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Abstract: Regional remote sensing image products are playing an important role in an increasing
number of application fields. Aiming at multi-satellite imaging task planning for large-area image
acquisition, this paper proposes a multi-objective modeling method. First, we analyzed the core
requirements of regional mapping for multi-satellite imaging mission planning: Full coverage of
the target area and low consumption of satellite resources. Second, an optimization model with
two objective functions, namely the maximum target area coverage and minimum satellite resource
utilization, was established. Using the selection of imaging strips and their swing angles as two types
of decision variables, the regional decomposition and satellite resource allocation were integrated
into the planning model. Third, two efficient algorithms, Vatti and non-dominated sorting genetic
algorithm (NSGA-II), were used for objective function calculation and model solving, respectively.
Finally, the experiments used Hubei, Finland, and Congo as the target areas and GF1, GF6, ZY1-02C,
and ZY3 as imaging satellites to verify the modeling method proposed in this paper. The experiments
showed that the proposed multi-objective modeling method could complete the coverage of regional
targets with fewer satellite resources and improve the satellite application efficiency significantly.

Keywords: regional mapping; multi-satellite imaging mission planning; multi-objective optimization
model; NSGA-II

1. Introduction

Regional mapping refers to the process of obtaining remote sensing images through planning
satellites and generating complete regional images through geometric and radiation processing
of remote sensing images [1]. Regional remote sensing image products are widely used in many
fields, such as urban planning and construction [2], land census and national condition monitoring [3],
agriculture and forestry change and monitoring [4], ecological environment assessment and monitoring,
emergency response and rescue [5,6], and national defense security. With the development of imaging
satellites, relevant organizations and departments in the world are committed to producing regional
imaging products for a city, a country, or even the world.

Although considerable work has been done on the application and production of regional remote
sensing images [7], there is less focus on using earth observation satellites to obtain regional images
efficiently. The basic process of regional mapping should include the following steps: (1) Satellite
imaging task planning to obtain a satellite imaging scheme; (2) obtaining remote sensing image data
according to imaging scheme; and (3) generating regional digital orthophotos and other regional image
products through image preprocessing, image matching, block adjustment, orthophoto correction,
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fusion, uniform light and color, mosaic, and other processes. Among these steps, imaging task planning
involves reasonably allocating satellite resources and imaging time to earth observation tasks on the
precondition of satisfying complex constraints [8]. It is the basic step of regional mapping, which is an
important guarantee for efficient and high-quality acquisition of regional image products [9].

Regional images have traditionally been obtained using a single satellite. However, with the rapid
growth in the number of remote sensing satellites and the expanding application area of regional remote
sensing image products, users are increasingly demanding timeliness in regional image acquisition [10],
which may be annual, seasonal, or even monthly. In addition, because of the limited swath width of
high-resolution imaging satellites and limited number of satellite crossings within a short period of
time, it is almost impossible to meet the timeliness requirements of regional image acquisition using a
single satellite to obtain regional images. Therefore, it is necessary to use multiple satellites with the
same sensor type and similar spatial resolution for common imaging, for ensuring quicker access to
space resources [11,12], as shown in Figure 1a. The practical problem of scheduling multiple satellites
for regional mapping is more complicated than when using a single one. Although satellites are tied to
predefined orbital paths, the maneuverability of satellites can provide more frequent opportunities
for observing the target area, resulting in a larger number of combination schemes between satellite
resources to cover regional targets. Therefore, for regional mapping, choosing the “best” combination
scheme to reasonably allocate satellite resources can ensure that satellites can cooperate with each
other to efficiently complete regional image acquisition, which is a complicated process. In addition, if
satellites are not properly planned, some parts of the target area will be repeatedly observed, and other
parts will not be covered by any image [13], as shown in Figure 1b.

Figure 1. Italy covered by swaths from different satellites. (a) Swaths planned by using
“maximal-coverage” criteria; (b) No planned swaths.

The basic process of satellite task planning for regional mapping involving multiple imaging
satellites includes the following steps: First, accepting the user’s needs and selecting feasible satellite
resources according to the requirements of the sensor type and spatial resolution; then, building the
mathematical model for imaging task planning and solving the model to obtain the satellite task
planning scheme; and finally, evaluating the scheme and formulating the multi-satellite imaging task
planning scheme. Model building is the basis of solving the problem of imaging satellite mission
planning [14] and provides the mathematical expression of user and planning requirements. The
correctness and accuracy of the model determine the reliability and effectiveness of the optimization
results [15]. According to the requirements of regional mapping, the core requirement of imaging
satellite mission planning is to use as few satellite resources as possible to ensure full coverage of the
target area. Therefore, in planning and modeling of regional mapping tasks, the core requirement must
be considered.

At present, there are few studies on multi-satellite task planning for regional mapping, we can
learn from the task planning for regional target. Research on models for multi-satellite imaging mission
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planning involving a regional target is less than that regarding spot targets, which can be covered by a
single strip of satellites. A general approach to the problem consists of two steps. The first step is to
decompose the target region according to certain rules into a series of subtasks, which are called spot
targets. The second step is to select a subset of these spot targets and allocate them to specific satellites
using various models and algorithms. In other words, this approach divides the problem of satellite
scheduling for regional target into two sub-problems, i.e., the decomposition of the target area and
optimization of scheduling models. Typical target decomposition methods include the grid method
and the strip method. The grid method divides the target region into a collection of point targets.
Rivett [16] studied multiple satellites with same-performance radar sensors to complete regional target
mission planning within a user-defined time. By gridding regional targets, an integer planning model
with maximum coverage as the objective function was established, and eight satellites were sufficient to
complete the observation tasks that previously required 16 satellites. Ruan [17] proposed a method for
creating a grid space based on the Gaussian projection of the regional target and updated rules of the
grid space state, and provided a coverage calculation method based on grid space state statistics. On
this basis, a mathematical model for the reconnaissance satellite scheduling problem was established,
which optimizes the two objective functions of the maximum observation benefit and minimum
observation cost in a hierarchical priority manner. Shao [18] decomposed regional targets into multiple
point targets using a grid of equal latitude and longitude and established a planning model with the
maximum total revenue and maximum number of completed tasks as objective functions. The digital
elevation model and moving target on the ground are obtained simultaneously using the satellite
formation flight system.

