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Abstract: The Zoige Plateau is typical of alpine wetland ecosystems worldwide, which play a key role
in regulating global climate and ecological balance. Due to the influence of global climate change and
intense human activities, the stability and sustainability of the ecosystems associated with the alpine
marsh wetlands are facing enormous threats. It is important to establish a precise risk assessment
method to evaluate the risks to alpine wetlands ecosystems, and then to understand the influencing
factors of ecological risk. However, the multi-index evaluation method of ecological risk in the Zoige
region is overly focused on marsh wetlands, and the smallest units of assessment are relatively large.
Although recently developed landscape ecological risk assessment (ERA) methods can address the
above limitations, the final directionality of the evaluation results is not clear. In this work, we used the
landscape ERA method based on land use and land cover changes (LUCC) to evaluate the ecological
risks to an alpine wetland ecosystem from a spatial pixel scale (5 km× 5 km). Furthermore, the boosted
regression tree (BRT) model was adopted to quantitatively analyze the impact factors of ecological
risk. The results show the following: (1) From 1990 to 2016, the land use and land cover (LULC) types
in the study area changed markedly. In particular, the deep marshes and aeolian sediments, and
whereas construction land areas changed dramatically, the alpine grassland changed relatively slowly.
(2) The ecological risk in the study area increased and was dominated by regions with higher and
moderate risk levels. Meanwhile, these areas showed notable spatio-temporal changes, significant
spatial correlation, and a high degree of spatial aggregation. (3) The topographic distribution, climate
changes and human activities influenced the stability of the study area. Elevation (23.4%) was the
most important factor for ecological risk, followed by temperature (16.2%). Precipitation and GDP
were also seen to be adverse factors affecting ecological risk, at levels of 13.0% and 12.1%, respectively.
The aim of this study was to provide more precise and specific support for defining conservation
objectives, and ecological management in alpine wetland ecosystems.
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1. Introduction

Wetlands are an important type of land use and land cover (LULC) and account for approximately
6% of Earth’s surface area [1]. These ecosystems play an important role in regulating the regional climate,
maintaining the ecological balance and protecting biodiversity [2,3]. In the past 30 years, the alpine
wetland area on the Qinghai–Tibet Plateau has decreased by 2970.31 km2 because of the impacts
of urbanization, dramatically increasing population and global climate change [4,5]. As an unique
ecosystem type, the alpine wetlands ecosystems on the Qinghai–Tibet Plateau are facing a serious crisis
of shrinkage and degradation. Land use and land cover changes (LUCC) are important components
of environmental change, and are essential to maintaining the structural composition and service
functions of an ecosystem [6]. Regional LUCC leads to changes in resources and ecological processes,
thereby playing a key role in local ecological stability [7]. Within LUCC, most social–ecological
compound systems are threatened by human activities and complex natural processes, leading to
numerous ecological risks [8].

Ecological risk assessment (ERA) is an effective means to support ecosystem management [9].
This assessment helps us to understand the possibility that components of ecosystems may impose
negative influences on the ecosystem, due to disturbances from human activities and changes in
natural conditions [10,11]. Research results have practical application value for the formulation of
adaptive risk mitigation strategies and efficient allocation of resources [12]. Ecosystem risk assessment
can be performed with a single-factor, such as the risks associated with the fields of chemistry, physics,
biology or geology [13–15]. In general, the risk characteristics of the entire ecosystem of the region are
underrepresented by single factor evaluation. At present, description of the ecological risk pressure
tends to be extended from a single-index to multisource, multilevel risk factors [16]. The method for
constructing an ERA model, by starting with risk sources, habitats and ecological receptors based on
certain stress factors known within the region, has been widely applied [17–21]. Jiang et al. (2017)
and Shen et al. (2019) established a multi-index model based on different indicators to evaluate the
degradation of marsh wetlands in the Zoige region [22,23]. However, their studies still have some
limitations. They mainly focus on wetland degradation and pay less attention to the changes of the
whole ecosystem. Furthermore, the authors have relied primarily on river basin or township as the
smallest assessment unit. This coarse-scale approach leads to relatively rough evaluation results and
fails to reflect the precise areas of risk occurrence in a large region. With the broad application of the
theory and methods of landscape ecology, the technique of ERA based on landscape patterns has
become a focus in regional ecosystem management [24]. The landscape ERA method can characterize
the impact of human activities or natural change on the landscape composition, structure, function
and process of all LULC types. In addition, this method divides the study area into many small risk
regions (i.e., 5 km × 5 km pixel scale), which can represent the risk at a more precise spatial scale.
Lv et al. (2018), Mo et al. (2017) and Zhang et al. (2018) used landscape ERA methods to evaluate the
ecological risk in river basin, city and arid and semiarid regions, respectively [25–27]. These studies
obtained good results on regional ERA, however, these studies failed to analyze the impact factors on
ERA results, meaning that the directivity of the terminal points for these evaluate results are unclear,
thereby reducing their role in supporting policy makers in regional development.

Analysis of the driving force of ERA results can clarify the specific protection objectives in the
region and provide support for sustainable landscape planning and ecological management. [12].
The boosted regression tree (BRT) model is a recently developed technique for analysis of impact factors.
BRT can deal with different types of independent variables and dependent variables, and effectively
explain the influence and contribution of independent variables to dependent variables [28,29]. The BRT
model has been successfully applied to the impact factors analysis of medical disease and habitat
suitability for species [30,31].

