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Abstract: The fusion of a single panchromatic (PAN) band with a lower resolution multispectral (MS)
image to raise the MS resolution to that of the PAN is known as pansharpening. In the last years a
paradigm shift from model-based to data-driven approaches, in particular making use of Convolutional
Neural Networks (CNN), has been observed. Motivated by this research trend, in this work we introduce
a cross-scale learning strategy for CNN pansharpening models. Early CNN approaches resort to a
resolution downgrading process to produce suitable training samples. As a consequence, the actual
performance at the target resolution of the models trained at a reduced scale is an open issue. To cope with
this shortcoming we propose a more complex loss computation that involves simultaneously reduced and
full resolution training samples. Our experiments show a clear image enhancement in the full-resolution
framework, with a negligible loss in the reduced-resolution space.

Keywords: pansharpening; data fusion; convolutional neural network; multiresolution analysis; land
cover classification

1. Introduction

In light of the continuously increasing number of satellites acquiring images of the Earth, data
fusion is becoming a key research topic in the remote sensing domain allowing for cross-sensor [1,2],
cross-resolution [3] or cross-temporal [4] analysis and information extraction. Due to technological
constraints many satellite systems for Earth observation, think of GeoEye, Plaiades or WorldView, to name
a few, provide a single full-resolution panchromatic band, responsible to preserve geometrical information,
together with a multispectral image at lower spatial resolution, aligned with the PAN,which gathers
spectral information. A multi-resolution fusion process referred to as pansharpening is therefore often
employed to merge these components in order to raise the multispectral (MS) resolution to that of the PAN
component [3,5].

Pansharpening is a challenging task, far from being solved, also because of the continuously increasing
resolutions at which new generation satellites operate. The majority of the traditional approaches fall in
two main categories. The former is known as component substitution (CS) [6] and refers to a paradigm
that shifts the multispectral component in a suitable transformed domain where the panchromatic band is
used to replace one of the transformed bands before an inverse transform brings them back to the original
domain. Under the restriction that only three bands are concerned, the Intensity-Hue-Saturation (IHS)
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transform can be used, with the intensity component replaced by the panchromatic band [7]. Such approach
has been generalized in Reference [8] (GIHS) to handle a larger number of bands. Many other transforms
have been considered for CS, for example, the principal component analysis [9], the Brovey transform [10]
and the Gram-Schmidt (GS) decomposition [11]. More recently, adaptive CS methods have also been
introduced, such as the advanced versions of GIHS and GS adopted in Reference [12], the partial
substitution method (PRACS) proposed in Reference [13], or the optimization-based technique of
Reference [14]. The second category, referred to as multiresolution analysis (MRA) [15], addresses the
pansharpening problem from the spatial perspective. In particular, MRA methods resort to the extraction
of high frequency spatial details using a prior multiresolution decomposition such as decimated or
undecimated Wavelet transforms [15–18], Laplacian pyramids [5,19–22], or other nonseparable transforms
such as contourlet [23], and so forth. Extracted details are then properly injected into the resized MS
component. A comprehensive review of these two categories can be found in Reference [3]. Other methods
do not fit with the above mentioned categories and are better cast as statistical [24–29], variational [30,31],
or dictionary-based [32–37]. In addition, it is also worth mentioning the matrix factorization approaches,
examples are References [38–40], which are more suited to the fusion of low resolution hyperspectral
images with high resolution multispectral ones. In this case, in fact, the spectral variability becomes a
serious concern to be handled carefully by means of unmixing oriented methodologies [41–43].

In 2012 Krizhevsky et al. have presented a seminal work [44] that has revolutionized the computer
vision research domain. For the first time, they succeeded to train a very deep artificial neural network for
classification, showing impressive results on a very challenging dataset (ImageNet). Since then many other
vision tasks have been successfully addressed by means of deep learning methods. Notable examples are
image segmentation [45,46], super-resolution [47,48] or object detection [49], to mention a few. Needless to
say, this paradigm shift from model-based to data-driven approaches is involving many related research
fields, including remote sensing [50–53]. In particular, to the best of our knowledge, the first pansharpening
method relying on the use of a convolutional neural network (CNN), named PNN, was proposed in 2016
by Masi et al. [54] and followed by other similar works in a short time [50,55–59].

Due to the lack of ideally pansharpened samples to be used for training, the above mentioned
deep learning (DL) methods resort to an automatic synthesis process to generate reference samples from
unlabeled real data. In particular, the PAN-MS training samples undergo a resolution downgrading process
in order for the original MS to play as target reference, since the reduced-resolution PAN-MS pair can be
used as corresponding input. By doing so, the network is trained in a lower-resolution domain relying
upon the assumption that it will generalize properly when applied in the target full-resolution domain.
In this regard the resolution downgrade process plays a critical role. In essence it amounts to a band-wise
antialiasing low-pass filtering (LPF) followed by a subsampling. In our previous work [54,60,61] we
resorted to Wald’s protocol [62], a well-established procedure for accuracy assessment of pansharpening
methods, that makes use of antialiasing LPFs mimicking the sensor modulation transfer functions (MTF)
for an unbiased problem scaling. Unfortunately, even with an accurate scaling of the training images, an
information gap exists between scales. Put in simpler words, objects whose typical size amounts to a few
pixels in the original resolution space may never be rescaled without loosing their shape in the reduced
resolution domain. Hence, there will be no hope for any network to “experience” such tiny geometries
by training on rescaled datasets generated as described above. As a result, the trained networks usually
behave pretty well in the reduced-resolution space, outperforming with a considerable gain conventional
model-based approaches, whereas a less evident gain is observed at full-resolution [50,54,55,61].