The strip method decomposes the target area into a rectangular strip that can be completely
covered by a single transit of the satellite. Li [19] aimed to solve the large-area target multi-satellite
collaborative earth observation mission planning problem by discretizing the imaging swing angles of
each satellite to generate candidate imaging strips for regional pre-decomposition; then, considering the
maximum coverage of the target area as the objective function, he proposed a dynamic segmentation
method for the target area. Liu [20] considered the orbit characteristics of satellites and observation
capabilities of remote sensors and carried out strip drawing at a certain granularity angle according
to the satellite trajectory and established a dynamic decomposition method for regional targets.
A multi-satellite collaborative observation scheme for regional targets based on MapX was proposed.
He [21] established a five-tuple subtask set mainly based on the time window and swing angle. Through
dynamic decomposition, the regional target was decomposed into a series of candidate subtasks with
different satellites and swing angles. By establishing a planning model with a coverage function as the
objective function, the planning problem of regional targets in the two-satellite mode was solved.

Scheduling models can be divided into single-objective and multi-objective models according to
the number of objective functions in the models. For the single-objective model, He [22] designed a
multi-satellite collaborative scheduling framework for imaging tasks under emergency conditions.
The multi-satellite collaborative scheduling problem was decomposed into two tasks: Task sequencing
and resource matching. The constraint satisfaction model of the problem was constructed with
maximization of task revenue as the optimization objective. Shi [23] established an imaging satellite
mission planning model with minimum satellite resource consumption as the objective function;
the model satisfies the imaging time window constraint, imaging strip overlap ratio constraint, and
coverage constraint. By solving the model with an approximate algorithm, the long-term optical
remote sensing imaging task planning problem for large-area targets at low and middle latitudes
is solved. Considering mission planning for satellite image acquisition in disaster-stricken areas of
large regions, Liu [24] considered the possible discontinuities in the disaster-stricken areas, assigned
different weights to different regions, and established a satellite mission planning model with optimal
spatial resolution as the objective function. Given a set of satellites and a mission time frame, Perea [25]
decomposed regional targets using a set of possible sensor angle positions for satellites and established
a linear programming model; the minimum image acquisition cost was set as the objective function



Remote Sens. 2020, 12, 344 4 of 20

and the coverage of all sub-regions in at least one acquisition was the constraint. Further, in applying
satellite imaging to early warning hydrological models, Estefanía [26] assigned different weights to
area coverage, request priority, request mode, and swath usage and established a single-objective
optimization model.

As for multi-objective models, to solve the problem of large-area multi-satellite imaging scheduling,
Li [27] divided the target area using the equal distance grid method; then, he established the constraint
satisfaction model with the maximum coverage of the target area, minimum overlap of the imaging
strip, and shortest imaging time as the objective functions. Niu [28] used the multi-satellite large-area
mission planning to solve the emergency response problem during natural disasters. First, the imaging
strip sequence was obtained by discretizing the satellite swing angle to decompose the regional
targets. Then, according to different application scenarios, through different combinations of four
objective functions, namely the maximum coverage, shortest completion time, highest spatial resolution,
and minimum average swing angle, an integer programming model was established to find the optimal
combination of strips. For the high dynamics and high time sensitivity of emergency observation
missions, Cui [29] established a multi-objective dynamic programming model with three objective
functions for maximizing the observation mission priority and mission revenues and minimizing the
waiting time.

However, there are some shortcomings in the task planning model based on the above methods.
First, multi-satellite mission planning for regional areas involves decomposition of the target area and
optimization of scheduling models. These two steps should be interconnected. Although scheduling
models find the “best” subset from the set obtained through decomposition of the target area,
optimization of the scheduling model has no effect on the decomposition of target areas. In addition,
the planning results are highly dependent on the accuracy of region decomposition, but the accuracy
of region decomposition is inconsistent with the efficiency of the model solution. Second, in terms of
the scheduling models, the single-objective model with only the coverage rate as the objective function
ignores the problem of overlapped observation caused by multiple satellites; in such cases, it is easy
to waste satellite resources and difficult to meet the multi-satellite regional target mission planning
requirements. Multi-objective modeling can consider more than one objective function and obtain
a more reasonable planning solution. However, if the model has too many objective functions, it
would be difficult to obtain the optimal solution, and correlations between objective functions must be
avoided. To develop the model for multi-satellite regional mapping planning, we must construct the
objective function according to the core requirement of the mission, which is to use minimum satellite
resources and ensure full coverage of regional targets efficiently and quickly.

In this study, we developed a multi-objective optimization model to solve the multi-satellite task
planning problem for large-area mapping. Starting from the two core requirements of multi-satellite
regional mapping, namely full coverage of target areas and low consumption of satellite resources,
we established a multi-objective optimization model with maximum area coverage and minimum
satellite resource consumption as the objective functions. By choosing whether to select the imaging
strip and swing angle of the imaging strip as decision variables, decomposition of the target areas
and optimization of scheduling models are performed simultaneously. The model is solved using the
non-dominated sorting genetic algorithm(NSGA-II) and the effective coverage area in the objective
function is calculated using the polygon Boolean operation Vatti algorithm, which effectively improves
the speed of obtaining the optimal solution of the model. Finally, taking three regions, Hubei, Finland,
and The Democratic Republic of the Congo (Congo for short in this paper) with different latitudes,
sizes, and shapes as examples, the experiments verified that the proposed multi-objective optimization
model used less satellite resources for complete coverage of the regional targets within the user-defined
time. The proposed task planning model for large-area multi-satellite imaging meets the needs of
regional mapping.

