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Abstract: Forest land-use planning and restoration requires effective tools for mapping and attributing
linear disturbances such as roads, trails, and asset corridors over large areas. Most existing
linear-feature databases are generated by heads-up digitizing. While suitable for cartographic
purposes, these datasets often lack the fine spatial details and multiple attributes required for more
demanding analytical applications. To address this need, we developed the Forest Line Mapper (FLM),
a semi-automated software tool for mapping and attributing linear features using LiDAR-derived
canopy height models. Accuracy assessments conducted in the boreal forest of Alberta, Canada
showed that the FLM reliably predicts both the center line (polyline) and footprint (extent polygons) of
a variety of linear-feature types including roads, pipelines, seismic lines, and power lines. Our analysis
showed that FLM outputs were consistently more accurate than publicly available datasets produced
by human photo-interpreters, and that the tool can be reliably deployed across large application
areas. In addition to accurately delineating linear features, the FLM generates a variety of spatial
attributes associated with line geometry and vegetation characteristics from input canopy height data.
Our statistical evaluation indicates that spatial attributes generated by the FLM may be useful for
studying and classifying linear features based on disturbance type and ground conditions. The FLM
is open-source and freely available and is aimed to assist researchers and land managers working in
forested environments everywhere.
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1. Introduction

Roads, trails, and asset corridors permeate forest ecosystems around the world, providing access
to settlements, resources, and recreation areas through densely vegetated terrain. In recent decades,
the volume of linear disturbances has proliferated, driven by growing human populations and
mounting demand for resources. The effects of these disturbances on natural ecosystems are varied and
complex [1–3]; managing them requires geospatial tools that can map and attribute linear disturbances
quickly and effectively over large areas.

In the forested regions of Alberta, Canada, the exploration and recovery of natural resources has
created an extensive network of linear disturbances. Roads, railways, transmission lines, pipelines,
and seismic lines (petroleum-exploration corridors) facilitate the access and extraction of wood,
minerals, and petroleum products throughout the province. The most abundant of these disturbances
are seismic lines; linear-access trails cut through forests to allow the placement of geophones and other
equipment associated with subsurface petroleum exploration [4]. Depending on the equipment used
to clear them, seismic lines range in width from ~1.5 m to 10 m and can occur at densities exceeding
40 km/km2 [4,5].
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Seismic lines and other linear disturbances in Alberta exert cumulative environmental effects on
vegetation communities [6–11], microclimate [12,13], wildlife [14–16], hydrology [17–19], and carbon
dynamics [20,21]. In response, leading resource companies are identifying lines that could benefit
from restoration treatments designed to restrict access and encourage a return to forest cover [20].
However, linear disturbances are difficult to map using automated techniques, and most existing
databases are constructed manually through heads-up digitizing (i.e., tracing a cursor over digital
images). Inspected carefully, these delineations often contain spatial generalizations that may limit
their effectiveness for detailed restoration planning (Figure 1A). For example, most linear features are
represented in geodatabases as centerlines (polylines) that do not accurately represent the physical
extent of disturbances on the ground. Buffering these centerlines to create polygons—a common GIS
practice among land managers and researchers—often creates further spatial uncertainties. In addition
to these spatial limitations, most linear-feature databases contain a limited number of attributes—if
any—meaning (for example) that narrow disturbances with heavy regrowth (Figure 1C) are often
undifferentiated from wide disturbances with less vegetation (Figure 1B).
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Figure 1. Seismic lines are linear-access trails cut through forests to allow the placement of geophones
and other equipment associated with subsurface petroleum exploration. They occur widely in western
Canada and are an example of linear disturbances that could benefit from refined mapping and
attribution techniques. Existing public datasets created by manual digitization often contain spatial
generalizations (dashed lines in (A)) and limited attributes. This makes it difficult to distinguish
(for example) wide lines with little vegetation (B) from narrow lines with extensive regrowth (C). Image
attribution: (A) Google Earth V7.3.3.7786 (5/22/2018); Alberta, Canada; 55◦59′27.94′′ N 111◦10′36.68′′W;
eye alt 1.65 km; Maxar Technologies 2020; accessed 3 November 2020; (B) Sarah Cole photograph;
(C) Erin Bayne photograph.

