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Abstract: We present an unsupervised deep learning approach for post-disaster building
damage detection that can transfer to different typologies of damage or geographical locations.
Previous advances in this direction were limited by insufficient qualitative training data. We propose
to use a state-of-the-art Anomaly Detecting Generative Adversarial Network (ADGAN) because
it only requires pre-event imagery of buildings in their undamaged state. This approach aids the
post-disaster response phase because the model can be developed in the pre-event phase and rapidly
deployed in the post-event phase. We used the xBD dataset, containing pre- and post- event satellite
imagery of several disaster-types, and a custom made Unmanned Aerial Vehicle (UAV) dataset,
containing post-earthquake imagery. Results showed that models trained on UAV-imagery were
capable of detecting earthquake-induced damage. The best performing model for European locations
obtained a recall, precision and Fl-score of 0.59, 0.97 and 0.74, respectively. Models trained on
satellite imagery were capable of detecting damage on the condition that the training dataset was
void of vegetation and shadows. In this manner, the best performing model for (wild)fire events
yielded a recall, precision and Fl-score of 0.78, 0.99 and 0.87, respectively. Compared to other
supervised and/or multi-epoch approaches, our results are encouraging. Moreover, in addition to
image classifications, we show how contextual information can be used to create detailed damage
maps without the need of a dedicated multi-task deep learning framework. Finally, we formulate
practical guidelines to apply this single-epoch and unsupervised method to real-world applications.

Keywords: deep learning; Generative Adversarial Networks; post-disaster; building damage
assessment; anomaly detection; Unmanned Aerial Vehicles (UAV); satellite; xBD

1. Introduction

Damage detection is a critical element in the post-disaster response and recovery phase [1].
Therefore, it has been a topic of interest for decades. Recently, the popularity of deep learning has
sparked a renewed interest in this topic [2—4].

Remote sensing imagery is a critical tool to analyze the impacts of a disaster in both the
pre- and post-event epoch [4]. Such imagery can be obtained from different platforms: satellites,
Unmanned Aerial Vehicles (UAV’s) and manned aircrafts [5,6]. Each contains characteristics that
need to be considered before deciding on which to use for disaster analysis. Manned airplanes or
UAV’s can be flexibly deployed and fly at relatively low heights compared to satellites and, therefore,
have relatively small ground sampling distances (GSD) [7]. UAV’s can fly lower than manned airplanes
and in addition, depending on the type of drone, they can hover and maneuver in between obstacles.
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Both platforms can be equipped with a camera in oblique mounts, meaning that vital information
can be derived from not only the top but also the sides of objects [8]. However, data acquisitions
using these platforms have to be carried out and instigated by humans, which makes them time and
resource costly. The spatial coverage of these platforms is also typically restricted to small areas of
interests (AlO) and biased towards post-event scenarios when new information is required. Therefore,
pre-event data from UAV or aerial platforms are less likely to exist. Satellites on the other hand,
depending on the type of satellite, have a high coverage and return rate, especially of build-up areas.
Therefore, pre-event data from satellites are more likely to exist. Moreover, satellite systems that
provide information to Emergency Mapping Services are able to (re)visit the disaster location only
hours after an event, enabling fast damage mapping [9]. A disadvantage of satellite imagery is that it
has larger GSD footprints. Moreover, excluding the ones that are freely available, obtaining satellite
imagery is generally more costly than UAV imagery.

Damage mapping using Earth observation imagery and automatic image analysis is still a challenge
for various reasons despite decades of dedicated research. Traditional image analysis remains sensitive
to imaging conditions. Shadows, varying lighting conditions, temporal variety of objects, camera angles
or distortions of 3D objects that have been reduced to a 2D plane have made it difficult to delineate
damage. Moreover, the translation of found damage features to meaningful damage insights have
prevented many methods from being implemented in real-world scenarios. Deep learning has
made a major contribution towards solving these challenges by allowing the learning of damage
features instead of handcrafting them. Several studies have been carried out on post-disaster
building damage detection using remote sensing imagery and deep learning [6,10-13]. Adding 3D
information, prior cadastral information or multi-scale imagery has contributed towards some of these
challenges [11,14-16]. Despite these efforts, persistent problems related to vegetation, shadows or
damage interpretation remain. More importantly, a lesser addressed aspect of deep learning-based
post-disaster damage detection remains—the transferability of models to other locations or disasters.
Models that can generalize and transfer well to other tasks constitute the overarching objective for
deep learning applications. Specifically, in the post-disaster management domain, such a model would
remove the need to obtain specific training data to address detection tasks for a particular location or
disaster. By removing this time-costly part of post-disaster damage detection, resources are saved and
fast post-disaster response and recovery is enabled. However, a persisting issue keeping this goal out
of reach is the availability of sufficient qualitative training data [13].

Because disasters affect a variety of locations and objects, damage induced by disasters similarly
shows a large variety in visual appearances [13]. Obtaining a number of images that sufficiently cover
the range of visual appearances is difficult and impractical. In fact, it is impossible to sample the never
before seen damage, making supervised deep learning models inherently ad hoc [17]. Moreover, it is
challenging to obtain qualitative annotations. Ideally, images are labelled by domain experts. However,
the annotation process is time-costly, which critical post-disaster scenarios cannot tolerate. Finally,
the process is subjective. Especially in a multi-classification task, two experts are unlikely to annotate
all samples with the same label [18]. Questionable quality of the input data makes it difficult to trust
the resulting output. The problem of insufficient qualitative training data drives most studies to make
use of data from other disaster events with damage similar to the one of interest, to apply transfer
learning or to apply unsupervised learning [19].

Most unsupervised methods for damage detection are not adequate for post-disaster applications
where time and data are scarce. Principal Component Analysis (PCA) or multi-temporal deep learning
frameworks are used for unsupervised change detection [20,21]. Besides the disadvantage of PCA that it
is slow and yields high computational overhead, a major disadvantage of change detection approaches
in general is that pre-event imagery is required, which is not always available in post-disaster scenarios.
Methods such as One-Class Support Vector Machines (OCSVM) make use of a single epoch; however,
these methods cannot be considered unsupervised because the normal class, in this case the undamaged
class, still needs to be annotated in order to distinguish anomalies such as damage [22]. Moreover,
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earlier work has shown that OCSVM underperforms in the building damage detection task compared
to supervised methods [23].

Anomaly detecting Generative Adversarial Networks (ADGANSs), a recently proposed
unsupervised deep learning principle used for anomaly detection, have the potential to overcome
the aforementioned limitations and, therefore, to improve model transferability. ADGANSs have
been applied to detect anomalies in images that are less varied in appearance to address problems
in constrained settings. For example, reference [17], reference [24] and reference [25] have applied
ADGAN:S to detect prohibited items in x-rays of luggage. Reference [26] and reference [27] have
applied ADGANSs to detect masses in ultrasounds or disease markers in retina images. Until recently,
ADGANSs had not been applied to detect anomalies in images that are visually complex, such as remote
sensing images, to address a problem that exists in a variety of settings, such as damage detection from
remote sensing images.

The fundamental principle of an ADGAN is to view the damaged state as anomalous, and the
undamaged state as normal. It only requires images that depict the normal, undamaged state.
This principle poses several advantages. First, obtaining images from the undamaged state is less
challenging, assuming that this state is the default. Second, data annotations are not required,
thus eliminating the need of qualitative annotated training data. Finally, the never before seen damage
is inherently considered since it deviates from the norm. This makes ADGAN an all-encompassing
approach. The aforementioned advantages have made ADGANSs appealing for a variety of applications,
and especially appealing for post-disaster damage detection. The main advantage for post-disaster
applications is that a model can be trained pre-disaster using only pre-event imagery. It can be instantly
applied after the occurrence of a disaster using post-event imagery and thus aid post-disaster response
and recovery. ADGANSs output binary damage classifications and, therefore, a disadvantage is that
they are unable to distinguish between damage severity levels. However, we argue that the practical
advantages listed above outweigh this disadvantage, especially considering how the method provides
rapid information to first responders in post-disaster scenes.