The remainder of the paper is organized as follows. In Section 2, the modeling process of
the multi-satellite mission planning for large-area mapping is introduced considering three aspects:
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Simplifying the planning process, model preparation, and model construction, and the method of
model solving and the method of calculating the objective function are given. In Section 3, we describe
the experiments performed using three different target areas as examples, compare two commonly used
task schemes, and present the experimental results and analyses. The proposed method is discussed in
Section 4. Finally, the conclusions of the study are given in Section 5.

2. Proposed Methods

To realize the rapid mapping of a large regional objective and meet the needs of different
departments in terms of regional products and their updates, we developed a multi-satellite task
planning multi-objective model for regional mapping. First, a multi-objective task planning model
with two types of decision variables, two objective functions, and two constraints was established
by simplifying the planning process and analyzing the main user needs and task planning needs of
regional mapping. Then, the model was solved using the multi-objective genetic algorithm NSGA-II to
obtain a multi-satellite mission planning plan for regional targets. The flowchart of the multi-satellite
mission planning scheme proposed in this paper is illustrated in Figure 2.

Figure 2. Flowchart of the multi-satellite mission planning scheme for large-area mapping.
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2.1. Multi-Objective Optimization Model Construction

2.1.1. Planning Process Assumptions and Simplifications

As multi-satellite mission planning has proven to be a non-deterministic polynomial(NP-hard)
problem. To facilitate modeling, this study makes appropriate assumptions and simplifies the
multi-satellite area mapping planning process before modeling, as is the case in other existing studies.
The simplification of the planning process considers major factors in planning issues and ignores
minor factors. For different planning problems, the focus of the assumptions on the constraints is
also different [30]. For multi-satellite large-area mapping, we used the following assumptions and
simplifications:

1. Regional mapping can be regarded as a single task, and each satellite only performs this task
when executing the shooting scheme, without considering other tasks;

2. For regional targets, imaging can be performed during satellite transit under the constraints
of lighting;

3. As the swing angle of a satellite is a fixed value each time it passes through, and it only crosses
once in a circle, the satellite maneuver adjustment time is assumed to meet the imaging conditions.

4. Changes in image spatial resolution caused by different swing angles are considered acceptable
within a certain range;

5. The satellite is assumed to meet storage and energy constraints;
6. Each satellite is assumed to have only one payload; and
7. It is assumed that weather factors satisfy imaging conditions.

2.1.2. Preparation for Model Construction

The planning model is a mathematical expression of user requirements and task planning.
To establish a simple, accurate, and effective multi-satellite task planning model for large-area targets,
detailed analyses and decomposition of user requirements and task planning requirements are
performed before modeling.

For large-area mapping, user needs mainly include the target imaging area, completion time,
acquisition image type (such as optical, SAR, or hyperspectral), and spatial resolution of the regional
product. Correspondingly, the task planning requirements include the sensor requirements of multiple
satellites with the same sensor type and similar spatial resolution, coverage requirements for ensuring
full coverage or almost full coverage of the regional target within the specified time, and satellite
resource requirements for completing the regional imaging task with as few satellite imaging strips as
possible within the specified time.

These requirements can be translated into different components of a multi-objective model for
large-area target multi-satellite mission planning. Model constraints can be determined based on
satellite sensor types, including swing angle maneuver constraints and light time constraints. Model
inputs can be determined based on the imaging area, imaging completion time, and satellite sensors,
including the imaging area boundary coordinates, and satellite orbits within a specified time. Model
decision variables can be determined based on satellite resource requirements and model inputs,
including the selection of imaging strips and the swing angle of each imaging strip. Model objective
functions can be determined based on satellite resource requirements and coverage requirements,
including the maximum coverage rate and minimum number of imaging strips. The transformation of
the user requirements and mission planning requirements to a multi-objective model for multi-satellite
mission planning in imaging large-area targets is shown in Figure 3.
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Figure 3. Transformation from requirements to planning model.

2.1.3. Model Construction

Based on the above assumptions and simplification of the planning process for multi-satellite
large-area mapping and modeling preparation, the specific mathematical expression of the regional
target multi-satellite task planning model established in this study is as follows:

� Decision variables
Expression of decision variable 1:

x = (x11, x12, · · ·, xki, · · ·, xKn). (1)

Decision variable x is the set of swing angles of all satellite imaging strips, with a length of M. xki
is the swing angle of the imaging strip when satellite k passes through the target area for the ith time.
xki is a continuous double variable. Through optimizing xki, the ith imaging strip of satellite k can be
obtained to complete the regional target decomposition.

Expression of decision variable 2:

yki =

{
1 , if the strip xki is selected

0 , else
. (2)

Decision variable yki represents whether the strip with swing angle xki is selected. If it is selected,
yki = 1; otherwise, yki = 0. yki is a binary variable. Using yki, it can be determined whether the ith strip
of satellite k participates in imaging, and then the satellite resource allocation is completed.

� Objective functions
Expression of objective function (1):

max f (x) =
Scov(x)

Sobj
. (3)
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Objective function (1) ensures the maximum coverage rate of the imaging area. Scov(x) represents
the effective coverage area of the imaging strip and Sobj represents the target area.

Expression of objective function (2):

ming(yki) =
M∑

i=1

yki. (4)

Objective function (2) ensures the minimum number of imaging strips, that is, the minimum
consumption of satellite resources.

� Constraints
Expression of constraint 1:

06 : 00 ≤ Tlocal ≤ 18 : 00, (5)

where Tlocal is the local time of the target. Constraint 1 represents the imaging strip meeting the
illumination time constraint, which is from 06:00 to 18:00 local time in the target imaging area.