The goals of the present study were to evaluate the landscape ecological risk of the alpine wetland
ecosystem and to further develop an understanding of the mechanisms of risks based on LUCC and the
BRT model. To these ends, the objectives of this study were to (1) analyze the spatio-temporal dynamics
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change pattern of LULC types in the alpine wetland ecosystem from 1990 to 2016; (2) assess the ecological
risk and analyze its variation characteristics during the study period, and; (3) adopt the BRT model
approach to explore the influence of topographical factors, meteorological factors and socioeconomic
factors on the probability on ecological risk.

2. Materials and Methods

2.1. Study Area

The Zoige Plateau is located in the northeastern Qinghai–Tibet Plateau. The plateau hosts the
largest alpine marsh wetland in the world, and the wetland and alpine meadow areas in this region
form a unique alpine wetland ecosystem [32]. The Zoige Plateau is regarded as a sensitive and early
warning region for global climate change because it is situated at specific elevations and geographic
location [33,34]. The study area consists of parts of Maqu and Luqu Counties in Gansu Province
and Ruoergai, Hongyuan, and Aba Counties in Sichuan Province, with a total area of 22,080 km2.
It is bounded by the geographic coordinates 101◦36′–103◦30′E, 32◦20′–34◦00′N. The elevation of the
study area ranges from 3400 m to 3900 m, with an average of 3500 m. There are broad valleys, widely
distributed terraces, and a large number of marshes. This area has a semi-humid continental monsoon
climate in the sub-frigid zone of the plateau. The region exhibits obvious alpine characteristics, such as
long winters and extremely short summers, a cold and dry climate, a long sunshine duration and
a short frost-free period. The annual average temperature range is 0–2 ◦C and the annual precipitation
ranges from 600 to 800 mm [35]. There are rich and diverse types of vegetation, which are dominated
by alpine grassland, swampland, shrubland, and forest [23]. The soil types include bog soil, peat soil,
meadow soil and dark felt-like soil [22]. The river systems within the study area include the main
stream and tributaries of the Yellow River, with the Heihe River and Baihe River running from south
to north [36]. The wetlands on the Zoige Plateau store 840 million m3 of water. Hence, this area is
an important water conservation and supply zone for the upper reaches of the Yellow and Yangtze
Rivers [37]. As one of the highest quality natural pastures in Asia, these meadows provide extensive
grazing areas, with resident populations of ethnic Gansu and Sichuan minorities (Figure 1).

Figure 1. (a) Location of the Zoige Plateau in China; (b) a digital elevation model (DEM) of the study
area; and (c) the natural color composition (RGB = red, green, blue) of the Landsat-OLI image of the
study area in 2016.
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2.2. Data Sources

2.2.1. Field Data

We conducted field sampling between July and August 2017 and 2018 to establish interpretation
signs. We used handheld GPS devices to locate the sampling site and then recorded the land cover type
in easily accessible places. In remote and poorly accessible areas, we used a lightweight unmanned
aerial vehicle (UAV) to conduct surveys involving the collection of images, GPS information and land
cover types. We acquired 224 GPS points and 70 UAV field samples in total. Based on the field GPS
information and UAV images, the main types of indicators were established through comparison with
the Landsat images (Table S1).

2.2.2. Remote Sensing Data

A total of 16 scenes of Landsat TM/ETM/OLI images (path and row: 131/036, 131/037, 131/038, and
130/037) were downloaded from the United States Geological Survey (USGS) (https://earthexplorer.usgs.
gov/). The high-quality images were at 30 m resolution and were obtained between July and August under
cloud cover conditions of less than 5%. The data preprocessing mainly included radiometric calibration,
atmospheric correction, mosaicking and clipping. The tasseled cap transformation of images from 1990 to
2016 was performed to obtain the brightness component (brightness index, BI) by ENVI5.3 software [38].
The normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI)
of the four stages were calculated with ArcGIS10.2 software [39,40]. Gaofen-1 (GF-1) is a high-resolution
optical satellite for remote sensing launched by China in 2013 [41]. The images were downloaded from
the China Centre for Resources Satellite Data and Application (http://www.cresda.com/CN/). The GF-1
images have a spatial resolution of greater than 8 m and were taken between July and August 2016.
GF-1 and Google Earth images were used to verify the precision of the classification results due to
limited field measurement data. The topographic data include elevation and slope. The digital elevation
model (DEM) is the global digital elevation dataset ASTER GDEM V2, which has a resolution of 30 m
(http://srtm.csi.cgiar.org/). The raster surface was adopted to calculate the slope data with a resolution of
30 m in ArcGIS10.2 software. The meteorological data include annual average temperature and annual
precipitation for 1990, 2000, 2009 and 2016, with a spatial resolution of 1 km. The socioeconomic data
include population and GDP (gross domestic product) in these four stages, with a spatial resolution of
1 km. The spatialization methods and the sources of data can be found at http://www.resdc.cn/.