In earlier work, we showed how an ADGAN could be used under certain pre-processing constraints
to detect post-earthquake building damage from imagery obtained from a manned aircraft [23].
Considering these results, and in addition the characteristics of the different remote sensing platforms
explained above, we extend the preliminary work by investigating the applicability of ADGAN to
detect damage from different remote sensing platforms. By training the ADGAN on a variety of
pre-disaster scenes, we expect it to transfer well to different geographical locations or typologies of
disasters. Special attention is given to satellite imagery because of its advantages explained above.
We aim to provide practical recommendation on how to use this method in operational scenarios.

The contribution of this paper is threefold:

e First, we show how an ADGAN can be applied in a completely unsupervised manner to
detect post-disaster building damage from different remote sensing platforms using only
pre-event imagery.

e  Second, we show how sensitive this method is against different types of pre-processing or data
selections to guide practical guidelines for operational conditions.

e Lastly, we show whether this method can generalize over different typologies of damage or
locations to explain the usability of the proposed method to real world scenarios.

The goal of this research is the fast detection of damage enabling fast dissemination of information
to end-users in a post-disaster scenario. Therefore, it is beyond the scope of this study to examine the
link between the proposed method and pre-event building vulnerability estimations or fragility curves.
Our main aim is to investigate the applicability of ADGANSs for unsupervised damage detection.
Based on our results, we present a conclusion regarding the applicability and transferability of this
method from an end-user’s perspective.
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Related work can be found in Section 2; the experiments are detailed in Section 3; results are
described in Section 4; the discussion and conclusion can be found in Sections 5 and 6, respectively.

2. Related Work

2.1. Deep Learning for Post-disaster Damage Detection

Deep learning using optical remote sensing imagery has been a widely researched topic to
address various aspects in the post-disaster research domain. Reference [2] used a SqueezeNet based
Convolutional Neural Net (CNN) to make a distinction between collapsed and non-collapsed buildings
after an earthquake event. Reference [28] addressed the combined use of satellite and airborne imagery
at different resolutions to improve building damage detection. Reference [12] proposed a method to
detect different proxies of damage, such as roof damage, debris, flooded areas, by using transfer learning
and airborne imagery. Similarly, Reference [3] aimed to detect blue tarp covered buildings, a proxy for
building damage, by utilizing aerial imagery and building footprints. Various researchers focused
on utilizing pre- and post-event imagery to its best advantage. Reference [29] showed how fusion of
multi-temporal features improved damage localization and classification. Similarly, reference [30]
aimed to detect different building damage degrees by evaluating the use of popular CNNs and
multi-temporal satellite imagery. Reference [11] proposed an efficient method to update building
databases by using pre-disaster satellite imagery and building footprints to train a CNN, which was
fine-tuned using post-disaster imagery. Reference [31] proposed a U-Net-based segmentation model to
segment roads and buildings from pre- and post-disaster satellite imagery, specifically to update road
networks. Progress has also been made towards real-time damage detection. Reference [32] made
use of a lightweight CNN that was placed on board an UAV to detect forest fires in semi-real time.
Reference [7] developed a similar near-real time low-cost UAV-based system which was able to stream
building damage to end-users on the ground. Their approach was one of the first to validate such
a system in large-scale projects. Finally, reference [14] showed how adding 3D information to UAV
imagery aided the detection of minor damage on building facades from oblique UAV imagery.

Most deep learning methods towards post-disaster damage mapping, including the ones
mentioned above, are supervised. However, a persistent issue in supervised learning is the lack
of labelled training data [4]. The issue of unbalanced datasets or the lack of qualitative datasets is
mentioned by most [2,12,28-30]. As mentioned earlier, researchers bypass this issue by using training
datasets from other projects that resembles the data that are needed for the task-at-hand, or by applying
transfer learning to boost performance. Despite these solutions, the main weakness of these solutions
is that these models generally do not transfer well to other datasets. Reference [13] compared the
transferability of different CNNs that were trained on UAV and satellite data from different geographic
locations, and concluded that the data used for training a model strongly influences the model its
ability to transfer to other datasets. Therefore, especially in data scarce regions, the application of
damage detection methodologies in operative scenarios remains limited.

2.2. Generative Adversarial Networks

Generative Adversarial Networks (GANs) were developed by reference [33] and gained popularity
due to their applicability in a variety of fields. Applications include augmented reality, data generation
and data augmentation [34-36]. A comprehensive review of research towards GANSs from recent years
can be found in reference [37].

A GAN consists of two Convolutional Neural Nets (CNNs): the Generator and the Discriminator.
The Generator receives as input an image dataset with data distribution pgata. The Generator aims to
produce a new image (£) that fits within the distribution pgat,. Therefore, the Generator aims to learn a
distribution of pg that approaches pgata- The Discriminator receives as input an image (x) from the
original dataset as well as the image (£) generated by the Generator. The goal of the Discriminator is to
distinguish the generated images from the original input data. If the Discriminator wins, the Generator
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loses and vice versa [33]. The Generator (G) and Discriminator (D) are locked in the two-player
zero-sum principle. The discriminator aims to minimize the function D(G(x)) and the Generator tries
to maximize it according to the function log(1 — D(G(x))).

2.3. Anomaly detecting Generative Adversarial Networks.

GAN: s are also applied to detect defects or damage in the medical or manufacturing domain.
Similar to post-disaster damage detection, a common limitation for these kind of applications is
data imbalance. Therefore, GANs are used to synthesize more data of the underrepresented class.
Reference [38] synthesized medical imagery to boost liver lesion detection and reference [39] synthesized
road defects samples, which led to a Fl-score increase of up to 5 percent. The main limitation of
synthesizing data is that examples are required. Moreover, it is unclear to what extent the generated
samples are restricted to the data distribution of the input data, inhibiting diversity of the generated
images [40,41]. ADGANSs provide a better solution, since no examples are needed.

ADGAN:Ss are only trained using normal, non-damaged input data. The resulting trained model is
proficient in reproducing images that do not show damage, and less proficient in reproducing images
that depict damage. Therefore, the distance between the input image and the generated image is large
when inference is done using an image that contains damage, which subsequently can be used to
produce anomaly scores [24].

The first examples of ADGANSs are Efficient GAN-Based Anomaly Detection (EGBAD), which was
developed using curated datasets such as MNIST, and AnoGAN, which was geared towards anomaly
detection in medical imagery [27,42]. Reference [26] applied an EGBAD-based method to detect malign
masses in mammograms. The main limitation in AnoGAN was its low inference speed. This was
resolved in f-AnoGAN [43]. The latter was outperformed by GANomaly, which successfully detected
prohibited items in x-rays of luggage [17], although it was shown to be less capable of reconstructing
visually complex images [23,44]. Using a U-Net as the Generator, the reconstruction of complex
imagery was resolved by its successor Skip-GANomaly [24]. Both f~AnoGAN and Skip-GANomaly
serve as the basis for ongoing developments [25,44—46].

Considering that Skip-GANomaly outperformed f-AnoGAN, and in addition, how it is proficient
in generating visually complex imagery, this architecture was used in this research.

3. Materials and Methods

3.1. ADGAN

The architecture of Skip-GANomaly is shown in Figure 1. The Generator and the Discriminator
consist of a U-net and an encoder architecture, respectively [47]. In earlier work, we showed
how substituting the Generator for an encoder-decoder architecture without skip-connections—e.g.,
GANomaly [17]—does not always result in well-reconstructed fake images from Earth observation
imagery [23]. The encoder—decoder architecture of Skip-GANomaly, in combination with the
skip-connections, makes it efficient in recreating even complex remote sensing imagery.