On the basis of the above observations, in this work we propose a training framework that involves
also the full-resolution PAN component that, once rescaled, is simply discarded in the previous solutions.
Such an integration is achieved by means of a joint low- and high-resolution loss that involves, in the
computation of high-resolution loss component, a model-based MRA pansharpening method [20] with
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good spatial properties. The proposed learning framework is tested on our recently proposed advanced
version of PNN [61], hereinafter referred to as A-PNN. In summary, the contributions of this paper are
the following:

i. a new target-adaptive CNN-model for pansharpening with improved capacity at full-resolution;
ii. a new general learning framework for CNN-based pansharpening that enforces cross-scale consistency;

iii. an extensive experimental validation for the proposed approach, using two different sensors and a
wide variety of comparative solutions, both classical and deep learning.

The rest of the paper is organized as follows. Section 2 introduces the datasets used for training,
validation and test, and presents the proposed solution. Section 3 describes the evaluation framework,
gathers comparative methods and presents numerical and visual experimental results with related
discussion. Section 4 presents further experimental analyses, while Section 5 provides concluding remarks.

2. Materials and Methods

In this section we will describe the datasets used for training, validation and test (Section 2.1). Then,
we will present the related work (Section 2.2) to conclude with the proposed method (Section 2.3).

2.1. Datasets

Our proposal starts from the pre-trained networks A-PNN introduced in Reference [61] as advanced
versions of PNN, designed for three different imaging systems: GeoEye-1, Ikonos and WorldView-2.
In the present work we will focus on GeoEye-1 and WorldView-2 models and datasets. Table 1 summarizes
the main spectral and spatial characteristics for the target sensors who provide four and eight MS
bands, respectively.

Table 1. Bandwidths of the multispectral (MS) channels (left-hand side) and Ground Sample Distance [m]
at Nadir (rightmost column) for GeoEye-1 (GE1) and WorldView-2 (WV2) images.

Bandwidths of the MS Channels [nm] GSD at Nadir [m]
Sensor Coastal Red Blue Red Edge Green Near-IR1 Yellow Near-IR2 PAN/MS

GE1 - 655–690 450–510 - 510–580 780–920 - - 0.46/1.84
WV2 400–450 630–690 450–510 705–745 510–580 770–895 585–625 860–1040 0.46/1.84

The GeoEye-1 A-PNN model was trained and validated on datasets Caserta-GE1-A and -B (near
Naples, Italy), respectively, as detailed in Table 2. Likewise, the WorldView-2 A-PNN model was trained
and validated on a similar partition of a WorldView-2 image of Caserta. For testing our solutions we will
use separate image samples (Caserta-GE1-C and Washington-WV2) as detailed in the right-hand side of
Table 2. A couple of samples per sensor are shown in Figure 1.

Table 2. Training, validation and test datasets partition. Sizes are in pixels at the scale of the MS component.

Training/Validation Test
Sensor Dataset Size Samples Dataset Size Samples

GE1 Caserta-GE1-A/B 33 × 33 14,000/7800 Caserta-GE1-C 320 × 320 15
WV2 Caserta-WV2-A/B 33 × 33 14,000/7800 Washington-WV2 320 × 320 15
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GeoEye-1 (Caserta-GE1-C) WorldView-2 (Washington-WV2)

Figure 1. Image samples from test datasets. PAN components are shown on top. MS components (bottom)
are shown as RGB subsets for ease of visualization.

2.2. Background: Target-Adaptive CNN-Based Pansharpening

In this work a new strategy to train CNN models for pansharpening is proposed. In particular we
rely on the target-adaptive method A-PNN [61] to prove the effectiveness of the proposed approach.
In the following we will therefore briefly recall A-PNN whose network architecture is depicted in Figure 2.

CNNs can be built by combining different processing layers, like convolution, nonlinearities,
pooling, deconvolution, batch normalization and so on, according with some direct acyclic graph (DAG).
The target-adaptive CNN-based pansharpening algorithm A-PNN is an evolution of the PNN method
proposed in Reference [54] which makes use of a three-layer (L = 3) serial architecture with convolutional
layers interleaved by Rectified Linear Unit (ReLU) activations (max(0, ·)). A-PNN presents in particular
three peculiar features with respect to PNN: a different loss for training (L1 instead of L2); a residual
learning configuration [63]; a target-adaptive scheme.

The l-th generic convolutional layer, with N(l)-band H ×W input u(l), yields a M(l) × (H ×W)

output v(l) whose m-th band is given by the 2D convolution with bias

v(l)
m = w(l)

m ∗ u(l) + b(l)m ,

where w(l)
m is a (K× K)× N(l) convolutional kernel (K× K is the spatial support), and b(l)m is a bias term.

