great advantage in computational cost reduction. Figure 5m illustrates the comparison results of the
azimuth profiles obtained with the four methods, it can be seen that the proposed method has a better
refocusing performance than the others.
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Figure 5. Simulation results for the ground manoeuvring target. (a) Range compression result. (b) range
of cell migration (RCM) correction result of the Hough transform (HT)-fractional Fourier transform
(HT-FRFT) method. (c) RCM correction result using the HT-PFT method. (d) RCM correction result of
the beat frequency coherent accumulation and Keystone transform (KT) (BFCA-KT) method. (e) Range
curvature correction of the phase difference (PD) method. (f) Range walk compensation result of the
proposed PCA method. (g) Cubic phase function (CPF) result of the manoeuvring target in the

(
tm; fτ2

m

)
plane. (h) Result of the manoeuvring target of the coherently integrated CPF (CICPF) algorithm.
(i) The well-refocused target of the proposed method. (j) The focusing result of the HT-FrFT method.
(k) The focusing result of the HT-PFT method. (l) Well-refocused target by the BFCA-KT method.
(m) Comparison results of the azimuth profiles.

To demonstrate the anti-noise performance of the proposed algorithm, a moving manoeuvring
target with a low SNR of –8 dB is generated. In Figure ??a, the result after range compression is
provided. The range walk corrections obtained by the HT-FrFT method in [16] and the HT-PFT method
in [27] are demonstrated in Figure ??b,c. It can be seen that the RCM is not fully corrected in this case.
Figure ??d shows the RCM correction results with the BFCA-KT method in [10], and it can be seen
that the RCM has been compensated. After applying the PD operation, the range curvature has been
removed, as demonstrated in Figure ??e. Figure ??f shows the RCM correction results with the PCA
method. After correcting the RCM, the motion trajectory has been slightly tilted since the PCA is
unstable under the low SNR. The CPF and CICPF results are depicted in Figure ??g,h, respectively.
Following motion compensation, the well-refocused result for the manoeuvring target is obtained
in Figure ??i. The focusing results obtained by the HT-FrFT method in [16], HT-PFT method in [27],
BFCA-KT method in [10] and the proposed method are depicted in Figure ??j–l. It is worth noting that
the proposed method has better refocusing results than the HT-FrFT method in [16] and the HT-PFT
method in [27], and the BFCA-KT approach has the same integration quality as the proposed method.
However, compared with the BFCA-KT approach, as discussed earlier, the proposed method has a
great advantage in computational cost. Figure ??m presents the comparison results of the azimuth
profiles, it can be seen that the proposed method has better refocusing results, which also validate the
effectiveness of the proposed method.
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Figure 6. Simulation results for the manoeuvring target. (a) Range compression result. (b) RCM 
correction result of the HT-FrFT method. (c) RCM correction result using the HT-PFT method. (d) 
RCM correction result of the BFCA-KT method. (e) Range curvature correction of the PD method. (f) 
Range walk correction result of the proposed PCA method. (g) CPF result of the manoeuvring target 
in the ൫𝒕𝒎; 𝒇𝝉𝒎𝟐 ൯  plane. (h) Result of the manoeuvring target of the CICPF algorithm. (i) 
Well-refocused target of the proposed method. (j) The focusing result of the HT-FrFT method. (k) 
The focusing result of the HT-PFT method. (l) Well-refocused target of the BFCA-KT method. (m) 
Comparison results of the azimuth profiles. 

To compare the computational complexities of the HT-PFT method, BFCA-KT method, and 
our proposed method, the running times with different scene sizes are provided in Figure 7a, where 
MATLAB is used on an Intel Double-core processor with a CPU clocked frequency of 3.0 GHz, 8 GB 
of memory, and a Windows 10 operating system. Figure 7a confirms that the computational time of 
the proposed method is much less than that of the HT-PFT and BFCA-KT methods because of 
avoiding the multidimensional search operation in HT and interpolation operation in KT. Since the 

Figure 6. Simulation results for the manoeuvring target. (a) Range compression result. (b) RCM
correction result of the HT-FrFT method. (c) RCM correction result using the HT-PFT method. (d) RCM
correction result of the BFCA-KT method. (e) Range curvature correction of the PD method. (f) Range
walk correction result of the proposed PCA method. (g) CPF result of the manoeuvring target in the(
tm; fτ2

m

)
plane. (h) Result of the manoeuvring target of the CICPF algorithm. (i) Well-refocused target

of the proposed method. (j) The focusing result of the HT-FrFT method. (k) The focusing result of the
HT-PFT method. (l) Well-refocused target of the BFCA-KT method. (m) Comparison results of the
azimuth profiles.