Input image GENERATOR Generated image
> Lcon=
64 64
128 128 |l

DISCRIMINATOR
256 256
I 128 256 512

) ; Real
B O X \Fake

vi v
Liat  Ladv

512

Feature | Feature map & LeakyReLU ReLU Col
- o \ Softmax _ ConvLayer ConvTranspose . oD tenate *— Lossflow
P Py BatchNorm BatchNorm

Figure 1. Skip-GANomaly architecture. Adapted from [24].



Remote Sens. 2020, 12, 4193 6 of 27

Skip-GANomaly makes use of three distinctive losses to guide its training, called the latent loss
(Ljat), the adversarial loss (L,q4y) and the contextual loss (Lcon). Lagy accounts for the correctness of the
classification (fake or real). Lcon accounts for the generated image, and steers the model to create fake
images that are contextually sound, i.e., images that look realistic. Ly, is a loss that steers the encoders
inside the Generator and Discriminator to create similar representations of the image latent vector
z [24]. Each loss contributes to the overall loss according to their corresponding weight (w). The losses
are described in the following equations:

Lago = IIf (x) = f(2)Il @
where,
f(.) = Exp, [logD(.)] &)
Leon = Ilx = %l ®)
Lig = llz—Zll2 (4)

The overall loss is described as follows:
L = wygyLsgp + WeonLeon + WigeLiyg ®)

Several hyper-parameters influence the performance of the model. Besides the general parameters
such as batch size, learning rate or decay rate, model specific parameters include loss weights, the size
of the latent vector z, and the number of encoder layers inside the Generator and Discriminator.
Details on how these parameters are tuned can be found in Section 3.4.

A modification was made to the network. In the original network, after each epoch of training,
the Area Under the Curve (AUC) score was calculated using the validation dataset. After training
finished, a model for inference was selected based on the epoch in which it obtained the highest AUC
score [24]. This makes the original implementation not a truly unsupervised approach, since a validation
dataset is still required (i.e., examples of damage are still needed). Therefore, we choose to save the best
performing model when the lowest Generator loss was found. This ensures that the model is chosen
that is best able to generate fake images, which is the main principle of Skip-GANomaly. We verified
that this approach yielded performance comparable to the original implementation, without the need
of annotated test samples.

During inference, each image is classified as either damaged or undamaged by obtaining anomaly
scores. Per-pixel anomaly scores are derived by simple image differencing between the input and
the generated image. Each corresponding channel is subtracted from each other and averaged per
pixel to obtain per-pixel anomaly scores. An image anomaly score is obtained by averaging the
per-pixel anomaly scores. The closer to one, the higher the probability that the image is anomalous.
After obtaining anomaly scores for all test samples, a classification threshold was determined in order
to classify the images. This threshold is characterized as the intersection between the distribution
of anomaly scores of normal and abnormal samples. Any sample with an anomaly score below the
threshold was classified as normal and any value above the threshold as abnormal. Ideally, a model with
a high descriptive value should result in non-overlapping distributions of the normal and abnormal
samples with a clear threshold.

Finally, alterations and additions were applied to Skip-GANomaly in an attempt to boost results
for the satellite imagery dataset. First, with the idea of weighing the generation of building pixels more
than other pixels, we attempted to direct the attention of Skip-GANomaly by adding building masks
as input in an approach similar to the one described in [48]. Furthermore, with the idea of utilizing the
building information in the multiple epochs, similar to the approach described in [16], we stacked
pre- and post-imagery into a 6-channel image and implemented an early, late or full feature fusion
approach. These additions only provided marginal improvements. Our findings for stacking pre-
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and post-imagery were in line with those found in [29]. The goal of this study was to investigate the
applicability of ADGAN:Ss for building damage detection. Considering that improvements of the model
were beyond our scope of work and only marginal, these lines of investigation were not explored any
further and the original implementation was maintained.

3.2. Data

As mentioned earlier, a satellite and an UAV dataset were used in this research. This section will
describe both datasets.

3.2.1. xBD Dataset

We made use of the xBD satellite imagery dataset [49]. It was created with the aim of aiding the
development of post-disaster damage and change detection models. It consists of 162.787 pre- and
post-event RGB satellite images from a variety of disaster events around the globe. These include floods,
(wild)fire, hurricane, earthquake, volcano and tsunami. The resolution of the images is 1024 x 1024,
the GSD ranges from 1.25 m to 3.25 m and annotated building polygons were included. The original
annotations contained both quantitative and qualitative labels: 0—no damage, 1—minor damage,
2—major damage and 3—destroyed [50]. The annotation and quality control process is described
in [50]. The dataset contained neither structural building information nor disaster metrics such as
flood levels or peak ground acceleration (PGA). Figure 2 shows example pre- and post-event images
of a location where a volcanic eruption took place. The color of the building polygons indicates
the building damage level. For our purpose, all labels were converted to binary labels. All images
with label O received the new label 0—undamaged, and the ones with label 1, 2 or 3 received the
label 1—damaged. We note that even though damage is labelled under the umbrella-label of the
event that caused it, damage is most often induced by secondary events such as for example debris
flow, pyroclastic flow or secondary fires. For the sake of clarity, we will refer to the umbrella-label
when referring to induced damage. Example imagery of each event can be found in Figure 3a—j.
This dataset was used in the Xview?2 challenge where the objective was to localize and classify building
damage [51]. The ranked top-3 submissions reported amongst others an overall F1-score of 0.738 using
a multi-temporal fusion approach [29].

Volcano

Pre-disaster Post-disaster

200

—— destroyed
major damage
minor damage

—— no damage

400

600

# pixels
# pixels

800

1000

0 N 200 400 600 800 1000 200 Z)O 600 800 1000
# pixels # pixels
Figure 2. Example from the xBD dataset showing pre- and post-event satellite images from a location
where a volcanic eruption took place. Several buildings and sport facilities are visible. The post-event
image shows damage induced by volcanic activity. The buildings are outlined and the damage level is
depicted by the polygon color. The scale bars are approximate.
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(m)

Figure 3. Examples of Satellite imagery used for testing: (a) Hurricane Florence (USA), (b) Hurricane
Michael (USA), (c) Hurricane Harvey (USA), (d) Hurricane Mathew (Haiti), (e) Volcano (Guatemala),
(f) Earthquake (Mexico), (g) Flood (Midwest), (h) Tsunami (Palu, Indonesia), (i) Wildfire (Santa-Rosa
USA) and (j) Fire (Socal, USA). Examples of UAV imagery used for testing: (k) Earthquake (Pescara del
Tronto, Italy), (1) Earthquake (L"Aquila, Italy), (m) Earthquake (Mirabello, Italy), (n) Earthquake
(Taiwan) and (o), Earthquake (Nepal). The scale bars are approximate.
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3.2.2. UAV Dataset

The UAV dataset was constructed manually from several datasets that depict the aftermath of
several earthquake events. Examples can be found in Figure 3k-o. The UAV images were collected for
different purposes and, therefore, the image resolution and the GSD vary and range around 6000 x 4000
pixels and from 0.02 to 0.06 m, respectively [13]. Moreover, the camera angle differed between nadir
and oblique view. The UAV dataset contained no pre-event imagery and, therefore, the undamaged
patches were obtained from undamaged sections in the images (see Section 3.3). Finally, the dataset
contained neither structural building information nor PGA values.

3.3. Data Pre-Processing and Selection

Before the experiments were executed, the datasets were first treated to create different data-subsets.
This section describes the different data treatments, while the next section describes how they were used
in different experiments. The data treatments can be summarized into three categories: (i) varying patch
size, (ii) removal of vegetation and shadows, and (iii) selection of data based on location or disaster
type. For each dataset, we experimented with different cropping sizes. The rationale behind this
step was that the larger the image, the more area is covered. Therefore, especially in satellite imagery
where multiple objects are present, larger images often contain a high visual variety. As explained
earlier, the Generator attempts to learn the image distribution, which is directly influenced by the
visual variety contained in the images. When the learned image distribution is broad, a building
damage has more chance to fall within this distribution, resulting in a reconstructed image that closely
resembles the input image. The resulting distance between the input and generated images would
be small and, therefore, the sample is expected to be misclassified as undamaged. We expected that
restricting the patch size creates a more homogeneous and less visually varied scene. Especially
cropping images around buildings would steer the Generator to learn mainly the image distribution of
buildings. Therefore, any damage to buildings was expected to fall more easily outside the learned
distribution, resulting in accurate damage detections and thus an increase in true positives.