For the sake of simplicity, let us indicate with Φ(l) , (w(l), b(l)), where w(l) , [w(l)
1 , . . . , w(l)

M(l) ] and

b(l) , [b(l)1 , . . . , b(l)
M(l) ], the set of learnable parameters associated to layer l. Except for the output layer,

the convolution variable v(l) is then passed to the element-wise activation function (ReLU in our case)
which provides the l-th set of feature maps f(l), that is,

f(l) , fl(u
(l), Φ(l)) =

{
max(0, v(l)), l < L

v(l), l = L
.

By concatenating these layer functions (u(l+1) = f(l)) we get the overall CNN function

f̃Φ(u) = fL( fL−1(. . . f1(u, Φ(1)), . . . , Φ(L−1)), Φ(L)), (1)
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being Φ , (Φ(1), . . . , Φ(L)) the whole set of parameters to learn. In this chain, each layer l provides a set
of feature maps, f(l), which “activate” on local cues in the early stages (small l), to become more and more
representative of global interactions in subsequent ones (large l).

The input u = u(1) to the network is given by the concatenation of the PAN p and the upsampled
version x̃ = up(x) of the MS component x:

u , (x̃, p).

On the other hand, the actual output x̂ is the sum of the output of the last convolutional layer, f(L)

and x̃, as shown in Figure 2, yielding

x̂ = x̃ + f(L) = x̃ + f̃Φ(u). (2)

By doing so, the network is asked to predict only the missing detail x̂− x̃, resulting in a much faster
training process (known in the literature as residual learning). For the sake of simplicity, we will refer
to the function fΦ that incorporates the polynomial upsampling of the MS component, x̃ and the skip
connection for residual learning, which directly depends on the two input components x and p as shown
in Figure 2. In formal terms,

x̂ = fΦ(x, p) , x̃ + f̃Φ ((up(x), p)) . (3)

The main hyper-parameters of A-PNN for WorldView-2 are gathered in Table 3 (see Reference [61]
for other sensors).

↑4×4x

u

p

x̃

f (1)

48

f (2)

32

f (3)

8

+
f̃Φ(u)

skip connection

x̂

fΦ(x,p)

Figure 2. Top-level workflow of the A-PNN model [61] for WorldView-2 images.

Table 3. Hyper-parameters of the A-PNN model [61] for WorldView-2 images.

Layer Spatial Support Input Bands Output Features Activation
(K × K) (N(l)) (M(l))

l = 1 9× 9 9 48 ReLU
l = 2 5× 5 48 32 ReLU
l = 3 5× 5 32 8 none

In order to train the network parameters Φ, a sufficiently large number of input-output (labeled)
examples is required. Lacking ideally pansharpened images to be used as references, A-PNN and other
CNN-based methods resort to a sample generation strategy where the scale of the training dataset is
reduced by a factor equal to the PAN-MS resolution ratio, allowing the original MS data to play the role of
reference. Once trained, the network is ready to be used to pansharpen any image at its own resolution.
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As a peculiar trait, A-PNN allows one to refine parameters on the target image according with the
top-level workflow depicted in Figure 3. At test time the process starts with a net pre-trained on a generic
dataset (see Table 2). The initial parameters, Φ0, are then refined with 50 iterations on a reduced-resolution
version of the target image, which takes just a few seconds even for large targets. Then, the pansharpening
of the input at its native resolution is eventually performed using the refined parameters, say Φ∞, achieving
a significant performance gain. Both pre-training and fine-tuning are carried out using a L1-norm which
corresponds to the mean absolute error between the reference image and the pansharpening result.
For additional details about training the Reader is referred to References [54,61].

Network
Φn

↓4×4

L Network
Φ∞

target image output

MS

PAN

iterative
training
loop

Wald’s protocol

→ inferencefine-tuning ←

Φ0

pre-training

Φn+1

(p↓,x↓) x̂↓ r↓ (p,x) x̂

p,xp↓,x↓

Figure 3. Top-level workflow of the target-adaptive pansharpening A-PNN [61].

2.3. Proposed Method

Among the most critical aspects of deep learning methods for super-resolution or pansharpening
there is the capability to generalize from the training resolution to the test resolution. As explained above,
the training set is generally obtained by means of a resolution shift (called Wald’s protocol [62] in the case
of pansharpening). This same reasoning is also encoded in the fine-tuning stage of A-PNN as depicted
in Figure 3. For general purpose super-resolution tasks the scale-generalization problem is less critical
thanks to the abundance of training data, typically spanning a wide range of spatial resolutions. Instead,
in case of remotely sensed images this becomes a serious issue as all sample images are taken at a fixed
distance from the ground, hence at a nearly constant ground sample distance. Put in simpler words, tiny
objects whose size amounts to a few pixels at the scale of the PAN (think of cars, horizontal traffic signs,
etc.) would loose their geometry or disappear at the end of a resolution downgrading process used to
generate training samples. As a result, no representative occurrences of these elements will be observed in
the training dataset, with a consequent misalignment between training and test datasets. To this regard, it
should not surprise that the large gain of CNN-based methods over traditional approaches in the reduced
resolution evaluation framework [50,54,56,59,61] comes with a less clear-cut gain in the full-resolution
context [59,61].