2.3. Methods

The overall method used for ERA and impact factors analysis is shown in Figure 2. Firstly, the
decision tree algorithm with visual interpretation methods and Landsat images was used to classify
the LULC types on the study area. Secondly, the study area was divided into many (i.e., 989) risk
regions. The ERA model was established to combine the landscape disturbance index and landscape
fragmentation index. Finally, the BRT model was adopted to analyze the driving factors of ERA results
from the perspectives of topography, climate and socioeconomic factors.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://www.cresda.com/CN/
http://srtm.csi.cgiar.org/
http://www.resdc.cn/
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Figure 2. A flowchart of the ecological risk assessment and its impact factors analysis in the study.

2.3.1. Classification and Accuracy Assessment Methods

According to the classification system in reference [42] and our requirements, eight LULC types
were classified for the study area: alpine grassland, meadow wetland, shallow marshes, deep marshes,
river and lake, aeolian sediment, construction land and gravel land. Based on consideration of
classification accuracy and efficiency, visual interpretation and decision tree classification methods
were used to classify the LULC types in 1990, 2000, 2009 and 2016 [43,44]. The visual interpretation
method was adopted to extract information about the marsh wetlands and construction land, and
then the decision trees were established by utilizing four classification variables (i.e., NDWI, NDVI,
DEM, BI) based on 294 field investigation samples and 246 GF-1/Google Earth images points (Table 1,
Method S1). When the ground types of field samples collected in 2017–2018 were the same as the
Landsat image interpretation types in the study period (1990, 2000, 2009 and 2016), these samples were
taken as truth points in the study period. In order to ensure the same quantity, if the LULC types of
the field samples changed, then the GF-1 images were used to determine the LULC type in 2016, and
the Google Earth images were used to determine the LULC types in 1990, 2000 and 2009. In addition,
to assess the accuracy of classification results, another 1147 samples were used to validate the accuracy
of the predictions (Table 1). These reference samples from GF-1 images and Google Earth historical
images were used to verify the classification results. We established the standard confusion matrix
to evaluate the classification accuracy of images in 1990, 2000, 2009 and 2016. The total number of
samples correctly classified was divided by the total number of validation samples to calculate the
overall accuracy. We also calculated user accuracy (UA), producer accuracy (PA) and Kappa coefficient,
respectively [45,46].
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Table 1. Number of training and validation data for different land use and land cover (LULC) types.

Land Use/Cover
Types

Training Data Validation Data

GPS Samples UAV Samples GF-1/Google Earth
Images Samples

GF-1/Google Earth
Images Samples

Alpine grassland 101 30 19 460
Meadow wetlands 52 11 37 205
Shallow marshes 6 7 87 200

Deep marshes 16 6 28 70
River and lake 14 5 11 50

Aeolian sediments 11 5 34 80
Construction land 22 6 2 50

Gravel land 2 0 28 32
Total 224 70 246 1147

2.3.2. LULC Dynamic Degree Model

The dynamic degrees of LULC can directly reflect the range and speed of changes in LULC
types [47]. In this study, the comprehensive LULC dynamic degrees model proposed by Gao et al.
was used to calculate and analyze the LULC dynamic degrees in the study area from 1990 to 2016 [48].
The formula is as follows:

S =
∆Si− j + ∆S j−i

Si
×

1
t
× 100% (1)

where S is the dynamic degrees of the LULC type; Si is the total area of an LULC type at the start
of monitoring; ∆Si−j is the lost area of an LULC type in the study period; ∆Sj−i is the added area of
an LULC type in the study period; and t is the time in years.

2.3.3. Construction of the Land Use/Cover ERA Model

To use the empirical relation between the landscape pattern and the ecological environment
based on landscape ecology theories and spatial statistical analysis, the disturbance index (EI) and
landscape fragility index (FI) were constructed to express the ecological risk quantitatively. EI can
measure the degree of disturbance by natural and human factors. This index is used to determine the
resistance of the landscape pattern to external disturbance (Method S2). FI refers to the resistance of
different landscape types to external disturbance. The lower the value, the higher the resistance of
the landscapes in the region to external disturbance and the more stable the ecosystem [49]. FI was
obtained through expert consultation method and normalization [50]. Eight landscape types were
assigned values according to their ability to resist external influences on the basis of the actual condition
of landscape classification in the study area. The FI values after normalization (in decreasing order)
were as follows: meadow wetlands = 0.2220, shallow marshes = 0.1944, deep marshes = 0.1667, aeolian
sediments = 0.1389, alpine grassland = 0.1110, river and lake = 0.0833, construction land = 0.0556 and
gravel land = 0.0278.

The ecological risk index (ERI) was constructed based on the aforementioned landscape disturbance
index and the fragmentation index. The higher the index value, the higher the ecological risk of the
unit being assessed [51]. The ERI can be expressed as follows:

ERI =
n∑

i=1

Ai
An

(EIi × FIi) (2)

where n is the number of landscape types in the sample area; Ai is the area of landscape i in the sample
area; An is the total area of the samples; EIi is the disturbance index of landscape i; and FIi is the fragility
index of landscape i.
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The study area was separated into 989 ecological risk sampling subareas with a grid of
5 km × 5 km according to equal distance sampling methods, where each subarea was an ERA unit.
The comprehensive ecological risk values of different ERA units were calculated individually to
obtain the ecological risk level for the center point of the unit, which was the sample for the spatial
interpolation analysis within the ERA [52]. An ordinary Kriging interpolation in the geostatistical
module of ArcGIS10.2 was used to obtain the spatial distribution for the landscape ecological risk of
the Zoige Plateau [24,53]. Combined with the actual condition and the ERI values of the area in the
four stages as well as the classification method of Lv et al. and Zhang et al., the ERI was classified
into five ecological risk levels [23,27], namely, the lowest-level risk (ERI ≤ 0.050), lower-level risk
(0.050 < ERI ≤ 0.060), moderate-level risk (0.060 < ERI ≤ 0.070), higher-level risk (0.070 < ERI ≤ 0.085)
and highest-level risk (ERI > 0.085).