The satellite imagery was cropped into patches of 256 x 256, 64 x 64 and 32 x 32 (Figure 4).
By dividing the original image in a grid of four by four, patches of 256 x 256 could be easily obtained.
However, the visual variety in these patches was likely still high. Smaller sizes of 64 X 64 or
32 x 32 would reduce this variety. However, simply dividing the original image systematically into
patches of 64 x 64 or 32 X 32 resulted in a large amount of training patches that did not contain
buildings. These patches did not contribute to learning the visual distribution of buildings. Therefore,
the building footprints were used to construct 32 X 32 and 64 X 64 patches only around areas that
contained buildings. To achieve this, the central point of each individual building polygon was
selected and a bounding box of the correct size was constructed around this central point. We note
that in real-world application, building footprints are not always available; however, this step is not
necessarily required considering that it only intends to reduce the number of patches containing no
buildings, even though there are various ways to derive building footprints. Open source repositories
such as OpenStreetMap provide costless building footprints for an increasing number of regions,
and supervised or unsupervised deep learning are proficient in extracting building footprints from
satellite imagery [52-54]. Therefore, the proposed cropping strategy and subsequent training can be
completely unsupervised and automated.
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Figure 4. Illustration of different cropping strategies for the xBD dataset from the original patch size of
1024 x 1024 to 256 X 256, 64 x 64 and 32 x 32. The scale bars are approximate.

The UAV images were cropped in sizes of 512 x 512, 256 x 256 and 64 X 64. Larger patch sizes
were chosen than for the xBD dataset to compensate for the difference in image resolution. More detail
could be observed in larger sized UAV patches. Compare, for example, the amount of detail that can be
observed in the smallest patches of Figures 4 and 5. Unlike for the xBD dataset, building footprints were
not available. In general, building footprints for UAV imagery are difficult to obtain from open sources
because, compared with satellite imagery, they are not necessarily georeferenced. Moreover, footprints
would be difficult to visualize because of the varying perspectives and orientation of buildings in UAV
imagery. Therefore, the 512 X 512 patches were extracted and labelled manually. Because of varying
camera angles, patches displayed both facades and rooftops. Since no pre-event imagery was available,
undamaged patches were obtained by extracting image patches from regions where no damage was
visible. Binary labels were assigned to each image: 0—undamaged, or 1—damaged. The cropping
strategy for the smaller sizes consisted of simply cropping around the center pixel (Figure 5).

# pixels

o B # pixels
] 1000 2000 3000 4000 5000 6000 500 P
# pixels 0 100 200 300 400 500

# pixels
Figure 5. Illustration of cropping strategies for the UAV dataset from the original patch size of
4000 x 6000 to 512 x 512, 256 x 256 and 64 X 64. The scale bars are approximate and refer to the front of
the scene.

Next, the cropped patches were pre-processed. In order to investigate how sensitive this method
is against different pre-processing, images were removed from the dataset based on the presence of
vegetation or shadows. Vegetation and shadows remain challenging in deep learning-based remote
sensing applications. Shadows obscure objects of interest, but also introduce strong variation in
illumination [55]. Depending on the varying lighting conditions, vegetation is prone to produce
shadows and, therefore, varying Red, Green, Blue and illumination values [56]. Therefore, the image
distribution learned by the Generator is expected to be broad. This means that any damage found
on buildings is more likely to fall within this learned image distribution and, therefore, to be well
reconstructed in the fake image. A well-reconstructed damage leads to lower anomaly scores,
which is not the objective. We showed in [23] how removing these visually complex patches from the
training set improve damage classification because the learned image distribution was expected to be
narrower. Therefore, we created data subsets for training following the same procedure, using the
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Shadow Index (SI; Equation (6)) and the Green—-Red Vegetation Index (GRVI; Equation (7)) [57,58].
Images containing more than 75 or 10 percent vegetation and/or shadows, respectively, were removed
from the original dataset. Using these datasets, we showed how increasingly stricter pre-processing,
and thus decreasingly visually complex patches, influences performance. Removing images from
a dataset is not ideal since it limits the practicality of the proposed methodology because it reduces the
proportion of patches on which it can do inference (see Figure 6). The test dataset in the novegshad@10%
data subset is 8 percent of the original test dataset. Therefore, we further experimented with masking the
pixels that contain vegetation and shadow in an attention-based approach, as explained in Section 3.1.
However, this was not considered as a further line of investigation since results did not improve.

ST= /(256 — Blue) * (256 — Green) ©)

GRVI = M (7)
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Figure 6. Number of samples in each data subset. Original refers to the complete un-preprocessed
dataset. Y-axis is in log-scale.

Only the satellite patches of size 64 X 64 and 32 X 32 were pre-processed in this manner. Even though
these sizes were already constrained to display maximum buildings and minimal surroundings using
cropping techniques, some terrain and objects were often still present (see Figure 4). Satellite patches
of size 256 x 256 were not pre-processed in this manner. Satellite images of this size usually contained
more than 75 percent vegetation and/or shadow and, therefore, removing these images resulted in
data subsets for training that were too small. UAV patches were also not pre-processed this way;,
since careful consideration was taken during manual patch extraction to ensure they do not contain
vegetation or shadows.

Finally, selections of UAV and satellite patches were made based on the image location and the
continent of the image location. Here the assumption was made that buildings were more similar in
appearance if located in the same continent or country. Trained models were expected to transfer well
to other locations if the buildings looked similar. Additionally, satellite patch selections were made
based on the disaster type in order to investigate whether buildings affected by the same disaster type
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could yield a high performance. Here we consider that end-users might already possess a database
of pre-event imagery of the same disaster of different locations around the globe, while they are not
in possession of pre-event imagery of the country or continent that appears similar to the location of
interest. Table 1 shows a summary of all the resulting satellite and UAV data subsets.

Table 1. Overview of the data subsets used in this research. Data subsets were created based on
(1) resolutions and (2) data selections, which include pre-processing (removal vegetation and/or
shadows), disaster-event location, disaster-event continent and disaster-type. * Not for satellite patches

of size 256 x 256.
Dataset Satellite (xBD) UAV
Resolutions 256 X 256 / 64 X 64 [ 32 X 32 512 x 512/ 256 X 256 / 64 X 64
Data Data Data Data Data Data
Category Pre-Processin Selection: Selection: Selection: Selection: Selection:
& Location Continent Disaster Location Continent
No Guatemala Pescara del
vegetation (volcano) North-America Flood Tronto (Italy; Asia
(<75%) * earthquake)
No Florence Kathmandu
vegetation (USA; Mid-America Wildfire (Nepal; Europe
(<10%) * hurricane) earthquake)
Harvey L’Aquila
I\T(o<;1r510a/c;iw (USA; Smxlrslifast Volcano (Italy; South-America
? hurricane) earthquake)
Matthew Portoviejo
I\T(Zigoa/%iw (Haiti; Hurricane (Ecuador;
? hurricane) earthquake)
ve (Ie\tlgtion Michael Mirabello
« Category an dgsha dow (USA; Earthquake (Italy;
values o x hurricane) earthquake)
(<75 /o)
ve el\tlgtion Mexico City Taiwan
& (Mexico; Tsunami (China;
and shadow earthquake) earthquake)
(<10%) * ! q
Midwest
(USA; flood)
Palu
(Indonesia;
tsunami)
Santa-Rosa
(USA;
wildfire)
Socal (USA;
fire)

Each data subset was divided into a train and test set. Figure 6 shows the sample size of each

subset. The train-set only consisted of undamaged images, and the test set contained both undamaged
and damaged samples. For the satellite imagery, the undamaged samples in the train set came from the
pre-event imagery, whereas the undamaged samples in the test set came from the post-event imagery.
For the UAV imagery, the undamaged samples both came from the post-event imagery. The samples
were divided over the train and test set in an 80 and 20 percent split. The original baseline dataset
denotes the complete UAV or complete satellite dataset.
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We note that the UAV dataset size was relatively low. However, the authors of [44] found that
the ability of an ADGAN to reproduce normal samples was still high when trained on a low amount
of training samples. We verified that low number of samples had no influence on the ability of
Skip-GANomaly to produce realistic output imagery, and thus we conclude that the Generator was
able to learn the image distribution well, which was the main goal. For the reasons explained above,
these numbers of UAV samples were deemed acceptable.