A few attempts to deal with this issue have been carried out for both super-resolution [64] and
pansharpening [65]. In both cases the underlying idea was to involve an additional loss term that accounts
for the target-resolution behaviour of the network. By following a similar rationale we propose here a
training scheme which is summarized in Figure 4. In particular, we decided to apply this training scheme
directly in the fine-tuning phase of the pre-trained A-PNN network with parameters Φ0. (We refer to the
pretrained network available online at: https://github.com/sergiovitale/pansharpening-cnn-python-
version). This choice is motivated by the fact that the performance loss due to the misalignment between
training and test sets can be very large, so that the fine-tuning by-itself impacts considerably on the final
performance.

https://github.com/sergiovitale/pansharpening-cnn-python-version
https://github.com/sergiovitale/pansharpening-cnn-python-version
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Eventually, in the fine-tuning stage, in addition to the term LLR defined in the reduced-resolution
domain, we also consider a full-resolution term LHR obtained by suitably processing the target image
(x, p) according to the scheme of Figure 4:

L = αLLR + βLHR.

LLR is the same loss term computed in the original A-PNN fine-tuning stage (Figure 3) in the low resolution
(LR) domain,

LLR =
∥∥x̂↓ − r↓

∥∥
1 =

∥∥ fΦn(x↓, p↓)− x
∥∥

1 ,

which is replaced by its average over minibatches in normal (pre-)training. Instead, the high resolution
(HR) loss term is derived in the full-resolution space as

LHR =
∥∥∥̂̂x↓ − x̂

∥∥∥
1
=
∥∥g(x̂↓, p)− g(x, p)

∥∥
1 =

∥∥g( fΦn(x↓, p↓), p)− g(x, p)
∥∥

1 ,

where the pansharpening at target-resolution is performed with a fixed differentiable function g(·, ·).
In particular, we decided to use one of the conventional solutions that show very good performance on
spatial enhancement which is the MTF-GLP-HPM model-based approach proposed in Reference [20] and
made available in the toolbox associated with the pansharpening survey by Vivone et al. [3]. In fact, this
method strongly relies on the detail information conveyed by the PAN component while limiting spectral
distortion phenomena.

Network
fΦn

(x↓,p↓)

Φn+1

x̂↓
C

x̂↓
g(x̂↓,p)

̂̂x↓

C

(x↓,p↓)

↓4×4

p↓ p

p

PAN

Wald’s protocol

LLR

x̂↓

Φn+1 LHR

̂̂x↓

Φn+1

↓4×4

x↓

x

r↓

MS
C

x

p

g(x,p)
x̂

x̂

â: pansharpened item x,p: MS and PAN components g(·, ·): a differentiable pansharpening
C: concatenation ↓4×4: band-wise LPF + downsampling fΦ(·, ·): CNN pansharpening with parameters Φ
a↓: down-scaled item LLR,LHR: low-/high-resolution loss terms Φn: learned parameters at iteration n

Figure 4. Proposed training scheme.
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By doing so, we enforce cross-scale consistency thanks to the joint training on low and high resolution
data. To clarify this point, think of a simplified case where LLR = ε with constant ε > 0. The simultaneous
minimization of LHR allows to favor, among all possible solutions x̂↓, the one that better fuses with the
full-resolution PAN p from the perspective of a reference pansharpening method (MTF-GLP-HM). Put
in different words, we may say that the combined loss seeks to indirectly balance the A-PNN behaviour,
at reduced scale, with that of a model-based approach with nice spatial characteristics, at full scale.
The balance of the two loss terms (norms are intended already normalized by pixel) is obtained by
setting equal weights, α = β = 1, having experimentally found on several test images that the two loss
contributions are already roughly balanced at the begin of the fine-tuning process. The fine-tuning runs
for 50 epochs on the target image starting from the initial parameter configuration Φ0 inherited from the
A-PNN model. In particular an Adam optimizer [66] with a learning rate equal to 0.0003 and momentums
β1 = 0.9 and β2 = 0.99 is employed. Each test image will therefore be associated to a different, adapted,
parameters configuration Φ∞.

Finally, notice also that the proposed loss involves the full-resolution PAN component p, a data term
which is simply discarded by early CNN approaches to pansharpening including our baseline A-PNN,
a relevant fact by itself, since the precious information conveyed by this component is not taken into
account otherwise.

3. Experimental Validation

In this section, first we will briefly recall the accuracy evaluation metrics employed (Section 3.1) and
the comparative methods (Section 3.2), then we will provide and discuss numerical and visual results
(Section 3.3).

3.1. Accuracy Metrics

The numerical assessment of pansharpening methods is commonly carried out on two resolution
levels [3]: the target, or full, resolution level corresponding to the actual resolution of the dataset
at hand, and the reduced resolution level obtained by scaling the data with a factor R (PAN-MS
resolution ratio) resorting to Wald’s protocol [62]. In the full-resolution framework only qualitative
measurements (no-reference indexes) are usually possible because of the lack of ground-truth images
(ideally pansharpened references). As a consequence, in order to compute objective error measurements
(reference-based indexes) it is customary to use Wald’protocol and work in the reduced resolution domain,
where the original MS component plays as ground-truth. On the other hand, in addition to the numerical
assessment it is always useful to visually inspect sample results at both scales to detect local artefacts that
may not be recognized by globally averaged measurements.

In particular, we will make use of the following reference-based metrics in the reduced
resolution space:

• Universal Image Quality Index (Q-index) which takes into account three different components:
correlation coefficient, mean luminance distance and contrast [67].