To compare the computational complexities of the HT-PFT method, BFCA-KT method, and our
proposed method, the running times with different scene sizes are provided in Figure 7a, where
MATLAB is used on an Intel Double-core processor with a CPU clocked frequency of 3.0 GHz, 8 GB of
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memory, and a Windows 10 operating system. Figure 7a confirms that the computational time of the
proposed method is much less than that of the HT-PFT and BFCA-KT methods because of avoiding the
multidimensional search operation in HT and interpolation operation in KT. Since the slope of trajectory
can be estimated by the HT and PCA method, which is related to the coefficient of the linear RCM, the
root mean square errors (RMSEs) of trajectory slope estimation in the HT method and proposed PCA
method against SNR are given in Figure 7b, where the RMSE values are calculated by averaging 100
independent experiments. Figure 7b shows that the RMSEs of the HT-PFT method are slightly lower
than those of our proposed method in the low SNR region, and the RMSEs of both methods decrease
as the SNR increases. However, the proposed method has low computational complexity. Therefore,
judging from the performance and computational cost, the proposed method achieves a good trade-off.

Remote Sens. 2020, 12, 378 15 of 21 

 

slope of trajectory can be estimated by the HT and PCA method, which is related to the coefficient 
of the linear RCM, the root mean square errors (RMSEs) of trajectory slope estimation in the HT 
method and proposed PCA method against SNR are given in Figure 7b, where the RMSE values are 
calculated by averaging 100 independent experiments. Figure 7b shows that the RMSEs of the 
HT-PFT method are slightly lower than those of our proposed method in the low SNR region, and 
the RMSEs of both methods decrease as the SNR increases. However, the proposed method has low 
computational complexity. Therefore, judging from the performance and computational cost, the  

 

 
(a) 

 
(b) 

Figure 7. Performance comparison results with existing methods. (a) Comparison of three methods 
along the imaging scene size. (b) Root mean square errors (RMSEs) of the estimated parameter 
versus SNR 

4.2. Measured Data Results and Analysis 

In this section, the measured data are utilized to demonstrate the performance of the proposed 
approach. The SAR data were gathered by a C-band radar in the broadside mode in which the 
platform moves with a velocity of 130 m/s at an altitude of 8.1 km; the remaining SAR system 
settings are provided in Table 2. The Doppler ambiguities do not occur since the cross-track 
velocities of moving targets are less than 25 m/s, which is the maximum baseband velocity. Figure 
8a,b demonstrates the clutter and target spectra before and after clutter suppression, respectively, 
where clutter suppression is realized by using the EFA method [43,44,45]. From these figures, after 
clutter reduction, the moving targets are visible, but they are blurred because of the RCM and DFM. 
To further show the performances of competing methods, the target inside of the ellipse is 
considered. Before range migration compensation, Figure 8c depicts the motion trajectories of the 
manoeuvring target, and a rounded line occurs in the range and azimuth time domains. For the 
HT-FrFT and HT-PFT methods, the range curvature is compensated using a second-order matching 
function, and the rotation angle in terms of range walk is then estimated and compensated using the 
HT. However, the RCM is not fully corrected, as shown in Figure 8d,e. Figure 8f illustrates the RCM 
correction results obtained by the BFCA-KT method, where the energy of the target is transformed 
into the same range cell. After applying the PD method, the range curvature has been removed, and 
a straight slope trajectory is obtained, suggesting the effectiveness of the PD, as depicted in Figure 
8g. The range walk correction result via the efficient PCA method is provided in Figure 8h, which 
verifies the proposed method. The CPF result of the ground moving target is shown in Figure 8i. 
One observes that the target’s energy does accumulate into a straight line, which is parallel to the 𝒕𝒎 axis. By utilizing the CICPF, the target’s energy is now focused as the sole peak, depicted in 
Figure 8j, where the position of the peak gives the estimations of the first- and second-order motion 
coefficients, and the values are 0.7292 and 0.0223. After compensating DFM using the estimated 
parameters, the refocused result for the ground manoeuvring target is obtained by the proposed 
method in Figure 8k, where a well-refocused result is obtained, thus validating the proposed 
method. The result generated by HT-FrFT is given in Figure 8l, where the target is blurred due to 
ignoring the third-order DFM coefficient and the residual RCM. The result generated by the 

200*200 300*300 400*400 500*500 600*600 700*700 800*800 900*9001000*1000
0

5

10

15

20

25

30

35

Imaging scene size

C
om

pu
tio

n 
tim

es
 (s

)

 

 
BFCA-KT method in [10]
HT-PFT method in [27] 
Our proposed method 

-10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SNR (dB)

R
M

S
E

s

 

 
HT-PFT method in [27]

Our proposed method

Figure 7. Performance comparison results with existing methods. (a) Comparison of three methods
along the imaging scene size. (b) Root mean square errors (RMSEs) of the estimated parameter
versus SNR.