3.4. Experiments

The experiments were divided into two parts. Part one showed whether the method is
applicable and/or sensitive to preprocessing. The experiments consisted of training and evaluating
Skip-GANomaly models using the different pre-processed data subsets from Table 1, described in
Section 3.3. Part two showed whether the method can be transferred to different geographic locations or
disasters. The experiments consisted of training and testing a Skip-GANomaly model on the different
location, continent and disaster data subsets. Each trained model, including the ones trained in part
one, was cross-tested on the test set of each other data subset.

The training procedure maintained for part one and part two can be described as follows:
A Skip-GANomaly model was trained from scratch using the train-set. Before training, the model
was tuned for the hyper-parameters, w,gy, Weon, Wiat, learning rate and batch size, using grid-search.
When the best set of hyper-parameters was found, the model was retrained from scratch using
these parameter values for 30 epochs, after which it did not improve further. As explained earlier,
using a modification, during training the best performing model was saved based on the lowest
generator loss value. After training was completed, the model was evaluated on the test set. Training
and evaluation ran on a desktop with a dual Intel Xeon Gold (3.6GHz) 8-cores CPU and a Titan XP
GPU (12GB). Training for 30 epochs took approximately 8 hours using patches of 64 x 64 and a batch
size of 64. Inference on a single image of 64 X 64 took approximately 3.9 ms.

For part two of the experiments, the transferability was analyzed by testing each of the previously
trained models on the test set of all other data subsets. For example, all trained UAV models were
evaluated on the UAV-imagery of all patch sizes from all locations and continents. All trained satellite
models were evaluated on satellite-imagery of all patch sizes, from all locations and continents and from
all pre-processing manners. To deal with different patch sizes, the images were up- or down-sampled
during testing. Finally, transferability was not only analyzed intra-platform, but also cross-platform.
This means that all models trained on different subsets of satellite imagery were also evaluated on the
test set of all different subsets of UAV imagery and vice versa.

The Fl-score, recall, precision and accuracy were used to describe performance. A high recall
is important, because it shows that most instances of damage are indeed recognized as damage.
In practice, this means that it can be trusted that no damage goes unnoticed. A high precision is
also important, because it shows that from all the recognized instances of damage, most are indeed
damage. Moreover, this means that it can be trusted that all the selected instances of damage are
indeed damaged, and no time has to be spent on manually filtering out false positives. The Fl-score
represents the balance between recall and precision.

3.5. Comparison Against State-of-the-Art

In order to investigate how close our results can get to those of supervised methods, we compared
the results of our experiments against results obtained using supervised deep learning approaches.
In earlier work, we showed how unsupervised methods drastically underperformed compared to
our method and, therefore, unsupervised methods such as One Class Support Vector Machine are
left out of the comparison [23]. In order to make a fair comparison, we considered approaches that
made use of a single epoch and, ideally, datasets that resemble ours in GSD, resolution, location and
disaster-types. Therefore, we compared the results obtained using satellite-based models against
the xView2 baseline model, and ranked competitors in the xView2 competition [29]. The xView2
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baseline model first trained a U-Net architecture to extract building polygons. Afterwards, they used
a Resnet50 architecture pre-trained on ImageNet to classify different degrees of building classifications.
The ranked contenders [29] used a multi-temporal approach where both localization and classification
was learned simultaneously by feeding the pre- and post-disaster images into two architectures with
shared weights. The architectures consisted of ResNet50, which was topped with Feature Pyramid
Heads, and were pre-trained on ImageNet. Finally, we compared the results obtained using UAV-based
models with results obtained by [13]. Here, comparable UAV-images were used from post-earthquake
scenes to train an adapted DenseNet121 network with and without fine-tuning. The authors carried
out several cross-validation tests where each time a different dataset was used for testing, to investigate

the influence of training data on performance.

4. Results

satellite and UAV imagery. We show the more interesting results to avoid lengthy descriptions of
all tests that were carried out. In addition, we present a closer look at the cases in which the model
succeeded or failed to detect damage, and show how anomaly scores could be used to map damage.

This section will describe the performance of Skip-GANomaly to detect building damage from
Additionally, the cross-test results are presented, which offer insight into the transferability of this

method. Finally, a comparison between our results and supervised method is presented.

4.1. Performance of Skip-GANomaly on Satellite Imagery
First, we examined the performance of Skip-GANomaly on satellite imagery when using different

data pre-processing techniques on the baseline dataset (all disasters combined). The main result showed

that, especially when strict pre-processing was applied, e.g., removing all patches that contained more
than 10 percent of vegetation or shadow (novegshad@10%), performance improved compared to

baseline, although it only reached a recall value of 0.4 (Figure 7). A similar trend was found for aerial
imagery in an earlier work [23]. Their performance improved the most when the novegshad@10% rule
was applied. Finally, contrary to expectations and excluding the performance of novegshad@10% on

32 x 32 patches, no clear trend was observed for specific patch sizes. In some cases, the smaller sizes

performed well and the larger size did not, and vice versa.
Performance of Skip-GANomaly on Satellite imagery
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Next, we examined the performance of Skip-GANomaly on satellite imagery when pre-selected by
disaster type and without any pre-processing. Overall, we found that the performance of disaster-based
models improved compared to baseline. Earlier, we found evidence that pre-processing improved
performance. Therefore, in addition we tested the performance of disaster-based models when the
training subsets of size 32 X 32 were pre-processed according to the novegshad@10% rule. The rule
was not applied to subsets of size 256 x 256 or 64 x 64 because this resulted in subset sizes too small
for training. The difference in performance is shown in Table 2. Again, we observed that performance
improved for each individual disaster case.

Table 2. Difference in performance of Skip-GANomaly disaster-based models when trained on 32 x 32
satellite patches when (not) pre-processed based on the novegshad@10% rule. The grey background
indicates the pre-processed values and bold values indicates which model performs best.

Model Pre-processed Recall Precision F1-score

Earthquake No 0.110 0.212 0.022

Yes 0.333 0.111 0.167

. No 0.455 0.555 0.500
Flooding

Yes 0.500 0.500 0.500

. No 0.143 0.643 0.234
Hurricane

Yes 0.325 0.662 0.436

. No 0.040 0.365 0.073
Tsunami

Yes 0.141 0.926 0.245

Wildfire No 0.321 0.855 0.467

Yes 0.778 0.989 0.871

We noted interesting differences between the performances of different disaster-based models
(Table 2). Because a secondary damage induced by hurricanes is floods, it was expected that the
performance for flood- and hurricane-based models would be comparable. However, this was not the
case. In fact, it was observed that for the disaster types Hurricane and Tsunami (Table 2) and for the
corresponding locations in Table 3, recall tended to be low compared to precision. We argue that this
can be attributed to several reasons related to context, which will be explained in Section 4.3.

Finally, we examined the performance of Skip-GANomaly on satellite imagery when pre-selected
based on location or continent location. In addition, the performance was examined when
pre-processing according to the novegshad@10% rule was applied to patches of size 32 x 32. Again,
we found that pre-processing improved the performance in a similar way, as was shown for the
disaster-based models (Table 3).