Land managers and researchers require tools and workflows that permit the accurate delineation
and attribution of linear disturbances in complex forest environments. Quackenbush [22] provided
an overview of the basic approaches to automated linear feature extraction in her 2004 review.
Classification/feature detection, particularly object-based approaches that employ spatial variables,
may allow linear features to be mapped under some H-resolution conditions, where the pixel sizes are
substantially smaller than the features of interest (e.g., [23–25]). However, the problem is notoriously
complex. To address this challenge, many authors use mathematical-morphology operations and other
transformations to enhance the appearance of linear features (e.g., [26–29]). Template matching uses
similarity metrics to match image features to templates on the basis of spatial, spectral, or textural
attributes [30–32].



Remote Sens. 2020, 12, 4176 3 of 26

Unfortunately, issues of occlusions and background noise in optical data regularly impede
mathematical-morphology operations and template-matching techniques. The Hough transform
converts features from image space to parameter space, wherein lines and other features can be
represented as peaks or points in transformed space [33]. The Hough transform is more robust to
small occlusions and noise than the original imagery and is widely used for linear-feature detection for
mapping (e.g., [34–37]) and multi-image registration [38–40].

Despite the large volume of previous work, Hu et al. [41] noted that the linear-feature-detection
problem is regularly ill-posed in complex scenes due to noisy or incomplete data. In forests, for example,
shadows and occlusions from surrounding trees commonly hinder the spectral, spatial, and textural
patterns that most optical techniques rely on. This is particularly true with narrow features such
as trails and seismic lines. Complicating matters further, most linear-feature types in forests (trails,
pipelines, seismic lines, transmission lines) have some sort of vegetative cover growing on the surface.
In addition to exacerbating the occlusion issue, this further reduces the spectral contrast between the
feature of interest and the surrounding matrix.

Recently, a number of studies have explored the use of LiDAR and photogrammetric data for
linear-feature extraction in urban scenes (e.g., [42–44]). The height information contained in these
three-dimensional datasets provides an additional source of information, and active sensors such
as LiDAR are generally less susceptible to shadow, occlusion, and noise, which commonly hinder
passive optical data [44]. Some authors have used intensity and height information from raw point
clouds [45,46] or rasterized surface models [47] to extract linear features using simple classification
techniques. For example, Soilán et al. [48] used heuristic rules and an unsupervised learning algorithm
to extract roads in Dublin, Ireland with good accuracies.

Other authors have combined LiDAR and optical data to supplement the lack of multispectral
information in most LiDAR datasets. For example, Liu et al. [49] fused multispectral data to LiDAR to
map road networks in Bathurst, New South Wales with accuracies ranging from ~80–90%. Alternatively,
LiDAR data can be rasterized and incorporated into pixel-based workflows. For example, Grote et al. [50]
combined high-resolution multispectral data with height and intensity data from a LiDAR-derived
digital surface model (DSM) to map road networks in suburban Grangemouth, Scotland and Vaihingen,
Germany using image classification. Sameen and Pradhan [51] used a fuzzy ruleset in an object-based
environment to perform urban road extraction with a similar DSM-multispectral dataset on the
University Putra Malaysia campus in Selangor State, Malaysia.

To our knowledge, no previous studies have employed LiDAR data to extract linear disturbances
from complex forest scenes. Linear-feature detection in forests provides a different challenge to road
extraction in an urban setting. Forest scenes are extremely cluttered, and the linear disturbances are
subtle and varied. However, the structural contrast between linear disturbances and surrounding
vegetation provides patterns that could be exploited by workflows based on three-dimensional datasets.

Our approach to linear-feature delineation in forests uses a least-cost path (LCP) algorithm based
on LiDAR-derived canopy height models (CHMs). Canopy height models represent the height of
vegetation above local ground level and are derived by subtracting a digital terrain model (DTM) from
a co-registered DSM [52]. Variations of the LCP strategy for tracing linear features have been widely
used in medical imaging applications (e.g., [53–55]) and are similar to the shortest-path computations
employed by Gruen and Li [30], Türetken et al. [56], and Wegner et al. [57] for urban/suburban road
detection. The strategy is based on the notion that the most important attribute of a linear network
is its connectedness [57], and that the LCP algorithm provides an effective means of tracing that
connectedness between seed points located along the line. Since our implementation of the LCP
workflow requires seed points provided by the operator, we describe our approach as semi-automated.
However, seed points can also be derived from existing linear-feature databases, in which case the
workflow can be fully automated.