• Erreur Relative Globale Adimensionnelle de Synthése (ERGAS) which measures the overall radiometric
distortion between two images [68].

• Spectral Angle Mapper (SAM) which measures the spectral divergence between images by averaging
the pixel-wise angle between spectral signatures [69].

• Q4/Q8, a 4/8 bands extension of the universal image quality index [70].

On the other hand, the no-reference indexes employed in full-resolution framework will be the
following [3,71]:
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• Quality No-Reference (QNR) index, is a combination of two indexes that take into account spatial
and spectral distortions, DS and Dλ, respectively:

– Spectral Distortion (Dλ), measures the distance of the bands correlation between x̂ and x̃.
– Spatial Distortion (DS), measures the spatial consistency between the x̂ and p.

For further details about the definition of the above indexes the Reader is referred to the
corresponding references.

3.2. Compared Methods

Traditional approaches to pansharpening include component substitution, multiresolution analysis,
statistical or variational approaches and other hybrid solutions. A critical survey on these methods can be
found in [3]. On the other hand, many deep learning solutions have been proposed in the last years. In this
work we compare the proposed method with both traditional and deep learning methods. In particular
we have selected the methods listed in Table 4 that are representative examples of these groups.

Table 4. Comparative methods.

Model-Based Methods

ATWT-M3 [15] A Troús Wavelet Transform-based method
AWLP [17] Additive Wavelet Luminance Proportional method
BDSD [14] Band-Dependent Spatial-Detail with local parameter estimation method

C-BDSD [26] A non-local extension of BDSD
GSA [12] A Gram-Schmidt-based Algorithm

Indusion [18] Decimated Wavelet Transform using an additive injection model
PRACS [13] Partial Replacement Adaptive Component Substitution

MTF-GLP-HPM [20] MTF-tailored Generalized Laplacian Pyramid with HP Modulation injection

Deep Learning Methods

DRPNN [55] Deep Residual Pansharpening Neural Network
PanNet [50] Pansharpening Network
A-PNN [61] Target-Adaptive PNN

3.3. Results and Discussion

According with Table 2 we compare our solution on two test datasets, Caserta-GE1-C and
Washington-WV2, each composed of fifteen image samples whose MS (PAN) component is 320 × 320
(1280 × 1280) pixels wide. The corresponding samples in the reduced resolution evaluation framework
will therefore have size 80 × 80 (320 × 320) pixels.

Let us start with the numerical results obtained at both full and reduced resolutions which are
gathered in Table 5 for the GeoEye-1 dataset and in Table 6 for the WorldView-2 images. Each number
is the average value over the related fifteen samples. Among the model-based approaches, PRACS and
C-BDSD provide the best performance in the full resolution framework on GeoEye-1 and WorldView-2
datasets, respectively. However, the latter provides also fairly good results in the reduced resolution
context. Such a good trade-off between reference-based and no-reference accuracies is also a feature
of BDSD on GeoEye-1 images. On the other hand, according to the objective error measurements at
reduced resolution, MTF-GLP-HPM provides a superior performance which is consistent over the different
indicators and datasets.
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Table 5. Numerical results on Caserta-GE1-C dataset at full (left-hand side) and reduced (right-hand side)
resolutions. Best figures are highlighted with bold numbers, while second best ones are underlined.

Full Resolution Reduced Resolution
Dλ DS QNR Q4 Q SAM ERGAS

(Ideal Value) (0) (0) (1) (1) (1) (0) (0)

ATWT-M3 0.0831 0.0837 0.8408 0.7846 0.5787 3.1212 2.8566
AWLP 0.1241 0.1716 0.7259 0.8502 0.6921 3.6143 2.6248
BDSD 0.0583 0.1105 0.8383 0.8713 0.7171 3.0415 2.1226
C-BDSD 0.0991 0.1562 0.7611 0.8637 0.7142 3.2020 2.3013
GSA 0.1218 0.2026 0.7008 0.8039 0.6683 3.9410 2.7130
Indusion 0.1344 0.1481 0.7390 0.7667 0.5550 3.3720 3.4209
PRACS 0.0506 0.0995 0.8553 0.8419 0.6677 2.8774 2.3334
MTF-GLP-HPM 0.1120 0.1051 0.7946 0.9069 0.8353 3.3242 2.1747

DRPNN 0.0347 0.0577 0.9097 0.8817 0.7205 3.0791 3.0165
PanNet 0.0504 0.1088 0.8472 0.7758 0.5846 3.4378 2.8738
A-PNN 0.0335 0.0597 0.9089 0.9460 0.8102 1.7842 1.3564
Proposed 0.0336 0.0517 0.9199 0.9305 0.7786 2.2612 1.6612

Table 6. Numerical results on Washington-WV2 dataset at full (left-hand side) and reduced (right-hand
side) resolutions. Best figures are highlighted with bold numbers, while second best ones are underlined.