4.2. Performance of Skip-GANomaly on UAV Imagery

Figure 8 shows the performance of UAV-based models. The main results show that the performance
of UAV-based models was generally higher than that of the satellite-based models. Moreover, similar to
the findings for satellite location-based models, we observed that the performance of UAV location-based
models improved compared to baseline (all UAV-patches combined), with the exception of Asian
locations (Nepal and Taiwan). Europe obtained a recall, precision and F1-score of 0.591, 0.97 and
0.735, respectively. As expected, UAV location-based models with similar building characteristics
performed comparably. For example, models trained on location in Italy performed similarly (L’ Aquila
and Pescara del Tronto). This time, we did observe a pattern in performance of different patch sizes.
Generally, models trained using the larger images size of 512 x 512 performed poorly, compared to
models trained on smaller patch sizes. Especially for the Asian location-based models, the smaller
sizes perform better. In the next section, we explain why context is likely the biggest influencer for the
difference in performances.
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Table 3. Difference in performance of Skip-GANomaly location-based models when trained on 32 x 32
satellite patches when (not) pre-processed based on the novegshad@10% rule. Locations that are not
listed did not have sufficient training samples. The grey background indicates the pre-processed values
and bold values indicates which model performs best.

Model Pre-processed Recall Precision F1-score
) No 0.019 0.719 0.036
Harvey (USA; hurricane) Yes 0.198 0.800 0.317
No 0.144 0.625 0.234
Matthew (Haiti; hurricane) Yes 0.053 1.00 0.100
Michael (USA; hurricane) No 0.291 0.800 0.427
Yes 0.286 0.421 0.340
Mexico City (Mexico; No 0.055 0.002 0.005
earthquake) Yes 0.333 0.111 0.167
) No 0.470 0.570 0.515
Midwest (USA; flood) Yes 0.750 0.600 0.667
No 0.099 0.393 0.158
Palu (Indonesia; tsunami) Yes 0.141 0.926 0.245
No 0.303 0.856 0.448
Santa-Rosa (USA; wildfire) Yes 0.684 0.985 0.807
) No 0.087 0.329 0.137
Socal (USA; fire) Yes 0.538 0.667 0.596
) No 0.099 0.718 0.175
North-America Yes 0.652 0.970 0.780
doA ) No 0.162 0.024 0.041
Mid-America Yes 0.333 0.100 0.154
South East Asia No 0.031 0.366 0.058
Yes 0.099 0.854 0.177

Performance of Skip-GANomaly on UAV imagery
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Figure 8. Performance of Skip-GANomaly on UAV imagery of size 512 x 512, 256 X 256 and 64 x 64 for
different locations.

4.3. The Importance of Context

We investigated whether the characteristics of the different satellite data sources, especially for
different disaster events, could explain why the method worked better for some disasters than
the other. Certain disasters, such as floods or fires, induced both building damage and damage
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to their surroundings. Other disasters such as earthquakes mainly induced damage to buildings
only. Large-scale damage can be better detected from satellite imagery than small-scale damage,
because satellite imagery contains inherently coarse resolutions. Most likely, the ADGAN is more
efficient in detecting building damage from large-scale disasters by considering the surroundings of
the building.

To investigate this idea, we aimed at understanding how the anomaly score distribution
corresponds to the large-scale or small-scale damage pattern, by plotting the anomaly scores over the
original satellite image. High anomaly scores on pixels indicate that the model considered these pixels
to be the most anomalous. These pixels weigh more towards classification.

Figure 9 shows multiple houses destroyed by a wildfire. The image was correctly classified as
damaged for all patch sizes. However, it seems that context contributed to the correct classification for
the larger scale image (256 x 256), because the burned building surroundings resulted in high anomaly
scores, whereas the buildings itself obtained lower scores. This suggested that, for this particular
patch size, the surroundings have more discriminative power to derive correct classifications than the
building itself. For smaller patch sizes, as explained in Section 3.3, the assumption was made that the
smaller the patch size, the more adept the ADGAN would be in learning the image distribution of
the building characteristics, instead of its surroundings. For the example in Figure 9, this seemed to
hold true. In the patches of size 64 X 64 and 32 X 32, high anomaly scores were found all throughout
the image, including the damaged building itself. This suggested that our assumption was correct.
In short, the large-scale damage pattern of wildfire, plus the removal of vegetation, resulted in a high
performing model. This example suggests that our method is capable of recognizing and mapping
large-scale disaster induced damage.

Santa-Rosa wildfire

Original: post-disaster 256x256 TP 64x64 TP
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Figure 9. Post-wildfire satellite imagery from the USA showing multiple damaged buildings overlaid
with anomaly scores and building polygon. The classification, classification threshold and anomaly
scores are indicated (TP = True positive). The scale bars are approximate. High anomaly scores on
burnt building surroundings and smaller patch sizes lead to correct classifications.

Another example of the influence of context can be seen in Figure 10. Here, a building was
completely inundated during a flood event in the Midwest (USA), meaning that its roof and outline
were not visible from the air. Even though, for all patch sizes, the image was correctly classified as
damaged. We noticed how the anomaly scores were mostly located in the regions that were inundated.
The anomaly scores on the unperceivable building itself naturally did not stand out. This suggests that
the correct classifications were mostly derived from contextual information. No evidence of a better
understanding of building damage could be observed for the smaller patch sizes (unlike for the wildfire
example), because the building and its outline were not visible. Still, a correct classification was made
due to the contextual information in these patch sizes. This example shows that the model was still
adept in making correct inferences on buildings obscured by a disaster. Although removing vegetation
generally improved classifications (Figure 7), for floods in particular performance only changed
marginally (Table 2). Most of the flooded regions coincided with vegetated regions, which suggests
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that the large-scale damage patterns induced by floods are of strong descriptive power and weigh up
against the negative descriptive power of vegetation.

Midwest Flood

Original: post-disaster 256x256 TP 64x64 TP 32x32 TP
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Figure 10. Post-flood satellite imagery from the USA showing a damaged building, overlaid with
anomaly scores and building polygons. The classification, classification threshold and anomaly scores
are indicated (TP = True positive). The scale bars are approximate. High anomaly scores on flooded
areas resulted in correct classifications, regardless of patch size.

The examples above showed how context contributed to correct building damage classifications
in cases where disasters clearly induced large-scale damage or changes to the surroundings. However,
in cases where no clear damage was induced in the surroundings, context was shown to contribute
negatively to classifications. Figure 11 shows an example of the Mexico earthquake event that
spared multiple buildings. The patches of all sizes were wrongly classified as damaged, even though
no large-scale damage was visible in its surroundings. The high anomaly scores in the 256 x 256
image were shown to exist all throughout the image, and to a lesser degree on the buildings itself.
This example suggests that the context was visually too varied, which resulted in many surrounding
pixels to obtain a high anomaly score. Moreover, unlike for the flood example, no clear damage
pattern is present to counterbalance the visual variety of vegetation. As explained in Section 3.3,
the variance could stem from vegetation. However, removing vegetation resulted in only modest
improvements (Table 2). Therefore, the variation is also suspected to result from the densely built-up
nature of the location. See for example Figure 3f, where a densely built-up region in Mexico without
vegetation is visible. Even at the smaller patch sizes, the surroundings are varied, making it difficult
to understand what is damaged and what is not. This example showed that context is less useful to
derive earthquake-induced damage.

Mexico Earthquake
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Figure 11. Post-earthquake satellite scene from Mexico showing undamaged buildings overlaid with
anomaly scores and building polygons. The classification, classification threshold and anomaly scores
are indicated (FP = False positive). The scale bars are approximate. High anomaly scores induced by
varying building surroundings resulted in false positives, regardless of the patch size.
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We argue that the examples shown so far could explain why recall for hurricane- and tsunami-based
models was low (Tables 2 and 3). Where for flood events damage largely coincided with homogeneous
flood patterns, the damage pattern for hurricanes and tsunamis was heterogeneous (Figure 3a—d,h).
Large-scale floods and small-scale debris are the main indicators of damage. In addition, the locations
suffer from a mixture between dense and less dense built-up areas. We suspect that when a mixture
of damage patterns and inherently heterogeneous built-up area is present, lower performance and
therefore a low recall value can be expected.