Expression of constraint 2:
− xmax ≤ xki ≤ xmax, (6)

where xmax is the maximum swing range of the satellite sensor, taking the positive value as the left- side
sway in the flight direction and the negative value as the right-side sway. Constraint 2 represents
different satellites meeting the maximum swing angle constraint.

The multi-objective optimization model proposed in this paper has the following characteristics:

1. Taking the swing angle of the strip and selection of the strip as the decision variables, regional
decomposition and resource allocation are integrated into the planning model. A multi-satellite
planning scheme that takes into account both the coverage rate and satellite resource utilization
can be directly obtained by solving the model, which simplifies the planning process.

2. It reduces the consumption of satellite resources while meeting the coverage of user needs.
3. The two objective functions are mutually constrained, and a set of non-dominated solutions can

be obtained to meet the decision needs of different preferences.

2.2. Model Solving

2.2.1. Model Solving Based on the NSGA-II Algorithm

At present, there are three representative methods to solve the multi-objective model: strength
pareto evolutionary algorithm (SPEA2) [31], NSGA-II [32], and pareto envelope-based selection
algorithm II (PESA-II) [33]. Other algorithms are mostly improvements based on these. Zheng [34]
analyzed the above three model solving methods using five benchmark problems: DTLZ1, DTLZ2,
DTLZ3, DTLZ4, and DTLZ5. Among them, NSGA-II shows the best performance in terms of the
distribution of solution sets and solution efficiency. In terms of convergence, when there are many
objective functions, NSGA-II has a relatively poor convergence; however, when there are only two
objective functions, NSGA-II has a similar performance to SPEA2 and PESA-II. Therefore, this study
used NSGA-II to solve the proposed multi-objective model.

The steps for solving the multi-objective model of multi-satellite task planning for large-area
targets are as follows:

1. Coding. Real variable encoding: The chromosome length, M, is the sum of the imaging strips of
all imaging satellites. Gene is the swing angle of each imaging strip. Binary variable code: The
length is the same as the real variable code. If the strip is selected, the corresponding gene is 1;
otherwise, it is 0. The encoding is shown in Figure 4.

2. Initialization. Initialize the parent population and number of generations of evolution. In this
study, the population size was set to 160, and the number of generations of evolution were set to
200, 300, and 2000, respectively, according to the three target areas.
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3. Perform selection, crossover, and mutation operations on the parent population to produce the
offspring population. In this study, the crossover rate of real variables was set to 0.7; the mutation
rate of real variables was 0.01; the crossover distribution index was 10; the mutation distribution
index was 12; the crossover rate of binary variables was 0.7; and the mutation rate of binary
variables was 0.01.

4. Calculation of the objective functions.
5. The parent and offspring populations were merged, and new populations were generated by

non-dominated sorting and the individual crowding calculation of the merged population.
6. Determine whether the iteration termination conditions were met; if the conditions were met, the

planning scheme was output; if not, we repeated step 3.

Figure 4. Gene coding of decision variables. (a) Real swing angle coding; (b) Binary-selected
stripe coding.

2.2.2. Calculation of Objective Function 1

1. Acquisition of imaging strips
Obtaining imaging strips mainly uses the position (PX, PY, PZ) and velocity (VX, VY, VZ) of

satellites at the beginning and end of the imaging time, which can be extrapolated from satellite orbit
data. Then, according to the field of view angle of the satellite and swing angle of the sensor during
imaging, the intersection point between the line of sight and the ground surface can be calculated. The
polygon formed by these intersections (A,B,C,D) is the imaging strip. Because the calculation formula
is complex and is not main research focus of this study, the calculation formula is not presented in
detail; only the imaging schematic diagram is given, as shown in Figure 5.

Figure 5. Imaging strips from different satellites and their coverage.

2. Calculation of the coverage area
When using the NSGA-II algorithm to solve the model, the objective function must be calculated

in each individual generation. The number of calculations is very large, which is equal to the product
of the number of generations of evolution and the population size. For the coverage rate calculation,
i.e., the first objective function, the common method is the grid statistical method based on grid
decomposition. However, the calculation accuracy of the grid method depends on the size of the grid.
The smaller the grid, the higher the calculation accuracy, but the larger the calculation cost; hence, it
cannot meet the calculations requirements. It is difficult for the grid method to achieve a good balance
between the calculation accuracy and calculation cost. Therefore, in this study, we used the Vatti
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algorithm [35,36] to solve the problem. According to certain rules, the Vatti algorithm determines
that either the left or the right side should be selected as the edge of the area covered by strips at any
intersection, which may be formed by an imaging strip and other imaging strips or an imaging strip
and the target area. As shown in Figure 5, the area marked has a a blue boundary. The Vatti algorithm
uses the coordinates of the boundary points on the covering polygon to calculate the area rather than
the grid statistics, so the results are more accurate and efficient. More information about the Vatti
algorithm is provided elsewhere [35].

3. Experiments and Analyses

3.1. Experimental Data

3.1.1. Imaging Satellite

To ensure that the images acquired by different satellites can be stitched into complete regional
images, four optical satellites with 2-m resolution sensors were selected for regional imaging in the
experiment. They were GF1, GF6, ZY1-02C, and ZY3. Some parameters of the satellites and sensors
are listed in Table 1.

Table 1. Satellite and sensor parameters.

Satellite GF1 GF6 ZY1-02C ZY3

Agency China Aerospace Science and Technology Corporation
Launch time 20 April 2013 2 June 2018 22 December 2011 9 January 2012
Orbit Type Repeat sun-synchronous orbit

Orbital Altitude (km) 645 645 780 506
Return Period(days) 41 41 55 59

Swing Ability ±35◦ ±35◦ ±25◦ ±32◦

Payload Imaging Width (km) 60 45 54 51
Half Field Angle 2.67◦ 3.99◦ 1.98◦ 2.88◦

3.1.2. Imaging Areas

To verify the effectiveness of the planning model proposed in this paper, the following three
regions with different latitudes, shapes, and sizes were selected as the target regions: Hubei, China;
Finland; and Congo. The distribution of the three regions is shown in Figure 6, and the basic parameters
of the target regions are given in Table 2.