Full Resolution Reduced Resolution
Dλ DS QNR Q8 Q SAM ERGAS

(Ideal Value) (0) (0) (1) (1) (1) (0) (0)

ATWT-M3 0.0676 0.1286 0.8126 0.7087 0.5953 7.7816 5.7164
AWLP 0.0738 0.1209 0.8144 0.8293 0.7425 6.8673 4.3049
BDSD 0.0685 0.1096 0.8298 0.8455 0.7524 7.4456 4.2333
C-BDSD 0.0429 0.0421 0.9169 0.8408 0.7505 7.7323 4.5232
GSA 0.0421 0.1350 0.8287 0.7598 0.6957 8.4762 5.0132
Indusion 0.0696 0.1077 0.8302 0.7773 0.6565 7.2221 5.2228
PRACS 0.0117 0.0927 0.8967 0.7462 0.6357 7.0986 5.0136
MTF-GLP-HPM 0.0838 0.1387 0.7892 0.8412 0.7590 6.7925 4.0543

DRPNN 0.0471 0.0853 0.8721 0.8664 0.5277 6.6549 4.2072
PanNet 0.0341 0.1052 0.8645 0.8140 0.7169 6.8125 4.6004
A-PNN 0.0430 0.0495 0.9098 0.8459 0.9236 4.4567 2.6353
Proposed 0.0313 0.0506 0.9196 0.9015 0.8132 4.9994 3.0485

Moving to deep learning methods, our baseline, A-PNN and the proposed method get the best
overall performance considering both no-reference and reference-based assessments, and for both datasets.
In particular, the proposal provides the highest accuracy in the full resolution framework (the QNR is
the main indicator to look at, which summarizes spatial and spectral fidelity) while A-PNN performs
generally better according to reference-based indicators. This relative positioning of the proposal with
respect to A-PNN is coherent with the proposed loss which balances reduced-resolution and full-resolution
costs in order to provide cross-scale consistency. Between the two remaining deep learning solutions,
DRPNN outperforms PanNet which seem to suffer on our datasets, whereas it provides better scores on
other datasets [50]. This performance variability of deep learning methods with respect to the dataset was
investigated in Reference [61] and motivates further the use of target-adaptive schemes such as A-PNN
and the proposal. Overall, with the exception of A-PNN and proposal which outperform consistently all
methods, the gap between deep learning methods and the others is not always clear-cut.
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For a more comprehensive evaluation of the methods, a careful visual inspection of results is necessary
besides numerical assessment, in order to study local patterns and visual artifacts that may not emerge
from global averages. To this aim, Figures 5 and 6 show some pansharpening results on crops from
Caserta-GE1-C and Washington-WV2 images, respectively, at reduced resolution. In particular, for the
sake of brevity, we limit the visual analysis to the methods that are more competitive and/or are related to
our proposal. These are deep learning methods, MTF-GLP-HPM, which is also involved in the definition
of the proposed loss and C-BDSD which is one of the best model-based approaches. For each of the
stacked examples the target ground-truth is shown on the leftmost column, followed by the different
pansharpening results, with the associated error map shown below. As it can be seen, PanNet introduces a
rather visible spatial distortion on GeoEye-1 samples (Figure 5), which is also present to a minor extent
on WorldView-2 tiles (Figure 6). This agrees with the reduced resolution numerical figures reported in
Tables 5 and 6. Although of less intensity, spatial distortions are also clearly visible for C-BDSD, DRPNN
and MTF-GLP-HPM, which outperform PanNet at the reduced scale. On the other hand, coherently with
the best performance shown in the reduced resolution frame, A-PNN provides the highest fidelity with a
nearly zero error map. Finally, the proposed solution gets results that look close to A-PNN in some cases.
Some variations in the error maps are also visible for our method which can be justified by the introduction
of the additional loss term that operates in the full resolution space for cross-scale consistency.

With the help of Figures 7 and 8, we can now analyze some results obtained at the target full resolution.
Unfortunately, at this scale there are no reference images and all considerations are necessarily subjective.
Ideally, a good pansharpening should be able to provide the spatial detail level of the PAN while keeping
the spectral response of the ground objects according to the MS image. Therefore, in Figures 7 and 8
we show the PAN and MS components as reference for each sample in the first two columns. Then,
several compared pansharpening results are shown moving rightward. With the premises made above,
we formulate the following observations.

Overall, the compared methods seem to provide quite similar performances on the GeoEye-1 dataset.
Differences are therefore quite subtle and difficult to be noticed. In particular, C-BDSD, MTF-GLP-HPM
and PanNet present a tendency to over-emphasize spatial details. This is particularly visible for PanNet
which introduces also micro-textural patterns. Such a feature is somehow reflected in the spatial distortion
indicator DS (Table 5) which almost doubles for these three methods in comparison to the other selected
methods. On the contrary, DRPNN results look too smooth, while A-PNN and the proposed method seem
to give sharpness levels which are closer to that of the PAN image, with the proposed being sharper than
A-PNN, as it can be seen in the last example.

On WorldView-2 images (Figure 8) some of the above considerations still apply but are much easier
to be seen. In particular, the smoothness of DRPNN, as well as the over-emphasis on spatial details of
C-BDSD are clearly visible. Here, PanNet and MTF-GLP-HPM provide much better spatial descriptions,
sharper for the former, smoother for the latter. Finally, A-PNN and the proposed method look in between
PanNet and MTF-GLP-HPM in terms of spatial details. However, A-PNN presents a visible spectral
distortion particularly evident on vegetated areas.