The examples shown above for satellite imagery can be used to illustrate the observed difference
in performance for UAV location-based models, where smaller patch sizes were shown to perform
better, particularly for the Asian locations (Nepal and Taiwan). Similar to the Mexico earthquake,
Nepal and Taiwan are densely built-up. Moreover, the earthquakes in Nepal and Taiwan did not induce
large-scale damage in the surroundings, meaning that the surroundings do not carry any descriptive
power. However, unlike the Mexican imagery, due to the larger GSDs retained in the UAV imagery,
reducing the patch size does result in less visual variety retained in smaller images. Therefore, similar to
the wildfire event, and according to our previously stated assumption, smaller patch sizes result in
a better understanding of the image distribution of buildings. Therefore, smaller images obtained
higher anomaly scores on the building itself, instead of its surroundings, leading to performance
improvements. See, for example, Figure 12.

Nepal Earthquake
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Figure 12. Earthquake UAV scene from Nepal showing a damaged building overlaid with anomaly
scores. The classification, classification threshold and anomaly scores are indicated (TP = True positive,
FN = False Negative). The scale bars are approximate. The 64 x 64 patch yielded a correct classification
due to a better understanding of the building image distribution.

In summary, the presented examples showed how context is important for damage detections.
Particularly, we found that both the scale of the induced damage and the GSD of the imagery decide
whether context plays a significant role. One added benefit observed from these results is that in cases
where context does play a role, the derived anomaly maps can be used to map damage. These damage
maps are useful to first responders in order to quickly allocate relief resources.

4.4. Cross-Tests

Finally, we evaluated the performance of trained UAV- and satellite-based models on the test set
of other data subsets to find out how transferable our proposed method is.

First, we highlight a couple of general findings for satellite-based cross-tests. In general,
a heterogeneous pattern in performance was found when a trained satellite-based model was tested
on the test-set of another satellite data subset. In some cases performance increased compared to the
dataset on which it was trained, while for others it decreased. Overall, no noteworthy improvements
in performance were observed. Second, we observed that satellite-based models did not transfer well
to image datasets that had different patch sizes than the ones on which they were trained. For example,
satellite-based models trained on patches of size 32 X 32 performed worse when tested on patches of
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other sizes. This could be caused by context and GSD, as explained in Section 4.3. Finally, in some
cross-tests, instead of the model, the dataset seemed to be the driving factor behind systematically
high performances. For example, the flooding data subset yielded on average a Fl-score of 0.62 for all
patch sizes combined. This was systematically higher than for all other datasets. We expect that these
results were driven by the flood-induced damage pattern, as explained in Section 4.3.

Next, we examined the cross-test results for UAV-based models. Again, general findings are
highlighted. First, we observed that UAV-based models trained on specific patch sizes transferred well
to patches of other sizes. A model trained on 32 x 32 patches from L'Aquila performed equally well on
64 x 64 patches from L’ Aquila. We expect that this can be explained by the level of detail that is retained
in UAV patches when the image is up- or down sampled during inference. Second, contrary to the
findings for satellite imagery, no dataset seemed to drive the performance of datasets in a specific way.

Finally, we examined cross-platform transferability where we observed the performance of
trained UAV or satellite models that were tested against the test set of either UAV or satellite imagery.
The immediate observation is that the proposed method cannot be transferred cross-platform.

In summary, the models showed to transfer well if the test buildings look similar to the ones
on which they were trained. Contrary to the desired outcome, transferability to buildings that are
different in style was not unilaterally shown. We argue that the range of building appearances is
yet too large for the Generator to learn an image distribution that is narrow enough to distinguish
damaged buildings. Moreover, it is learned that no assumption can be made on the visual likeliness
of buildings based on geographic appearance. However, we argue that transferability is less of an
issue compared to traditional supervised methods considering that our method can be trained using
pre-event data for the location of interest, which is often easily achieved.

4.5. Comparison Against State-of-the-Art

Table 4 shows how our proposed method compares against other state-of-of the art methods.
Before comparing results for satellite-based models, we note that the xView2 baseline and the ranked
contenders scores in the first and second row were based on the combined localization and multi-class
classification F1-scores [29]. The third row shows the classification F1-score of the ranked contenders [29].
Our score is based on the binary classification F1-score. Because the supervised approaches considered
all disasters at once, our reported F1-score is the average of F1-scores obtained using the pre-processed
methods using patches of 32 x 32, which were reported in Table 2. Our method improved on the xView?2
baseline but performed lower than the supervised method of the ranked contenders. Considering that
our method is unsupervised, uses only pre-event imagery, makes no use of building footprints during
damage detection training and is not pre-trained to boost performance, our results are encouraging
and show that reasonable results can be obtained with minimal effort.

Table 4. Performance differences between our proposed method and comparable supervised

CNN approaches.
Method Recall Precision F1-score
Supervised—Iocalization - - 0.265
. and classification
Satellite (xView2 baseline [29])
Supervised—Iocalization - - 0.741
and classification
(Ranked contenders [29])
Supervised—classification - - 0.697
(Ranked contenders [29])
Ours—classification - - 0.444
Supervised—no fine-tuning [13] 0.538-0.814 0.741-0.934 0.623-0.826
UAV Supervised—fine-tuning [13] 0.651-0.969 0.803-0.933 0.725-0.915

Ours 0.591 0.97 0.735
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Before comparing results for UAV-based models, we note that the supervised results are reported
as ranges, considering how different cross validation experiments were carried and reported in the
original paper [13]. Our results are derived from our best performing European-based model using
patches of 64 x 64 (Figure 8). Our results perform on par with the supervised approach without
fine-tuning. In fact, our precision value exceeds the highest precision value found by the supervised
methods. Our Fl-score is constantly within the range of values found for the supervised method.
Our recall score comes close to the lower range of recall values obtained using supervised methods.
This suggested that, as can be expected, supervised methods outperform our unsupervised method.
Moreover, it suggests that having examples of damage of interest are of benefit to recall values.
Nonetheless, our method is more practical considering that it is unsupervised, and only requires single
epoch imagery and, therefore, can be directly applied in post-disaster scenarios.

Finally, we note how the recall values for both the supervised and our method were always lower
than the precision values, suggesting that building damage detection remains a difficult task despite
using supervised methods.

5. Discussion

5.1. Applicability and Sensitivity of Skip-GANomaly

First, the applicability and sensitivity of satellite-based models are discussed. Satellite imagery is
generally a difficult data type for unsupervised damage detection tasks due to their visual complexity,
which is subject to temporal variety, and due to large GSDs, which make it difficult to detect detailed
damage. This difficulty is reflected by the baseline results obtained using our proposed method.
However, we showed how performance can be improved. In line with the results found for aerial
imagery [23], reducing the complexity of the baseline dataset, e.g., removing vegetation and shadowed
patches, improved performances, especially for the 32 x 32 novegshad@10% based model. Cropping the
training patch sizes in order to reduce the visual complexity did not always yield better performances.
We argued in Section 4.3 that context is suspected to play a role. Comparing the performance of our best
scoring pre-processed model, a F1-score of 0.556, to the F1-score of 0.697 obtained by ranked contenders
in the Xview2 contest for damage classification, our results are encouraging [29]. This is especially
so considering that our method was unsupervised and only used a single epoch, whereas their
methodology was supervised and multi-epoch.