2.3.4. Spatial Autocorrelation Analysis Methods

The spatial autocorrelation analysis describes whether a significant correlation is present between
the attribute value of a certain element and those of its neighboring elements. This value reflects the
spatial correlation characteristics of the spatial reference unit and neighboring units in terms of their
characteristic attribute value. Moran’s I is a commonly applied statistical index used to measure global
spatial autocorrelation. In this study, Moran’s I was used to measure the global spatial autocorrelation
of ecological risk [54,55]. The calculation formula is given below [27]:

Global Moran′s I =

∑n
i=1
∑m

j=1 wi j(xi − x) (x j − x )

s2∑n
i=1
∑m

j =1 Wi j
(3)

S2 =
1
n

n∑
i=1

(xi − x)2 (4)

x =
1
n

n∑
i=1

xi (5)

where xi is the observation value of area i, xj is the observation value of area j; n is the number of grids;
Wij is the binary weight matrix of the adjacent space used to represent the adjacency relation of spatial
objects; S2 is the mean square deviation. i = 1, 2, . . . , n; j = 1, 2, . . . , m; when area i is adjacent to area j,
Wij = 1, otherwise, Wij = 0.

The local index of spatial autocorrelation (LISA) is a series of indexes obtained through the direct
decomposition of global spatial autocorrelation indexes, and it can be used to determine the spatial
difference between region i and its surrounding regions. Moran’s I scatter plot is used to directly
reflect the spatial autocorrelation in Geoda1.6.0 software. Under a certain significance level, the LISA
cluster gram is obtained in combination with Moran’s I scatter plot. A LISA cluster gram can reflect
the spatial heterogeneity and identify the hotspots and cold spots of land use ecological risk in the
local space [7,56].

2.3.5. Boosted Regression Tree (BRT) Model

BRT model is a machine learning method based on the classification and regression tree (CART)
method [57]. BRT is composed of two algorithms, namely, the regression tree (RT) algorithm and the
boosting algorithm. The RT algorithm is used to segment a dataset into many groups of data that
are easily modeled by recursion, and then modeling is performed by linear regression. The boosting
algorithm is used to enhance the precision of a weak classification algorithm by constructing a series of
forecasting functions and then combining them into a single forecasting function in a certain way [57].
The BRT model improves the stability and accuracy of the calculation results. The relative importance of
each predictor variable can be obtained when the BRT model was built, therefore, the higher the relative
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importance, the stronger the effect of the variable on the response. Moreover, the partial dependence
graph on the BRT model shows the influence of a predictor on the response after accounting for the
average effects of the remaining variables.

In this study, the ERI values of the four stages from 1990 to 2016 were used as dependent variables,
the elevation, slope, annual average temperature, annual precipitation, distance from residential areas,
distance from road, population and GDP were viewed as independent variables. The eight driving
factors are shown in Figure 3. The elevation, slope, distance from residential areas are static variables,
the annual average temperature, annual precipitation, population and GDP are dynamic variables.

Figure 3. Impact factors (a) elevation; (b) slope; (c) annual average temperature in 2016; (d) annual
precipitation in 2016; (e) distance from resident areas; (f) distance from road in 2016; (g) population in
2015; (h) GDP in 2015.

The value of ecological risk was selected as the response variable. None of the eight predictor
variables were highly correlated (R2 < 0.456, Table 2). The “gbm” package programmed by Elith et al.
was run in R studio (version 1.2.5) for the BRT analysis [57]. The BRT model with a Gaussian distribution
was adopted to investigate the influence of various factors on the ecological risk.

Table 2. Pearson correlation coefficients for all pairs of impact factors. V0~V8 represent ecological risk
index (ERI), elevation, slope, temperature, precipitation, distance from resident area, distance from
road, population and GDP, respectively.

V0 V1 V2 V3 V4 V5 V6 V7 V8

V0 1
V1 −0.318 1
V2 −0.222 0.456 1
V3 0.260 −0.378 −0.177 1
V4 −0.020 0.323 0.147 0.009 1
V5 −0.026 0.150 0.038 −0.099 0.041 1
V6 −0.059 0.102 0.027 −0.141 0.013 0.094 1
V7 0 0.001 0 −0.020 0.005 0.007 0 1
V8 0 0.007 0.008 0.001 0 0.010 −0.018 0.042 1

Three parameters are needed in the BRT model, including learning rate (lr), tree complexity (tc)
and bag fraction. The learning rate decreases their contributions when each tree is added to the growth
model. The tree complexity determines the maximum order of interaction in each tree. When the lr
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decreases, the ntree increases, which increases the computational cost, but a smaller lr (and larger
ntree) tends to get better results [58]. The bag fraction specifies the proportion of training sets used for
modeling in each step [30]. Generally, it was reasonable to set the bag fraction to 0.2 [58]. In order to
determine the optimal combination of the lr, tc and the number of trees (ntree), models were fitted
with lr = 0.05, 0.01, 0.005, 0.001 and tc = 1, 5, 10. Ten-fold cross-validation (CV) was used to verify
the accuracy. Figure 4 shows the relationship between the ntree and the prediction deviation under
the three tc and four lr values in the model. In general, ntree is optimal when prediction deviation
reaches the minimum. The BRT model requires high stability because it is susceptible to overfitting [58],
therefore, we set lr = 0.01, tc = 5 and ntree = 10,000 as the optimal scheme according to the accuracy
evaluation results (Table 3). In this case, the correlation is relatively high (0.88), while the difference
between training data correlation and CV correlation is relatively low (0.06).