The Forest Line Mapper (FLM) is an open-source Python software tool (v. 1.1; [58]), currently with
ArcGIS dependencies, designed to map and attribute linear features in forests using an LCP approach
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on CHMs. Our overarching goal was to evaluate the FLM toolset for mapping and attributing linear
features in complex forest scenes with a variety of site types (upland/wetland) and stand characteristics.
The specific objectives of this manuscript are:

1. To describe the algorithms adopted in each step of the FLM,
2. To report on an experiment comparing the accuracy of the FLM to a public dataset produced by

manual digitization, and
3. To assess the potential of linear-feature metrics extracted by the FLM to characterize lines and

ground conditions in a manner that might be useful for forestry and ecological applications.

To assist with our second and third objectives, we formulated a number of hypotheses based
on expectations of how FLM outputs might compare to the best-available public dataset depicting
linear features in our study area, plus a mechanistic understanding of how the resolution of input
CHMs might influence FLM performance. Our hypotheses were: (i) that the semi-automated approach
employed by the FLM would produce entities (centerlines and polygons) that are more accurate than
publicly available datasets generated by manual photo-interpretation; (ii) that coarser-resolution input
CHMs would reduce the accuracy of FLM outputs; and (iii) that high-resolution CHMs would provide
enough information to attribute linear features with useful variables that could be used to characterize
line types and ground conditions. We performed all of the tests on LiDAR-derived CHMs from boreal
forest study areas located in the northeastern portion Alberta, Canada.

2. Materials and Methods

2.1. Overview and Study Structure

In this section we explain the line-mapping workflow we developed (Section 2.2), the application
areas where we obtained reference field data (Section 2.3), and the statistical analyses we performed to
assess accuracy and value of outputs (Section 2.4). The line-mapping tool we developed was named the
Forest Line Mapper (FLM) and released as open-source code (v. 1.1; [58]) in Supplementary Material.

The workflow adopted in the FLM is based on the least-cost-path (LCP) algorithm, which calculates
a weighted least-cost distance between two pixels in a raster image [59,60]. LCP is commonly used for
habitat analysis [61,62] and urban planning [63,64]. However, it is also effective for delineating the
path of linear features that are bound by distinctively higher or lower values in a raster image, such as
drainage networks [65]. Hence, many linear forest disturbances can be mapped via associated canopy
openings present in a CHM. In addition to the LCP, higher-cost paths can also be considered, up to
a cost threshold, to form a least-cost-corridor (LCC) between two points. Our workflow incorporates
the LCC to extract the areal footprint of linear features, in addition to their center line, in CHMs.
Given a CHM, the center lines, and polygonal footprints of detected linear disturbances, the FLM then
extracts size, shape, and height properties of the disturbances and incorporates them into the spatial
database as attributes.

2.2. Linear-Disturbance Mapping Algorithm

The following subsections describe the algorithms adopted in the various tools available in the
open-source toolset named the FLM. These tools were programmed in Python 2.7/3 (compatible with
either) using Environmental Systems Research Institute (ESRI) ArcPy functions. A linear-disturbance
mapping workflow chart is presented in Figure 2 and described fully in the following subsections.
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Figure 2. Flowchart of the semi-automated linear disturbance mapping workflow. The only inputs
required from the user are a canopy height model (CHM) Raster, seed points, and threshold parameters.
The latter two may require refinements in case outputs do not pass quality checks. Tools are fully
automated python scripts listed in sequential order of which they are normally used. Tool numbers
coincide with the 2.2 subsection numbers in which tool algorithms are explained. Optional parameters
are available in each tool and not displayed in this graph.

FLM only requires two input datasets: (i) a CHM raster (Section 2.2.1); and (ii) regional seed
points (Section 2.2.2) plus some information about line conditions in the form of threshold parameters
(Section 2.2.3). All FLM tools are fully automated and allow for parameter tweaks, with default
parameters being appropriate for most use cases. Users who aim for flawless outputs may require
iterative trials and adjustments of parameter values and seed points, though users who are comfortable
with minor errors may prefer to skip these intermediate quality checks.