We conclude that satellite-based ADGANSs are sensitive to pre-processing, and reducing the
complexity of the training data by applying pre-processing helps to improve performance. This finding
is not necessarily novel. However, our specific findings on how reducing the complexity for specific
disaster-types influences performance has provided insight on the importance of context, and allowed
us to define practical guidelines that can be applied by end users. As an example, for disasters such as
floods and fires, pre-processing is not strictly necessary to obtain good results. However, for other
disasters, a downside of this method is that, once stricter pre-processing rules are applied, the numbers
of samples on which the model can conduct inference declines. Future research can look into other
ways to deal with vegetation or shadows. The idea of weighing these objects differently during training
can be the focus, which, as explained in Section 3.1, was explored in early phases of this research.

Next, the applicability of UAV-based models will be discussed. We found that the UAV-based
baseline model performed generally better than satellite-based baseline models. Location-based
UAV models surpassed the performance of all satellite-based models, with the F1-score reaching
0.735. These results are satisfactory when compared to the Fl-score of 0.931 obtained by [13],
who used a supervised CNN to detect building damage from similar post-event UAV datasets. Again,
considering our unsupervised and single-epoch approach, which only makes use of undamaged
buildings for training, our method showed to be promising.

The importance of contextual information was explained in Section 4.3. We showed how flood
or fire-induced building damage was likely deduced from contextual information, rather than from
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the building itself. The contextual information has a negative influence towards the classification in
disaster events where the damage is small-scale and the affected area is densely built-up. These findings
suggest that, in practice, each event has to be approached case by case. However, we are able to provide
broad practical guidelines: when the disaster has the characteristic of inducing large-scale damage to
the terrain such as floods, the image training size can be 256 x 256.

Finally, we showed in Section 4.3 how detailed damage maps can be derived using simple image
differencing between the original and generated image. As of yet, we are not aware of any other
method that can produce both image classifications and damage segmentations without explicitly
working towards both these tasks using dedicated supervised deep learning architectures and training
schemes. Our method, therefore, shows a practical advantage compared to other methods.

Future work can focus consider the following: the rationale behind our sensitivity analysis was
that reducing the visual information being fed to the Generator steers the Generators inability to
recreate damaged scenes, which in turn helps the Discriminator distinguish fake from real. As an extra
measure, future work can focus on strengthening the discriminative power of the Discriminator earlier
on in the training process, by allowing it to train more often than the Generator, thus increasing its
strength while not limiting the reconstructive capabilities of the Generator. Future work can also
investigate the potential of alternative image distancing methods to obtain noiseless anomaly scores.
The log-ratio operator for example, often used to difference synthetic aperture radar (SAR) imagery,
considers the neighborhood pixels to determine whether a pixel has changed [59]. It is expected that
such a differencing method lead to a decrease of noisy anomaly scores, and thus a better ability to
distinguish between anomalous and normal samples.

5.2. Transferability

In general, a heterogeneous performance was observed for satellite-based models when tested on
test-sets of other satellite sub-sets. Performance fluctuated for the different datasets and regardless
of whether the model tested well on the dataset for which it was trained. This suggests that
satellite-based models do not transfer well to other geographic locations or other typologies of disasters.
This finding is in contrast with one specific finding from our preliminary work. There, we found that
aerial-based models, trained on patches that were pre-processed according to the novegshad@10%
rule, transferred well to other datasets [23]. We did not observe the same for the satellite-based model
novegshad@10%. A possible explanation can be that the novegshad@10% model was not able to find
the normalcy within other datasets, because the amount of training samples is small (see Figure 6).
Therefore, the learned image distribution is too narrow. This could have led to an overestimation of
false positives once this model was tested on other datasets.

Contrastingly, a homogeneous performance was observed for UAV-based models when tested
on test-sets of other UAV sub-sets. Consistent performance was observed when models were tested
on different datasets or different patch sizes. In addition, the model performance stayed high if the
performance was high for the dataset on which it was trained. Specifically, we found that models
transferred well if the buildings on which the model was tested looked similar to the buildings on
which it was trained. For example, locations in Italy (L’ Aquila and Pescara del Tronto) looked similar
and were shown to transfer well. Locations in Asia (Taiwan and Nepal) looked very dissimilar in
appearance and did not transfer well. Similar conclusions for the transferability of Italian locations
were found in [13]. In line with the conclusion drawn in [13], we agree that the transferability of
a model depends on whether the test data resemble the data on which it was trained. A model that
cannot find the normalcy in other datasets is likely to overestimate damage in this dataset. Therefore,
our previously stated assumption that buildings in the same geographic region look alike is not
always valid. In future approaches, attention should be given to how geographic regions are defined.
Categorizing buildings not based on the continent in which they are located, but on lower geographic
units such as municipalities or provinces, might lead to a better approximation by the AGDAN of what
constitutes a normal building in that geographic unit.
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5.3. Practicality in Real-world Operations

The general conclusion is drawn that ADGANSs can be used for damage detection from satellite
images on the condition that the imagery is pre-processed to contain minimal vegetation and shadows.
Considering how pre-processing is largely automated, this step is not a limitation. Nonetheless,
cases were found where models yielded high performance, regardless of the presence of vegetation
and shadows. The performance of satellite-based models trained on original imagery from flood and
fire disasters was high and, therefore, these datasets do not have to be pre-processed, thus saving time.

We showed that damage maps could be constructed in the cases where context provides a significant
contribution. These show, in detail, where damage is located. During inference, these maps can be
created instantly, and they can therefore provide valuable information in the post-disaster response
and recovery phase.

As stated in the introduction, a main limitation of UAV-based models is that UAV-based imagery
needs to be collected in the pre-event stage. Considering how UAV-imagery collection is still
a human-driven task, this might be difficult to achieve. However, the advantage is that data
acquisitions can take place any time during the pre-event stage. Therefore, practical advice to end-users
who wish to apply this methodology is to collect UAV-imagery of buildings in the pre-event stage
in advance.

A final note of consideration is the following: the assumption is made that the normal dataset is
free of anomalies. However, day-to-day activities such as constructions can result in visual deviations
from normal that are not strictly damage [45]. In practice, care has to be taken to make the distinction
between what is damaged and what is simply an anomaly.

6. Conclusions

In this paper, we proposed the use of a state of the art ADGAN, Skip-GANomaly, for unsupervised
post-disaster building damage detection, using only imagery of undamaged buildings from the
pre-epoch phase. The main advantage of this method is that it can be developed in the pre-event stage
and deployed in the post-event stage, thus aiding disaster response and recovery. Special attention
was given to the transferability of this method to other geographic regions or other typologies of
damage. Additionally, several Earth observation platforms were considered, since they offer different
advantages for data variety and data availability. Specifically, we investigated (1) the applicability of
ADGAN:s to detect post-disaster building damage from different remote sensing platforms, (2) the
sensitivity of this method against different types of pre-processing or data selections, and (3) the
generalizability of this method over different typologies of damage or locations.

In line with earlier findings, we found that the satellite-based models were sensitive against the
removal of objects that contained a high visual variety: vegetation and shadows. Removing these
objects resulted in an increase in performance compared to the baseline. Additionally, in order to
reduce the visual variety in the original images, experiments were conducted with varying image patch
sizes. No clear difference in performance of different patch sizes was observed. UAV-based models
yielded high performance when detecting earthquake-induced damage. Contrary to satellite-based
models, UAV-based models trained on smaller patches obtained higher scores.

UAV imagery contained small GSDs and showed damage in high detail. Therefore, models based
on UAV-imagery transferred well to other locations, which is in line with earlier findings. Models based
on satellite-imagery did not transfer well to other locations. The results made it evident that image
characteristics (patch size and GSD), and the characteristics of the disaster induced damage (large-scale
and small-scale), play a role in the ability of satellite-based models to transfer to other locations.

Compared to supervised approaches, the obtained results are good achievements, especially
considering the truly unsupervised and single-epoch nature of the proposed method. Moreover,
the limited time needed for training in the pre-event stage and for inference in the post-event stage
(see Section 3.4) make this method automatic and fast, which is essential for its practical application in
post-disaster scenarios.
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