Figure 4. The relationship between the number of trees and predictive deviance for models fitted with
three levels of tree complexity and four learning rates, (a) learning rates = 0.05, (b) learning rate = 0.01,
(c) learning rate = 0.005, (d) learning rate = 0.001).

Table 3. The correlation between training data and cross-validation (CV) of three levels of tree
complexity (tc1, tc5 and tc10) and four learning rates (lr0.05, lr0.01, lr0.005 and lr0.001).

Learning
Rate

tc1 tc5 tc10

Training Data
Correlation

CV
Correlation

Training Data
Correlation

CV
Correlation

Training Data
Correlation

CV
Correlation

lr0.05 0.74 0.70 0.95 0.85 0.97 0.85
lr0.01 0.72 0.69 0.88 0.82 0.93 0.84
lr0.005 0.71 0.68 0.85 0.79 0.90 0.82
lr0.001 0.67 0.66 0.78 0.75 0.82 0.78
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3. Results

3.1. Spatio-temporal Patterns in LUCC

3.1.1. Classification Results and Accuracy

Figure 5 shows the spatial distribution map of LULC types on the Zoige Plateau for the four stages
from 1990 to 2016. Alpine grassland, shallow marshes and meadow wetlands are the dominant LULC
types on the Zoige Plateau, accounting for 71.77%, 12.36% and 9.48% of the total area, respectively.

Figure 5. Land use/cover in 1990, 2000, 2009 and 2016.

The accuracy of the classification results was evaluated by calculating the overall accuracy and Kappa
coefficients combined with GPS verification points, GF-1 and Google Earth images. The classification
results for the four image stages in 1990, 2000, 2009 and 2016 have overall accuracy levels of 88.83%,
87.45%, 89.10% and 90.50%, respectively, with a total average of 89% and they have Kappa coefficients of
up to 0.85 (Table 4). These results meet the requirements of this study.
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Table 4. Accuracy of land use/cover classification results in 1990, 2000, 2009 and 2016. UA, PA and OA
represent user accuracy, producer accuracy and overall accuracy, respectively.

Land Use/Cover Types 1990 2000 2009 2016

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Alpine grassland 85.65 93.81 84.13 93.81 89.35 92.36 93.26 93.46
Meadow wetlands 95.61 88.69 93.17 88.69 93.17 84.51 95.12 87.84
Shallow marshes 96.00 91.43 94.00 91.43 94.00 89.10 91.50 90.59

Deep marshes 97.14 97.14 97.14 97.14 90.00 98.44 87.14 98.39
River and lake 82.00 85.42 68.00 85.12 92.00 85.19 82.00 77.36

Aeolian sediments 67.50 62.79 76.25 62.07 80.00 73.56 71.25 86.36
Construction land 92.00 90.20 92.00 90.20 88.00 97.78 88.00 93.62

Gravel land 85.29 67.44 82.35 66.67 44.12 88.24 82.35 73.69

OA (%) 88.83 87.45 89.10 90.50
Kappa coefficient 0.87 0.85 0.87 0.88

3.1.2. LULC Dynamics Change in 1990–2016

Table 5 shows the area changes and dynamic degrees for the LULC in the study area from 1990 to
2016. Based on the comprehensive dynamic degree research method of Xu et al., landscape change can
be divided into four types: extremely slow change (0% to 3%), slow change (3% to 12%), rapid change
(12% to 20%) and extremely rapid change (20% to 24%) [59]. Table 5 shows that the LULC changes in
the study area from 1990 to 2000 corresponded mainly to the extremely slow type and the slow type.
In particular, the meadow wetlands changed the most remarkably, with a comprehensive dynamic
degree of up to 11.77%. The dynamic degrees of deep marshes, aeolian sediments and construction
land were also relatively high compared with those of other LULC types, all exceeding 8%. The dynamic
degree of alpine grassland was the lowest (1.34%), corresponding to the extremely slow change type.
From 2000 to 2009, some LULC types exhibited rapid changes and extremely rapid changes. In particular,
the change in construction land was the most dramatic, with a dynamic degree exceeding 20%. The LULC
dynamic degrees of deep marshes (16.85%) and aeolian sediments (16.81%) were also significant, both
exceeding 16%. Compared to those before 2009, the comprehensive dynamic degrees of various ground
objects in the study area tended to increase from 2009 to 2016. In particular, the dynamic degree of deep
marshes reached 21.67% and was extremely rapid. The aeolian sediments (18.74%), gravel land (16.63%)
and construction land (15.10%) also changed significantly and corresponded to the rapid change type.
The alpine grassland was still in an extremely slow change state, with a dynamic degree of only 1.47%.