4.2. Measured Data Results and Analysis

In this section, the measured data are utilized to demonstrate the performance of the proposed
approach. The SAR data were gathered by a C-band radar in the broadside mode in which the platform
moves with a velocity of 130 m/s at an altitude of 8.1 km; the remaining SAR system settings are
provided in Table 2. The Doppler ambiguities do not occur since the cross-track velocities of moving
targets are less than 25 m/s, which is the maximum baseband velocity. Figure 8a,b demonstrates the
clutter and target spectra before and after clutter suppression, respectively, where clutter suppression is
realized by using the EFA method [43–45]. From these figures, after clutter reduction, the moving targets
are visible, but they are blurred because of the RCM and DFM. To further show the performances of
competing methods, the target inside of the ellipse is considered. Before range migration compensation,
Figure 8c depicts the motion trajectories of the manoeuvring target, and a rounded line occurs in the
range and azimuth time domains. For the HT-FrFT and HT-PFT methods, the range curvature is
compensated using a second-order matching function, and the rotation angle in terms of range walk is
then estimated and compensated using the HT. However, the RCM is not fully corrected, as shown
in Figure 8d,e. Figure 8f illustrates the RCM correction results obtained by the BFCA-KT method,
where the energy of the target is transformed into the same range cell. After applying the PD method,
the range curvature has been removed, and a straight slope trajectory is obtained, suggesting the
effectiveness of the PD, as depicted in Figure 8g. The range walk correction result via the efficient PCA
method is provided in Figure 8h, which verifies the proposed method. The CPF result of the ground
moving target is shown in Figure 8i. One observes that the target’s energy does accumulate into a
straight line, which is parallel to the tm axis. By utilizing the CICPF, the target’s energy is now focused
as the sole peak, depicted in Figure 8j, where the position of the peak gives the estimations of the first-
and second-order motion coefficients, and the values are 0.7292 and 0.0223. After compensating DFM
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using the estimated parameters, the refocused result for the ground manoeuvring target is obtained
by the proposed method in Figure 8k, where a well-refocused result is obtained, thus validating the
proposed method. The result generated by HT-FrFT is given in Figure 8l, where the target is blurred
due to ignoring the third-order DFM coefficient and the residual RCM. The result generated by the
HT-PFT approach is shown in Figure 8m, from which the target is not well refocused because the
range curvature has not been completely corrected. The result obtained by the BFCA-KT approach
is shown in Figure 8n, and it should be noted that the energy of the ground manoeuvring target is
well refocused into a sharp peak. The azimuth profiles obtained by the four methods is presented in
Figure 8o, it is obvious that our proposed method can require a better performance, which is consistent
with the theoretical analysis above.

Table 2. C-band real radar system parameters.

Parameter Value

Carrier frequency 5.4 GHz
Range bandwidth 210 MHz

Range sampling frequency 267 MHz
Pulse repetition frequency 1800 Hz

Pulse duration time 10 µs
SAR platform velocity 130 m/s
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Figure 8. Refocusing results for a ground manoeuvring target by real data. (a) Manoeuvring targets 

before clutter rejection. (b) Manoeuvring targets after clutter rejection. (c) A manoeuvring target in 

the range–time and azimuth–time domains. (d) RCM correction result of the HT-FrFT method. (e) 

RCM correction result of the HT-PFT method. (f) RCM correction result of the BFCA-KT method. (g) 

Range curvature removal by PD operation. (h) Range walk correction result of the manoeuvring 

target using the proposed PCA method. (i) CPF results in the (𝒕𝒎; 𝒇𝝉𝒎𝟐 ) plane. (j) Accumulated 

results of the moving target by the CICPF algorithm. (k) Well-refocused ground manoeuvring target 

of the proposed method. (l) The focusing result of the HT-FrFT method. (m) The focusing result of 

the HT-PFT method. (n) The focusing result of the BFCA-KT method. (o) Comparison results of the 

azimuth profiles. 
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range–time and azimuth–time domains. (d) RCM correction result of the HT-FrFT method. (e) RCM
correction result of the HT-PFT method. (f) RCM correction result of the BFCA-KT method. (g) Range
curvature removal by PD operation. (h) Range walk correction result of the manoeuvring target using
the proposed PCA method. (i) CPF results in the

(
tm; fτ2

m

)
plane. (j) Accumulated results of the moving

target by the CICPF algorithm. (k) Well-refocused ground manoeuvring target of the proposed method.
(l) The focusing result of the HT-FrFT method. (m) The focusing result of the HT-PFT method. (n) The
focusing result of the BFCA-KT method. (o) Comparison results of the azimuth profiles.