FLM has three main outputs: (i) lines depicting the centerlines of linear disturbances; (ii) polygons
depicting their extent; and (iii) line attributes. Some users may be interested in only obtaining
FLM lines, which can act as refined versions of regional (i.e., lines digitized at ~1:20,000 scale)
human-digitized linear feature databases. Other users may wish to obtain footprint polygons,
which provide a detailed outline of footprint boundaries and can be useful in studying linear-feature
conditions and micro-habitats. Finally, line attributes can provide managers and researchers with
valuable information on disturbance conditions over large areas.

2.2.1. Inputs and Cost Rasters

LCP and LCC workflows require start and end points (i.e., seed points) for all linear features to
be mapped, as well as a cost raster on which the cost-weighed distances are calculated. Seed points
act as a rough guide of where individual features are located, and in the context of this study can be
represented as the vertices of regional-scale linear-feature databases. Such databases are commonly
found as publicly available linear-feature products. While these products may have limited accuracy at
fine scales, their vertices are typically good enough to act as seed points for LCPs and LCCs. Raw CHMs
can sometimes act as good cost rasters when mapping lines in dense forests. However, in the context
of the boreal forest, sparsely vegetated terrain, especially on wetlands, causes LCPs derived from raw
CHMs to cut corners between trees and LCCs to spread too far into the forests.

To create CHM-derived cost rasters appropriate for mapping linear disturbances in forests of
varying levels of canopy density, we performed a series of treatments on raw CHMs. First, the CHM
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was classified into “canopy” and “no canopy” classes by applying a height threshold to the CHM,
arbitrarily set at 1 m. While this threshold worked well for our areas of interest (boreal forest of
Canada), other thresholds may be required for other forest types. A reversed Euclidean distance
raster (i.e., decreasing distance from source) was then calculated, using the canopy cells of the binary
raster as source. This helps to guide the LCP to be positioned at the center of the linear disturbance
feature. Additionally, we smoothed the binary canopy raster using a moving window, which calculates
a normalized ratio between mean and standard deviation. The smoothed raster enhances the signal
of canopy in sparsely vegetated forests, increasing the cost of gaps between trees, which helps to
constrain LCCs to the boundaries of the disturbances. The original binary raster, its smoothed version,
and the reversed Euclidean distance layer were then combined via user-defined weights. The FLM
provides default weights based on our goals and experiences; users in other forest environments may
need to adjust these values. Finally, the base exponential was calculated for each cell of the raster
combination and raised to a user-defined power. This final step helps to increase the cost of vegetated
terrain, and internal tests showed it increases consistency of outputs.

2.2.2. Center Line Mapping

Using the CHM-derived cost raster described above, polylines can be created at the center of
linear disturbances by applying the LCP algorithm between two points, which we call “seed points”.
Seed points can be created by manually digitizing linear features as lines at moderate scales (~1:20,000)
and exporting the vertices. Public GIS datasets that represent linear features as lines can also be
used as a source of seed points. To reduce the memory usage and processing time, the cost raster
was clipped around each line segment with a user-defined search radius before applying the LCP
algorithm to segments. The cost-distance tool from ArcPy was used to calculate the least-cost distance
between the starting point and all other pixels of the clipped cost raster. Finally, the LCP was found
for each segment using the cost-path-as-polyline tool. To improve the performance on large datasets,
which commonly have tens of thousands of line segments, a parallel-processing approach was taken
on the steps mentioned above, such that multiple line segments could be processed simultaneously.

2.2.3. Linear Footprint Polygon Mapping

The software generates LCCs for each line segment in a similar fashion to the LCPs.
First, the cost raster is clipped around the center lines with a user-defined maximum search radius.
Then, two cost-distance rasters are generated for each segment: one using the start point as origin and
another using the end point as origin. The two cost-distance rasters are summed, and then rescaled so
that the minimum value (which relates to the cost of the LCP) becomes zero. This rescaled sum raster
is referred to as the corridor raster.

Corridors can be mapped based on the corridor raster by applying a cost threshold to select
disturbance cells. A least-cost corridor threshold (LCCT) can act as a global parameter, applied to
all lines the same way. However, we found that linear-disturbance width and surrounding-forest
density influence the appropriate LCCT value for each line. Therefore, these line conditions should be
considered to define local LCCTs. We developed a tool to automate LCCT attribution based on canopy
density surrounding lines, however it does not consider line width. For this reason, very wide lines
(>10 m width) or very narrow lines (<3 m) should be manually set to global large and small LCCT
values, respectively.