On the basis of the above discussion on numerical and visual results at both full and reduced
resolution, we can conclude that A-PNN and its variant proposed in this work show the most robust
behaviour across scales and sensors. Besides, we have to keep in mind that the evaluation of pansharpening
methods is itself still an open problem, since objective error measurements are only possible at the reduced
scale which is not the target one. For this reason, our goal was to improve the full resolution performance
by means of a suitably defined cross-scale training process, although we had to suffer a slight loss in the
reduced resolution framework. In contrast, we observed an improvement in both numerical and visual
terms, reducing spectral distortions, in the case of WorldView-2, and spatial blur, for GeoEye-1. Moreover,
the proposed solution can be easily generalized to different mappings g(·) (MTF-GLP-HPM, in this work)
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which do not necessarily need to be a pansharpening function. It could be, for example, any kind of
differentiable detector or whatever feature extractor defined on multispectral images. In this last case one
can adapt the pansharpening network to the user application.

Ground-truth C-BDSD DRPNN PanNet MTF-GLP-HPM A-PNN Proposed

Figure 5. Reduced-resolution pansharpening datails from Caserta-GE1-C dataset. From left to right (odd
rows): the reference ground-truth, C-BDSD, DRPNN, PanNet, MTF-GLP-HPM, A-PNN and the proposed.
On even rows are shown the corresponding error maps.
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Ground-truth C-BDSD DRPNN PanNet MTF-GLP-HPM A-PNN Proposed

Figure 6. Reduced-resolution pansharpening details from Washington-WV2 dataset. From left to right
(odd rows): the reference ground-truth, C-BDSD, DRPNN, PanNet, MTF-GLP-HPM, A-PNN and proposed.
On even rows are shown the corresponding error maps.
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PAN MS C-BDSD DRPNN PanNet MTF-GLP-HPM A-PNN Proposed

Figure 7. Full-resolution pansharpening details from Caserta-GE1-C dataset. From left to right: PAN and
MS input components, C-BDSD, DRPNN, PanNet, MTF-GLP-HPM, A-PNN and proposed.

PAN MS C-BDSD DRPNN PanNet MTF-GLP-HPM A-PNN Proposed

Figure 8. Full-resolution pansharpening details from Washington-WV2 dataset. From left to right: PAN
and MS input components, C-BDSD, DRPNN, PanNet, MTF-GLP-HPM, A-PNN and proposed.

4. Further Analyses

In this section we present complementary results for a more comprehensive evaluation of the
proposed method. In particular, we provide three additional analyses: a comparison restricted to the DL
methods where the fine-tuning is used for all, an ablation study for the proposal and an assessment of the
computational burden.
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In the previous section the proposed solution has been compared to both traditional and DL models.
DL models have been taken already pre-trained as provided by the authors. Therefore, criticisms could
be made of this approach to the comparison of DL models. In fact, in the computer vision community it
is customary to fix both training and test datasets to ensure that all compared model access to the same
information in the learning phase. Unfortunately, this way to proceed cannot always be extended to the
remote sensing domain because of the restrive policies frequently occurring. This is also the case here.
Of course, we could train from scratch on our datasets all compared models but this would open many
issues such as “is our dataset properly sized to train others’ models?” Deeper networks, in fact, require
larger datasets to avoid overfitting. Or, “is our training schedule suited to let others’ models converge
properly?” Letting a DL model to “converge” toward a reasonably small loss is never an easy task and
requires usually an extensive trial and error process. If this job is not carried out by the same authors that
have conceived the model, who are confident with it, there is a high risk to penalize the model.

Aware of the above mentioned issues, we decided to make a further comparison by extending the
fine-tuning stage to all DL solutions. Table 7 gathers the numerical results obtained on the test images
of GeoEye-1 and WorldView-2, at both resolutions. A-PNN and the proposed model have been already
comparatively discussed in the previous section with the overall conclusion that the latter performs better
in the full-resolution domain on both sensors. Moving to DRPNN and PanNet, observe first that all
reduced resolution indexes register a large gain with respect to the non fine-tuned versions (compare with
Tables 5 and 6), particularly DRPNN on WorldView-2. This is perfectly in line with our expectations since
the fine-tuning occurs on the reduced resolution test image. However, this comes at the cost of a large
performance loss at full-resolution (except for PanNet on WorldView-2). Here, to have an idea, the QNR
drops from about 0.91 to 0.87 for DRPNN on GeoEye-1. In essence, this reflects an overfitting of the models
on the reduced-resolution samples, which is much heavier for deeper networks like DRPNN and PanNet.
This phenomenon, which was also observed to a much smaller extent for A-PNN in the original work [61],
allows us to further appreciate the mitigating contribute of the full-resolution loss component LHR that
acts as regularization term, keeping high accuracy levels at the target scale.

Besides, it is also worth to assess the marginal contribute of the two loss components involved in
the proposed learning scheme. In Table 8 the proposed model is compared with its ablated versions
obtained training on a single loss term. As it can be seen, the use of the LHR component alone is
sufficient to gain accuracy at full resolution, although it comes with a larger performance loss in the
reduce-resolution frame. The joint optimization, instead, allows also to preserve to some extent the
performance at reduced resolution.