Figure 6. Distribution of target regions.
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Table 2. Parameters of target regions.

Region Latitude Shape Area (km2)

Hubei middle approximately flat rectangle about 185,900
Finland high approximate high rectangle about 338,000

Congo(K) low approximately square about 2.345 million

3.1.3. Imaging Time

In this experiment, the time of regional imaging ranged from 8 September 2019 to 20 September
2019, a total of 13 days. As the four imaging satellites selected were optical satellites, the imaging time
constraint was set from 06:00 to 18:00 local time in the selected area.

According to the imaging satellite, target area, mission completion time, and orbit parameters of
the satellites, the visible time window of the satellites and target regions can be calculated. The orbit
parameters of each satellite can be obtained from https://celestrak.com/. To facilitate optimization of
the swing angle of the imaging strip in this study, the visible time window was appropriately extended.
Table 3 mentions the number of visible time windows of each satellite to each target region, that is, the
number of satellite transit orbits. The expanded visible time windows of each satellite to the regional
targets are listed in Appendix A.

Table 3. Number of satellite transit orbits.

Satellite Hubei Finland Congo

GF1 3 9 10
GF6 4 9 10

ZY1-02C 4 10 10
ZY3 3 9 10
total 14 37 40

3.2. Experimental Results and Analyses

3.2.1. Experimental Results

Figures 7–9 show the imaging results obtained using different modeling methods for Hubei,
Finland, and Congo, respectively. In each figure, the green strip represents the imaging strip of GF1,
the blue strip represents that of GF6, the pink strip represents that of ZY1-02C, and the yellow strip
represents that of ZY3. Among them, Figures 7a, 8a and 9a show the satellite trajectories corresponding
to the visible time window. The red oblique solid line indicates the trajectories of the four satellites for
each target area, and the green solid line (GF1), blue solid line (GF6), pink solid line (ZY1-02C), and
yellow solid line (ZY3) indicate the trajectory of each satellite after the visible time window is extended.
Figures 7b, 8b and 9b present the imaging results of three target areas covered by the satellites during
vertical imaging, that is, the imaging results when the swing angles are zero. Figures 7c, 8c and 9c
present the optimized imaging results of the three regions obtained using the model proposed in [37],
which uses only the coverage as the objective function. Figures 7d, 8d and 9d present the optimized
imaging results of the three regions when the model was constructed using the method proposed in
this paper.

Table 4 presents a comparison of the number of strips and coverage rate required by different
modeling methods to complete regional imaging. Table 5 provides the optimization results of the
swing angles of the effective imaging strips when the model only used the coverage as the objective
function. Table 6 gives the optimization results of the swing angles of the selected imaging strips when
the multi-objective model proposed in this paper was used. The gray background in Tables 5 and 6
is the swing angle of the effective imaging strip or the selected imaging strip. Table 7 presents all

https://celestrak.com/
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the non-dominant imaging planning schemes obtained using the multi-objective optimization model
proposed in this paper.

Figure 7. Mission planning results obtained using different modeling methods in Hubei. (a) Satellite
trajectories; (b) satellite vertical imaging results without optimization; (c) satellite optimized imaging
results when the model has only one objective function; and (d) satellite optimized imaging results
when the multi-objective modeling method proposed in this paper was used.

Figure 8. Mission planning results obtained using different modeling methods in Finland. (a–d) Same
as Figure 7.
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Figure 9. Mission planning results of different modeling methods in Congo: (a–d) Same as Figure 7.

Table 4. Number of imaging strips and coverage rate obtained with different modeling methods.

Target
Region

No Optimization
Optimization Model with

Only One Objective
Function

Optimization Model
Proposed in this Paper

Effective
Strips

Coverage
Rate

Effective
Strips

Coverage
Rate

Effective
Strips

Coverage
Rate

Hubei 14 61% 14 100% 10 100%
Finland 37 79.64% 31 100% 12 100%
Congo 40 66.2% 39 99.95% 25 99.97%

Table 5. Swing angle of each satellite imaging strip in model with only one objective function.

Target
Region

Swing Angle

GF1 GF6 ZY1-02C ZY3

Hubei
−9.52 9.45 −23.66 24.08 0.15 −2.80 −11.71 26.30
−9.73 27.09 −29.12 16.25 6.85 28.86

Finland

−24.50 −4.76 −20.58 −9.38 20.25 2.60 −4.16 −16.26
1.82 −7.35 −28.00 5.32 −9.40 −21.55 10.24 −7.49

16.45 5.18 −21.70 24.78 24.25 19.60 −9.02 29.70
−5.95 31.50 −8.33 −22.68 9.80 23.40 19.07 3.46
−16.38 14.14 7.35 −11.30 −14.40

Congo

5.25 28.42 −10.15 −28.56 9.65 −19.05 7.23 3.90
32.13 20.79 −21.00 20.02 −24.15 17.60 9.86 14.66
3.57 6.65 34.51 8.33 −18.15 −1.20 27.97 −28.61
6.44 −27.72 −34.72 6.58 22.65 15.15 −14.46 25.60
6.30 −30.59 −28.91 −15.33 4.40 −8.60 −23.04 −29.12
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Table 6. Swing angle of each satellite imaging strip in the proposed multi-objective optimization model.