Table 5. LULC dynamics degree of the study area from 1990 to 2016.

Land Use/Cover
Types

1990–2000 2000–2009 2009–2016

Change
Area (km2)

Dynamic
Degree (%)

Change
Area (km2)

Dynamic
Degree (%)

Change
Area (km2)

Dynamic
Degree (%)

Alpine grassland 2005.10 1.34 1604.22 1.10 −1675.58 1.47
Meadow wetlands 2262.12 11.77 1862.43 9.88 1475.09 10.29
Shallow marshes −2114.99 6.41 −897.65 3.55 −1309.74 7.30

Deep marshes −206.52 8.58 133.35 16.85 −128.71 21.67
River and lake −167.10 6.27 107.78 7.06 168.19 11.12

Aeolian sediments −316.48 8.64 −361.6 16.81 437.66 18.74
Construction land 45.83 8.54 115.23 20.90 138.40 15.10

Gravel land −604.69 6.08 −305.28 7.92 442.00 16.63

3.2. Analysis of Landscape Ecological Risk

3.2.1. Spatio-temporal Characteristics of Landscape Ecological Risk

In general, the ecological risk on the Zoige Plateau has increased (Figure 6). In particular, the areas
with the higher- and moderate-level risk are large. The Zoige Plateau shows significant spatial
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differences in ecological risk, exhibiting a distribution pattern with higher risk levels in the east and
center and lower risk levels in the west and surroundings.

Figure 6. Maps of the ecological risk level in (a) 1990, (b) 2000, (c) 2009 and (d) 2016.

Figure 7 shows the dynamic changes and transfer direction of various types of ecological risk on the
Zoige Plateau. From 1990 to 2000, the lower-level risk, moderate-level risk and high-level risk regions
in the study area underwent notable changes. In particular, the proportion of lower-level risk areas
decreased from 17.49% to 13.08% and primarily transformed into low- and moderate-level risk areas.
The proportion of moderate-level risk areas decreased from 28.67% to 17.07% and these areas primarily
transformed into higher-level risk areas. The proportion of highest-level risk areas increased from 4.14%
to 21.51%, exhibiting the largest change in area among the risk levels, through the transformation of
primarily higher- and moderate-level risk areas. From 2000 to 2009, the moderate- and highest-level risk
areas changed to a relatively remarkable extent, and in particular, the highest-level risk area changed
the most. The proportion of moderate-level risk areas increased from 17.07 to 21.31% through the
transformation of higher- and lower-level risks. The proportion of the highest-level risk areas decreased
from 21.51 to 11.92% and primarily transformed into higher-level risk areas. From 2009 to 2016,
all types levels of ecological risk showed notable changes, and the lowest-, higher- and highest-level
risk areas changed the most. The proportion of the lowest-level risk areas decreased from 18.72% in
2009 to 8.9% in 2016 and transformed primarily into lower-level risk areas. The proportion of the
higher-level risk area increased from 33.29 to 40.60% through transformation of mainly moderate-level
risk areas. The proportion of the highest-level risk area increased from 11.92 to 20.70% through the
transformation of mainly higher-level risk areas.
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Figure 7. Ecological risk transformation matrix for 1990, 2000, 2009 and 2016.

3.2.2. Global Spatial Autocorrelation of Ecological Risk Index (ERI)

Using the spatial distribution data on ecological risk from the Zoige Plateau from 1990 to 2016,
Moran’s I scatter plots (Figure 8) were obtained. The global Moran’s I values of ecological risk for
the Zoige Plateau were high, reaching 0.7803, 0.7402, 0.7410 and 0.7693 in 1990, 2000, 2009 and 2016,
respectively. These results indicate that the ecological risk of the study area shows a clustering effect
in space and a strong positive correlation. That is, the ecological risks in the regions around areas of
relatively high ecological risk are also relatively high, and the ecological risks in the regions around
areas of relatively low ecological risk are also relatively low.

Figure 8. Moran scatter plots of the ecological risk in the study area (Low-high: LH, high-high: HH,
low-low: LL, high-low: HL.). Under a given significance level, when Moran’s I > 0, there is positive
spatial autocorrelation, indicating a clustered state of spatial ecological phenomena; when Moran’s I < 0,
there is negative spatial autocorrelation, indicating a discrete state of spatial ecological phenomena.
When Moran’s I = 0, there is no spatial autocorrelation, indicating a random distribution of spatial
ecological phenomena [60].
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3.2.3. Local Spatial Autocorrelation of ERI

Figure 9 shows that only high–high (HH) and low–low (LL) region autocorrelations are present in
the study area. The HH regions are primarily located in the northeastern, central and southernmost
parts of the Zoige Plateau, where the marsh wetlands (deep marshes, shallow marshes and meadow
wetlands) and aeolian sediments are widely distributed. These types of landscapes are the most fragile
and have high ERI values. The LL regions are primarily distributed along the northwestern and
southwestern ends of the study area, and the primary LULC types are alpine grassland and gravel
land, these landscape types are relatively stable, and thus, the ERI values are relatively low.

Figure 9. The local index of spatial autocorrelation (LISA) cluster maps.