Last but not least, a look to the computational burden allows us to have a complete picture of
our proposal. To this aim we have run dedicated tests to quantify experimentally the computational
time needed by each compared method on fixed hardware and image size (1280 × 1280 at PAN scale).
In particular, we have considered both CPU and GPU equipped computers. Table 9 summarizes the
running time for DL methods, telling apart (within brackets) the additional contribute due to the
fine-tuning. The other non-DL methods were tested on CPU only showing an execution time ranging from
half a second (Indusion, GSA, BDSD) to about six seconds (ATWT-M3). As expected, due to their inherent
complexity, deep learning methods are much slower than non-DL ones on CPU, with the fine-tuning
phase responsible for the dominant cost. On the other hand, we can resort to parallel implementations
for these methods and hence rely on the use of GPUs to save time. In particular, observe that two main
aspects impact on complexity: the network size and the batch size for parameters training. Here, DRPNN
and PanNet are much deeper than A-PNN and proposal. On the other hand, different from the others,
the proposed model is trained using the full-resolution version of the target image, hence requiring a 16
times larger batch. This latter observation explains why the proposal, although sharing the same (relatively
small) architecture of A-PNN, is computationally much more expensive. To conclude, we have also to
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underline that the focus of this work was on accuracy rather than on complexity. Therefore, there is a room
left for improvement from the computational perspective, for example using cropping strategies to reduce
the volume of the image to be used in fine-tuning, or resorting to mini-batch decompositions, since the
current implementation relies on a single-batch optimization schedule.

Table 7. Numerical comparison of the fine-tuned deep learning (DL) models at full (left-hand side) and
reduced (right-hand side) resolutions. Best figures are highlighted with bold numbers, while second best
ones are underlined.

Full Resolution Reduced Resolution
Dataset Model Dλ DS QNR Q4 Q SAM ERGAS

(0) (0) (1) (1) (1) (0) (0)

DRPNN 0.0623 0.0745 0.8680 0.9097 0.7480 2.3163 1.9042

GE1 PanNet 0.0799 0.1099 0.8194 0.9057 0.7317 2.4496 1.7031
A-PNN 0.0335 0.0597 0.9089 0.9460 0.8102 1.7842 1.3564
Proposed 0.0336 0.0517 0.9199 0.9305 0.7786 2.2612 1.6612

DRPNN 0.0397 0.1082 0.8566 0.9103 0.8230 4.7301 2.8100

WV2 PanNet 0.0326 0.0772 0.8927 0.8933 0.7925 5.4700 3.1499
A-PNN 0.0430 0.0495 0.9098 0.8459 0.9236 4.4567 2.6353
Proposed 0.0313 0.0506 0.9196 0.9015 0.8132 4.9994 3.0485

Table 8. Ablation Study on Caserta-GE1-C and Washington-WV2. The proposed model is fine-tuned using
LLR (A-PNN), LHR or both (proposal).

Full Resolution Reduced Resolution
Dataset Loss Dλ DS QNR Q4/Q8 Q SAM ERGAS

(0) (0) (1) (1) (1) (0) (0)

LLR (A-PNN) 0.0335 0.0597 0.9089 0.9460 0.8102 1.7842 1.3564
GE1 LHR 0.0337 0.0518 0.9163 0.9305 0.7786 2.2632 1.6641

LLR + LHR (Proposed) 0.0336 0.0517 0.9199 0.9305 0.7786 2.2612 1.6612

LLR (A-PNN) 0.0430 0.0495 0.9098 0.8459 0.9236 4.4567 2.6353
WV2 LHR 0.0348 0.0504 0.9165 0.9006 0.8098 5.1197 3.1272

LLR + LHR (Proposed) 0.0313 0.0506 0.9196 0.9015 0.8132 4.9994 3.0485

Table 9. Running time (seconds) for DL methods on CPU and GPU. Time overload due to the fine-tuning
phase is given within brackets.

Device DRPNN PanNet A-PNN Proposed

CPU: AMD 1950X (4 active cores) 4 (+400) 2.7 (+100) 9 (+70) 9 (+1750)
GPU: GeForce GTX 1080 Ti (12 GB) 2 (+20) 2.3 (+4.5) 0.25 (+0.75) 0.25 (+14)

5. Conclusions

In this work we have proposed an enhanced version of the CNN-based method A-PNN.
This contribution comes with the introduction of a new learning scheme that can be straightforwardly
extended to any CNN model for pansharpening. The new learning scheme involves loss terms computed
at reduced and full resolutions, respectively, enforcing cross-scale consistency. Our experiments show a
clear performance improvement over the single-scale training scheme in the full-resolution evaluation
framework according to both numerical and visual assessments. This achievement is paid with an increased
computational cost and a negligible accuracy loss in the reduced-scale domain, which is in principle not
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an issue in real-world practical applications as full-resolution images are concerned. Moreover, numerical
and visual results confirm the superior accuracy levels achievable by DL-based solutions in comparison to
traditional model-based approaches, with the proposed one being the best in the full-resolution evaluation
framework, and its baseline A-PNN being the best in the reduced-resolution domain.

There is a room left for the improvement of the proposed learning scheme that is worth to explore
in future work. First, the increased computational cost can be limited by means of a suitable cropping
strategy aimed to reduce the volume of data to be processed. Second, different auxiliary fusion functions
g(·, ·) can be tested, which do not necessarily have to be pansharpening models. For example any
application-oriented feature extractor which is differentiable (to allow gradient backpropagation) may also
be used, allowing for an application-driven learning. Finally, needless to say, many different core CNN
models can be tested in place of A-PNN.
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