5. Discussion

In this section, a computational complexity comparison of the proposed method with the BFCA-KT
method in [10], HT-FrFT method in [16], and HT-PFT method in [27] is now provided. In this analysis,
the range dimension sampling number is Nr, and Na denotes the azimuth sampling number.

The computational load of the BFCA-KT approach in [10] contains the following steps. First, the
deramp operation is adopted to remove the range curvature effect with a computational cost of O(NrNa),
and then, the KT operation is applied to conduct a range walk compensation with a computational
cost of O(2(2NKer − 1) NrNa), where NKer is the length of the interpolation kernel. Finally, the CICPF
is initiated with a computational cost of O[Nr(2Nalog2Na)]. Finally, the total computational cost of the
BFCA-KT method is

CBFCA−KT = O(NrNa + 2(2NKer − 1)NrNa + 2NrNalog2Na). (23)



Remote Sens. 2020, 12, 378 19 of 22

The implementation steps of the HT-FrFT method [16] generally contain RCM correction utilizing
the matching filter and HT, and the FrFT is utilized to estimate and compensate the DFM. The
computational complexity of range curve correction by the second-order matching function is O(NrNa),
and the computational complexity of range walk compensation with HT is O

(
NrN2

a

)
. In FrFT-based

DFM coefficient estimation, the computational complexity of the FrFT is O(NFrFTNalog2Na), where
NFrFT denotes the scanning number of the FrFT. As a result, the total computational complexity of the
HT-FrFT method is

CHT−FrFT = O
(
2NrNa + NrN2

a + NFrFTNalog2Na
)
. (24)

For the HT-PFT algorithm in [27], the steps include range curve correction and HT and PFT
operations. First, the computational complexity of the range curve corrected by a matching function is
O(NrNa). Second, an HT is employed to obtain the estimation of the trajectory slope for the range walk
compensation with a computational cost of O

(
NrN2

a

)
. Finally, the azimuth DFM is compensated by

PFT with a computational cost of NrNa2Na3O(2Nalog2Na), where Na2 and Na3 are the searching times
of second-order and third-order coefficient estimation. As a consequence, the total computational
complexity of the HT-PFT approach is

CHT−PFT = O
(
2NrNa + NrN2

a + 2NrNa2Na3Nalog2Na
)
. (25)

According to the imaging flowchart in Figure 4, the proposed method requires the following
steps. First, the computational complexity of the range curve corrected by the PD operation is O(NrNa).
Then, a PCA method involving covariance matrix construction and eigen decomposition is utilized
to compensate for the range walk. In this work, D represents the dimension, and D = 2, L is the
total number of scattering centres. The computational cost of the covariance matrix construction
requires O

(
LD2

)
. Using singular value decomposition (SVD), eigen decomposition is conducted with a

computational cost of at most O
(
D3

)
. The computational complexity of range walk correction is thus

O
(
LD2 + D3

)
. Finally, the CICPF is performed to estimate DFM coefficients with a computational cost

of NrO(2Nalog2Na). Finally, the total computational cost of the proposed approach is

Cproposed = O
(
2NrNa + LD2 + D3 + 2NrNalog2Na

)
. (26)

According to Equations (23)–(26), it is seen that the proposed approach has an obvious advantage
in terms of the computational cost compared with the BFCA-KT, HT-FrFT, and HT-PFT methods
because of avoiding interpolation and multidimensional search operations.

6. Conclusions

In this paper, a fast SAR refocusing algorithm for ground manoeuvring targets based on PD and
PCA combined with the CICPF method is presented. In the proposed approach, first, the efficient
PD operation and PCA are utilized to correct the RCM, and then, the energy of the manoeuvring
target is concentrated into one range gate. Second, with the motion parameters obtained by the CICPF
approach, the well-reconstructed image of the manoeuvring target is thus realized. From comparisons,
the proposed method presents an obvious advantage in computational cost because it avoids the
multidimensional search and interpolation process. The anti-noise performance is also enhanced
by fully exploiting the 2-D coherent accumulation characteristics for estimating motion parameters.
Finally, the effectiveness of the method is verified by theoretical analysis, simulations, and measured
data processing results.
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