3.3. Analysis of the Impact Factors for ERI

The relative importance of various factors to the ERI of the Zoige Plateau was analyzed using
the BRT method (Figure 10). The elevation is the factor that impacts the ERI the most, with a relative
importance of 23.4%. The other driving factors in decreasing order of relative importance, are the
average temperature (16.2%), GDP (13.0%), annual precipitation (12.1%), distance from residential
areas (9.9%), slope (9.0%), distance from roads (8.8%) and population (7.6%).

Figure 11 shows the variation curves for the relative influences of various factors, displaying the
changes in factor values and their influences on the ERI. The relative effects of elevation indicate that
when the elevation is less than 3740 m, the influence on the ERI is positive. In particular, the influence
on the ERI increases with increasing elevation when the elevation is between 3400 and 3460 m, and
the influence on the ERI decreases with increasing elevation when the elevation is between 3460 and
3740 m. When the elevation is greater than 3740 m, the influence on the ERI is negative and gradually
decreases with increasing elevation. When the temperature is less than 1.7 ◦C, the influence on the ERI
is negative, and this impact decreases with increasing temperature; when the temperature is higher
than 1.7 ◦C, the influence on the ERI is positive, and it increases with increasing temperature. When the
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GDP is less than 8.5 yuan/km2, the influence of the GDP on the ERI is negative, and in particular,
the relative effect is high when the GDP is less than 2.5 yuan/km2. When the GDP is greater than
8.5 yuan/km2, the influence on the ERI displays a positive correlation. When the precipitation is less
than 800 mm, the influence on the ERI shows a negative correlation, and the higher the precipitation,
the weaker the influence. When precipitation exceeds 800 mm, the influence on the ERI displays
a positive correlation. The influence of the distance from residential areas on the ERI first has a negative
correlation and then a positive correlation, with a threshold value of 21.9 km. As the slope increases,
the value of the ERI first increases and then decreases, with a threshold value of 16◦. The influence
of the distance from the road on the ERI is primarily within a range of approximately 20 km, and as
the distance increases, the influence on the ERI successively shows negative, positive, negative and
positive correlations. The relative effect of the population is somewhat irregular, over a range of 4 to
20 people/km2, and the influence on the ERI tends to increase gradually with the increasing population.

Figure 10. Relative importance of various factors for the ERI in the BRT analysis.

1 
 

 
Figure 11. Relative influence on the change in the ERI in the study area. When the value of the relative
influence is greater than zero, the influence of various factors is positive; when the value of the relative
influence is less than zero, the influence of various factors is negative; and when the value of relative
influence equals zero, there is no influence.
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4. Discussion

4.1. Mechanisms of Influence on the Ecological Risk

The BRT analysis results of this study indicate that topography, climate and human activities have
certain influences on the ecological risk in the study area. In terms of topography, the Zoige Plateau is
a hilly plateau with a high elevation [61]. The influence on the ERI is highest when the elevation is
within a range of 3400 to 3500 m, primarily because this region is most suitable for human settlements,
and the intense human activities in this zone have led to the greatest disturbance.

As the elevation increases, human activities gradually decrease, and the influence on the ERI also
decreases accordingly. Because of the challenges posed by the environmental conditions to human
activities, few people have settled in this region, and the ERI decreases to the lowest value with
decreasing human activity when the elevation exceeds 3800 m. In addition, slope is one of the factors
influencing the ERI: the ERI is high when the slope is low, and the ERI is low when the slope is high.
The topography of the Zoige Plateau consists primarily of wide valleys and gentle hills. Most of
the marsh wetlands are at the bottoms of wide valleys with slopes of <10◦; as the slope increases,
degradation of the marsh wetlands increases significantly [62], imposing unfavorable influences on the
stability of the overall ecosystem and increasing the ecological risk. In addition, human activities are
limited to a great extent in steeply sloping regions, and thus, they retain their stable state.

In terms of climate, temperature and precipitation are the primary factors influencing the ERI.
The higher the temperature and the lower the precipitation in a region, the relatively higher the
ecological risk. According to Figure 12a,b, from 1990 to 2016, the temperature in the study area
showed a notable increase, the precipitation basically remained the same, the evaporation increased
significantly. With its location east of the Qinghai–Tibet Plateau, the Zoige Plateau is a typical fragile
alpine ecological zone and is very sensitive to climate change [63]. In the context of global climate
change, the variation in the warming and drying of the Zoige Plateau has caused a decrease in the
surface runoff, the drying of marshes, shrinkage of lakes and the desertification of grasslands in this
area, resulting in the deterioration of its ecological stability [33,64,65].

Figure 12. Interannual variability in (a) temperature and precipitation, (b) evaporation, (c) population
and GDP and (d) large livestock.
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Human activities have a significant influence on the ERI. In terms of the GDP, the ecological risk is
high when the GDP exceeds 8.5 yuan/km2. Figure 12c shows that the GDP of the study area significantly
increased from 1995 to 2015. Due to the specific geographical location and climatic conditions, most
regions in this area are not suitable for planting. Animal husbandry is the most important industry in
this area, and large animals, such as yaks and Tibetan sheep, and their byproducts are the primary source
of income for local farmers. With the rapid economic development and improvement of human living
standards in this area, the demand for livestock products has increased and in response, the number
of livestock has also increased (Figure 12d), leading to serious overgrazing of the grasslands [66].
The human population has an influence on the ecological risk to a certain extent. Figure 12c shows
that the population in each county in the study area has increased gradually over the past 21 years.
An increase in the population is also accompanied by an increase in the demand for resources, bringing
about enormous pressure on the local area [67]. In the 1970s, to alleviate the population pressure,
large-scale trench draining was performed to expand the pasture to meet the grazing demands.
The drainage of the trenches deteriorated the water-holding capacity of the wetlands, which is difficult
to recover, accelerating the dewatering and shrinkage of marshes and posing a serious threat to the
safety and stability of the local ecology [68]. Urban and construction land as a whole did not adversely
influence the ecological risk in the study area. Despite the most intense human activities being located
in these places, these factors can be effectively planned and managed to maintain stability.