Region Swing Angle

GF1 GF6 ZY1-02C ZY3

Hubei
30.22 1.24 −19.20 31.86 −22.30 −1.56 −14.90 −19.93
0.71 20.38 −28.06 11.22 −22.47 3.19

Finland

−1.53 19.61 −20.97 −14.41 8.98 7.13 27.52 11.78
−22.63 −3.58 23.27 −15.65 −23.58 −21.95 7.49 11.18
−8.53 19.69 6.20 20.42 12.41 7.64 −31.07 2.76
−7.69 24.88 0.52 11.65 −21.83 −19.18 20.24 −29.55
−29.50 −1.84 −3.38 23.13 28.70 11.78

Congo

26.67 −7.77 32.82 −33.83 −2.64 −24.69 4.70 −25.99
−33.14 −13.20 −32.41 35.00 −4.51 16.00 12.55 −30.45

6.43 −31.04 35.00 −33.12 18.24 −5.91 6.71 28.40
−8.67 0.02 −23.91 −16.50 0.93 −5.15 29.78 −11.79
11.49 −34.98 0.65 31.12 16.72 0.42 5.31 17.53

Table 7. Different satellite imaging planning schemes determined using the multi-objective optimization
model proposed in this paper.

Target
Region

Number of
Imaging

Strips

Coverage
Rate

No. of
Imaging

Strips

Coverage
Rate

No. of
Imaging

Strips

Coverage
Rate

No. of
Imaging

Strips

Coverage
Rate

Hubei
1 24.13% 4 75.83% 7 95.62% 10 100.00%
2 46.49% 5 83.69% 8 97.66%
3 62.14% 6 90.60% 9 98.94%

Finland
1 30.33% 4 80.13% 7 95.16% 10 98.91%
2 55.62% 5 87.54% 8 97.24% 11 99.80%
3 72.55% 6 92.45% 9 98.53% 12 100.00%

Congo

1 11.59% 8 69.91% 15 94.79% 22 99.40%
2 22.99% 9 75.53% 16 95.49% 23 99.74%
3 32.96% 10 80.95% 17 96.07% 24 99.84%
4 41.91% 11 86.00% 18 97.16% 25 99.97%
5 50.77% 12 89.38% 19 98.20%
6 57.94% 13 91.88% 20 98.62%
7 64.29% 14 93.76% 21 99.05%

3.2.2. Experimental Analyses

For Hubei, Figure 7a shows that the trajectory distribution of satellites is relatively uniform and
almost “parallel,” except for the three trajectories of GF1 and three trajectories of GF6 in the middle of
Hubei. However, for Finland (Figure 8a) and Congo (Figure 9a), most trajectories are very concentrated,
and some trajectories located in Finland also have “trajectory crossing”. In addition, there are no
satellite trajectories in some of the three regions. Figures 7b, 8b and 9b present the imaging results
when the satellites do not perform swing imaging, which means only vertical imaging is performed.
Furthermore, for the regional target, except for a part of the area that is only observed once, other
areas were repeatedly observed, and some were not observed. It can be inferred from Table 4 that
without model optimization, the coverage rate of the 14 imaging strips in Hubei is only 61%, that of
the 37 imaging strips in Finland is only 79.64%, and that of the 40 imaging strips in Congo is only
66.2%. This is caused by the uneven distribution of satellite trajectories. The distribution of satellite
trajectories determines the satellite resource consumption and completion of regional imaging. An
overly concentrated distribution will waste satellite resources, and too sparse a distribution will not
complete regional imaging. For mapping one area, it can be considered that repeated observations
are not necessary. Therefore, if we do not effectively plan for each satellite, we will waste satellite
resources and not be able to complete regional mapping within the specified imaging time.



Remote Sens. 2020, 12, 344 15 of 20

Figure 7c, Figure 8c, and Figure 9c present the mission planning results for Hubei, Finland, and
Congo, respectively, when the optimization model only uses the coverage as the objective function.
Compared to the planning results without optimization, full coverage or almost full coverage of
the three regions is achieved, and the image acquisition for regional mapping is completed within
the specified time. In terms of satellite resource utilization, Hubei (Figure 7c) has fewer repeated
observations and higher resource utilization. This is because of the moderate number and distribution
of satellite trajectories in Hubei, located at middle latitudes. For Finland, it can be clearly seen that there
is a large overlap of imaging strips, and wastage of satellite resources is serious. This is because of its
high-latitude geographic location, and there are more observation opportunities in the same imaging
time; that is, there are more imaging strips, and all imaging strips participate in optimizing imaging,
which will inevitably cause significant resource redundancy. For the Congo, satellite resource utilization
is better than that of Finland, as observed in Figures 8c and 9c; however, its area is approximately
12 times that of Hubei and 7 times that of Finland. Because of its huge base, there will be significant
wastage of satellite resources.

Figures 7d, 8d and 9d present the results of multi-satellite mission planning in Hubei, Finland,
and Congo when the multi-objective optimization model proposed in this paper is used. It can be
seen that for the three regions, repeated observations are rare, and each imaging strip is indispensable.
Compared to the optimization results of the single-objective model (Table 4), the multi-objective
model proposed in this paper provides the same coverage, with a considerable reduction in the
number of strips. For complete coverage of Hubei, the single-objective model needs 14 imaging strips
while the multi-objective model only needs 10 imaging strips. For complete coverage of Finland, the
single-objective model needs 31 imaging strips while the multi-objective model only needs 12 imaging
strips. For Congo, the single-objective model can cover 99.95% with 39 imaging strips while the
multi-objective model can cover 99.97% with only 25 imaging strips. In addition, from the results
in Tables 6 and 7, it is evident that the multi-objective modeling method proposed in this paper can
achieve full coverage of the three regional targets with less satellite resources.

For any multi-objective optimization model, its solution is a set of non-dominated solutions, not a
single one. The above optimization result obtained using the multi-objective model is the one with
the highest coverage rate. The different optimization schemes for the three target regions are listed in
Table 7, and decision makers can choose different schemes according to their preferences.

4. Discussion

Effective scheduling of multiple satellites is one of the critical steps for regional mapping. Although
the satellites are fixed in their own orbits, if satellite utilization is not properly planned, multiple
overlapping images may be obtained for certain parts of the target area and some parts may not be
covered. In terms of urban planning, if we do not develop an efficient satellite imaging scheme through
satellite planning, to ensure complete imaging of an urban area, we have to extend the imaging time.
However, for providing rapid response to natural disasters, it is necessary to obtain images of the
affected area in a short time. The proposed method uses less resources to achieve coverage within
a specified time, and the saved resources can be effectively utilized for satisfying other observation
demands instead of being redundant. A general approach to multi-satellite mission planning for large
regions consists of two steps: Decomposition of target areas and optimization of scheduling models.
This approach is limited by the size of the grid or the stripe angle particle size, and the optimal solution
search is limited to selecting solutions from the subset of the existing decomposition scheme, which
is not conducive for finding optimal solutions. Our method can obtain the optimal imaging scheme
and region decomposition scheme at the same time. Region decomposition and imaging scheme
optimization are performed as synchronous processes rather than two independent steps. An effective
target area is obtained by calculating the coordinates of the boundary points using the Vatti algorithm,
which is more accurate than the grid statistical method. In addition, the proposed method can provide
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a set of imaging schemes for decision makers to select from, as the multi-objective model can provide
multiple non-dominated solutions.

In studies on multi-satellite regional observations, coverage is the most frequently considered
requirement by researchers. In addition, imaging completion time, satellite resource optimization,
and spatial resolution are also considered. The planning method basically selects one or more of
these requirements to establish a constraint satisfaction model or a multi-objective model. There are
many methods that convert multiple objectives into a single objective by using predefined weights.
Nevertheless, in most cases, multiple requirements are independent and may even be contradictory;
therefore, the solution is sensitive to the weight, and different weight allocation strategies may lead to
different solutions. We have to establish optimization models according to specific needs to obtain
the “best” solution. For example, for regional mapping, alternative satellite resources and completion
time are usually determined in advance, and these do not need planning again. The core requirement
for regional mapping is to complete regional imaging on time using as few satellite resources as
possible; this core requirement was considered in the proposed model. If insufficient requirements are
considered, such as only the coverage gain, for establishing a single-objective model, it will result in
wastage of satellite resources, especially in resource-rich cases. Furthermore, if too many requirements
are considered in developing the task mission model, the high-dimension objective function will
decrease the solution efficiency, or it may be difficult to obtain an optimal solution within the time
limit. In short, the “best” solution can be obtained by establishing appropriate models according to
different application requirements.

5. Conclusions

We developed a multi-objective modeling method to solve the multi-satellite mission planning
problem for large-area mapping considering the following two objective functions: Maximum coverage
rate and minimum number of imaging strips. The aim was to cover the entire target region using as
few satellite resources as possible. The proposed model takes the imaging strip swing angle and strip
selection as the two decision variables. It can integrate regional decomposition and satellite resource
allocation into the planning model. By solving the model, the satellite configuration scheme and side
sway scheme of the imaging strip can be obtained directly, which simplifies the satellite planning
process. We used NSGA-II to solve the model and used the Vatti algorithm to calculate the effective
coverage area of the imaging strips, thus improving the efficiency of the model solution. Compared to
the single-objective model, which only takes the coverage rate as the target function, the multi-objective
model proposed in this paper can complete regional target imaging and efficiently utilize satellite
resources simultaneously. The research results presented in this paper can serve as a reference for
developing satellite imaging schemes in rapid regional mapping using satellite resources efficiently.

As for future work, there is considerable scope for further research into multi-objective modeling
methods considering imaging quality variations caused by swing angles; this will ensure that the
optimal mission scheme meets the mapping quality requirements better.
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Appendix A

Table A1. Expanded visible time window of Hubei.

Satellite Number Expanded Visible Time Window Duration

GF1 3
12 September 2019 03:37:18.941–12 September 2019 03:38:39.901 80.960
16 September 2019 03:34:51.401–16 September 2019 03:36:12.403 81.002
20 September 2019 03:32:23.699–20 September 2019 03:33:44.725 81.026

GF6 4

10 September 2019 03:33:46.385–10 September 2019 03:35:07.243 80.859
14 September 2019 03:31:29.512–14 September 2019 03:32:50.443 80.931
18 September 2019 03:29:12.568–18 September 2019 03:30:33.571 81.003
19 September 2019 03:52:40.505–19 September 2019 03:54:00.201 79.696

ZY1–02C 4

11 September 2019 01:17:00.897–11 September 2019 01:18:23.889 82.992
14 September 2019 01:13:42.526–14 September 2019 01:15:05.614 83.088
16 September 2019 01:44:25.559–16 September 2019 01:45:47.622 82.063
19 September 2019 01:41:06.266–19 September 2019 01:42:28.497 82.231

ZY3 3
12 September 2019 03:19:10.091–12 September 2019 03:20:28.217 78.126
13 September 2019 03:00:11.298–13 September 2019 03:01:29.688 78.391
17 September 2019 03:17:27.763–17 September 2019 03:18:45.976 78.212

Table A2. Expanded visible time window of Finland.

Satellite Number Expanded Visible Time Window Duration

GF1 9

8 September 2019 10:00:14.265–8 September 2019 10:03:09.047 174.782
9 September 2019 10:23:25.722–9 September 2019 10:26:11.073 165.351

10 September 2019 10:46:43.096–10 September 2019 10:49:20.435 157.340
12 September 2019 09:57:48.448–12 September 2019 10:00:44.292 175.844
13 September 2019 10:20:59.211–13 September 2019 10:23:45.478 166.267
14 September 2019 10:44:15.999–14 September 2019 10:46:54.146 158.147
16 September 2019 09:55:22.655–16 September 2019 09:58:19.535 176.880
17 September 2019 10:18:32.705–17 September 2019 10:21:19.856 167.152
18 September 2019 10:41:48.935–18 September 2019 10:44:27.822 158.886