4.2. Innovative Strategies in the Present Study

The method used in this study evaluates the ecological risk of various land cover types in the
whole alpine wetland ecosystem on the scale of spatial pixels. Compared with single index assessment,
this method comprehensively represents the impact of human activities or natural changes on the
landscape composition, structure and function of alpine wetland ecosystems. This approach has good
applicability to the eastern part of the Qinghai–Tibet Plateau, which is sensitive to global climate
change and is greatly affected by human activities. Compared with the multi-index evaluation method
used in recent years, this study takes 5 km × 5 km risk regions as the evaluation unit, which is a finer
scale than that of the recent assessment results that take the river basin or township as the smallest unit.
Additionally, in view of the limitation that the final directivity of recent landscape ERA are not clear,
we used the BRT model and statistical data to quantitatively analyze the driving factors of ecological
risk at the pixel scale. Our research provides more refined support for defining the protection objectives
and ecological management in the region (i.e., alpine wetland ecosystem).

4.3. The Improvement of Classification and ERA in Future Study

Considering the accuracy and speed of classification, a decision tree with visual interpretation was
used to classify the study area. The OA of classification in the four periods can reach 88% on average,
and the Kappa coefficient was more than 0.85. The UA and PA of alpine grassland, marsh wetlands
and construction land were relatively higher, while those of aeolian sediments were lower. In general,
the classification results meet the needs of the present research. The decision tree algorithm is a commonly
used automatic machine classification method because of its strong operability, high model interpretation
and effectiveness for wetland remote sensing image classification [43]. With the development of computer
technology and machine learning algorithms, support vector machine (SVM) and random forest (RF)
algorithms have been increasingly adopted in wetland classification. Khatami et al. showed that the
classification accuracy of RF and SVM is higher than that of the neural network method (ANN) and
maximum likelihood method [69]. Previous researchers have used decision tree and SVM for classification
and achieved good results in the Zoige region [22,70]. In the future, the RF method may be an effective
way to further improve the classification accuracy of alpine wetland regions. In addition, with the
continuous improvement of earth observation systems in various countries, remote sensing data such as
Sentinel and GF images have increasing spatial resolution, which has benefits for the more accurate
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identification of aeolian sediments and addresses the confusion that can arise in the classification of
aeolian sediments, meadow grassland and gravel land.

ERA based on landscape patterns is an effective method for performing regional ecological
environment assessments of study areas. This method can, not only combine the horizontal interaction
of land use systems with the longitudinal interaction of ecosystems, but can also effectively explore
their distribution characteristics, local heterogeneity and homogeneity. However, there are still
shortcomings. The dominant factors in landscape ecological risk for different study areas vary, and the
risk classification setting is still subjective to some extent. Consequently, the classification results can
vary. In addition, valuable future studies can include simulating the future LUCC of the study area,
combining these changes with ecosystem services and improving and integrating the framework for
landscape ERA.

5. Conclusions

Combined with the manual interpretation and machine classification algorithm, and considering
both efficiency and precision, the primary ground types of the Zoige Plateau were successfully classified,
providing dynamic monitoring of the alpine wetland and alpine grassland resources in the local area
from 1990 to 2016. In addition, we performed a spatial analysis on the occurrence of potential ecological
risk in the study area, and we determined the factors that influence the ecological stability of the area,
providing a basis for local land use management and ecological protection. The primary conclusions
are as follows:

(1) Alpine grassland, alpine wetlands and shallow marshes are the main LULC types on the Zoige
Plateau. From 1990 to 2016, the areas of alpine grassland and meadow wetlands showed a gradual
increasing trend and the shallow marsh area continuously decreased. From 1990 to 2016, the LULC
of the study area experienced remarkable changes, in particular, the changes in deep marshes,
aeolian sediments and construction land were the most intense, while the change in alpine
grassland was slow.

(2) From 1990 to 2016, the ecological risk on the Zoige Plateau increased, in particular, regions with
higher and moderate ecological risks covered large areas. The ecological risk of the study area
showed remarkable spatio-temporal variations, significant spatial correlation and a high degree
of spatial clustering.

(3) The topography, climate and human activities have certain influences on the stability of the alpine
wetland ecosystem of the Zoige Plateau. The elevation has the largest influence on the ecological
risk of the area, primarily because human activities are the most intense in low-elevation parts
of the plateau, disturbing the ecosystems to the greatest extent and causing high ecological risk.
Furthermore, warming and drying climate conditions caused decreased surface runoff, the drying
of marshes, shrinkage of lakes and the desertification of grasslands, resulting in the deterioration
of ecological stability. Economic development has led to an increase in the demand for livestock
products, and the resulting increase in the number of livestock has caused overgrazing of pastures
and has adversely affected the ecosystem.
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