GF6 9

8 September 2019 10:43:08.488–8 September 2019 10:45:46.641 158.153
10 September 2019 09:54:18.108–10 September 2019 09:57:16.020 177.912
11 September 2019 10:17:31.957–11 September 2019 10:20:19.875 167.918
12 September 2019 10:40:51.761–12 September 2019 10:43:31.165 159.404
14 September 2019 09:52:03.128–14 September 2019 09:55:02.054 178.926
15 September 2019 10:15:16.261–15 September 2019 10:18:05.050 168.789
16 September 2019 10:38:35.506–16 September 2019 10:41:15.636 160.130
18 September 2019 09:49:48.115–18 September 2019 09:52:48.063 179.948
19 September 2019 10:13:00.508–19 September 2019 10:15:50.182 169.673

ZY1-02C 10

8 September 2019 07:51:39.850–8 September 2019 07:54:34.406 174.556
10 September 2019 08:22:06.897–10 September 2019 08:24:50.347 163.450
11 September 2019 07:48:23.646–11 September 2019 07:51:19.726 176.080
13 September 2019 08:18:49.345–13 September 2019 08:21:34.044 164.699
14 September 2019 07:45:07.585–14 September 2019 07:48:05.217 177.632
15 September 2019 08:49:26.181–15 September 2019 08:52:00.167 153.985
16 September 2019 08:15:31.884–16 September 2019 08:18:17.867 165.983
17 September 2019 07:41:51.672–17 September 2019 07:44:50.888 179.216
18 September 2019 08:46:06.037–18 September 2019 08:48:42.687 156.650
19 September 2019 08:12:14.516–19 September 2019 08:15:01.808 167.292

ZY3 9

9 September 2019 10:25:25.674–9 September 2019 10:27:48.094 142.420
10 September 2019 10:06:21.018–10 September 2019 10:08:58.556 157.538
11 September 2019 09:47:28.819–11 September 2019 09:50:13.423 164.604
12 September 2019 09:28:40.879–12 September 2019 09:31:33.524 172.645
14 September 2019 10:23:37.852–14 September 2019 10:26:07.000 149.148
15 September 2019 10:04:39.481–15 September 2019 10:07:17.668 158.187
16 September 2019 09:45:47.459–16 September 2019 09:48:32.812 165.353
17 September 2019 09:26:59.793–17 September 2019 09:29:53.281 173.489
19 September 2019 10:21:54.659–19 September 2019 10:24:25.000 150.342
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Table A3. Expanded visible time window of Congo.

Satellite Number Expanded Visible Time Window Duration

GF1 10

8 September 2019 08:40:19.703–8 September 2019 08:45:29.891 310.188
9 September 2019 09:03:41.072–9 September 2019 09:08:49.811 308.739

10 September 2019 09:27:03.475–10 September 2019 09:32:07.550 304.076
11 September 2019 09:50:27.151–11 September 2019 09:55:23.367 296.216
13 September 2019 09:01:13.590–13 September 2019 09:06:22.381 308.791
14 September 2019 09:24:35.838–14 September 2019 09:29:40.284 304.446
15 September 2019 09:47:59.330–15 September 2019 09:52:56.237 296.906
17 September 2019 08:58:45.869–17 September 2019 09:03:54.659 308.789
18 September 2019 09:22:07.955–18 September 2019 09:27:12.721 304.766
19 September 2019 09:45:31.264–19 September 2019 09:50:28.814 297.550

GF6 10

8 September 2019 09:23:24.587–8 September 2019 09:28:27.705 303.118
9 September 2019 09:46:51.121–9 September 2019 09:51:46.372 295.251

10 September 2019 08:34:18.454–10 September 2019 08:39:27.037 308.583
11 September 2019 08:57:42.552–11 September 2019 09:02:50.557 308.006
12 September 2019 09:21:07.670–12 September 2019 09:26:11.328 303.658
13 September 2019 09:44:34.046–13 September 2019 09:49:30.159 296.113
15 September 2019 08:55:25.678–15 September 2019 09:00:33.884 308.205
16 September 2019 09:18:50.663–16 September 2019 09:23:54.851 304.187
17 September 2019 09:42:16.879–17 September 2019 09:47:13.856 296.978
19 September 2019 08:53:08.732–19 September 2019 08:58:17.126 308.393

ZY1-02C 10

8 September 2019 06:29:19.755–8 September 2019 06:34:37.655 317.899
9 September 2019 07:34:00.284–9 September 2019 07:39:05.034 304.749

10 September 2019 06:59:59.710–10 September 2019 07:05:14.488 314.778
11 September 2019 06:26:01.584–11 September 2019 06:31:19.506 317.923
12 September 2019 07:30:41.590–12 September 2019 07:35:47.747 306.157
13 September 2019 06:56:41.292–13 September 2019 07:01:56.746 315.454
15 September 2019 07:27:22.861–15 September 2019 07:32:30.339 307.479
16 September 2019 06:53:22.827–16 September 2019 06:58:38.867 316.040
18 September 2019 07:24:04.089–18 September 2019 07:29:12.804 308.715
19 September 2019 06:50:04.313–19 September 2019 06:55:20.846 316.533

ZY3 10

8 September 2019 09:26:53.909–8 September 2019 09:31:41.497 287.588
9 September 2019 09:07:54.501–9 September 2019 09:12:48.422 293.922

10 September 2019 08:48:55.894–10 September 2019 08:53:54.108 298.214
11 September 2019 08:29:57.981–11 September 2019 08:34:58.421 300.439
13 September 2019 09:25:12.383–13 September 2019 09:30:00.707 288.324
14 September 2019 09:06:12.876–14 September 2019 09:11:07.342 294.466
15 September 2019 08:47:14.162–15 September 2019 08:52:12.726 298.564
16 September 2019 08:28:16.126–16 September 2019 08:33:16.720 300.594
18 September 2019 09:23:29.924–18 September 2019 09:28:18.957 289.033
19 September 2019 09:04:30.312–19 September 2019 09:09:25.300 294.988
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