Once the LCC is mapped by selecting corridor raster cells with values smaller than the LCCT,
cells classified as canopy in the binary canopy/no-canopy raster are removed from the footprint.
Then, small artifacts and islands can be removed via optional cell-erosion procedures. Finally, footprint
cells are converted to polygons and merged into the final product. All procedures mentioned for
linear-footprint mapping are performed in parallel to maximize performance.
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2.2.4. Line Attribution

Given the input CHM, output center lines, and footprint polygons, it is possible to extract a series
of attributes that may be useful in classifying and assessing the conditions of linear disturbances. In the
context of boreal restoration, line width, orientation, and microtopography can be important factors
on the microclimate [13] and growth success of newly planted seedlings [10,66]. Therefore, the FLM
attributes center lines with spatial information about their length, bearing, direction, and sinuosity.
Then, based on their respective polygon footprints, lines receive the following additional attributes:
total footprint area, perimeter, average width, and perimeter/area ratio (PAR). Finally, based on the
CHM cells within their footprint, the lines receive the following height attributes: average height,
total CHM volume, and root-mean-square height (RMSH). Table 1 describes each of the FLM attributes
and their units of measure.

Table 1. Forest Line Mapper (FLM) attributes described with units of measurement. Each forest line
mapped with FLM can receive these attributes. Some attributes are derived from polylines of the forest
lines, some from footprint polygons surrounding the forest lines and some attributes are derived from
canopy CHM cell values within those surrounding footprint polygons.

Line Attribute Description Units

Length Line length from start to end of segment meters

Bearing Clockwise angle between north and line
joining first and last segment vertices degrees

Direction Quadrant direction closest to line bearing text label

Sinuosity Line length divided by Euclidean distance
from start to end of segment unitless

Area Area of footprint polygon surrounding line meters squared

Perimeter Perimeter of footprint polygon
surrounding line meters

Average Width Average width of footprint polygon
surrounding line meters

Perimeter/Area Perimeter-area ratio of footprint polygon
surrounding line meters−1

Average Height Average height of CHM cells within
surrounding footprint polygon meters

Volume Area of CHM cell multiplied by sum of CHM
values within surrounding footprint polygon cubic meters

RMSH
Root-mean-squared height (RMSH) of CHM
cell values within surrounding
footprint polygon

meters

Line attribution is performed via an automated tool that first segments the lines based on user
preference (whole lines, line intersections, arbitrary length) then attributes the segments (Figure 3)
via parallel processing. Additionally, the FLM is capable of extracting and summarizing information
from external raster images as attributes on forest-line segments. For example, the attributes in
Figure 3 were summarized from a user-supplied external raster showing the spatial distribution of
coarse-woody debris (CWD) across one of our areas of interest (see Queiroz et al. [67] for details).
CWD is an important element of linear-feature restoration in the boreal forest, providing microsites for
regenerating seedlings and restricting the movement of humans and predators along lines. The FLM
will summarize any user-supplied external raster in a similar manner.
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Figure 3. The Forest Line Mapper’s three segmentation options for defining the entities used for
summarizing attributes: whole-lines, line-crossings (line intersections), and arbitrary. The whole-line
option summarizes attributes across the entire line. The line-crossing option summarizes attributes
between intersections. The arbitrary option summarizes attributes along arbitrary (in this case,
40 m) segments. These three example maps show average coarse woody debris (CWD; fallen dead
trees) volume on seismic lines and were derived from a CWD raster layer from a separate study
(Queiroz et al., 2020).
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2.3. Study Area

To test the accuracy and effectiveness of the FLM, we applied it to three study sites in northeastern
Alberta’s boreal forest (Figure 4). These areas are referred to as Kirby (416 ha in size), LiDEA I (828 ha),
and LiDEA II (9972 ha; n.b. LiDEA is an acronym for Cenovus Energy’s Linear Deactivation project).
The study sites are located in the central-mixedwood subregion of the boreal forest. The central
mixedwood is characterized by gently rolling terrain partitioned into forested uplands, composed
mostly of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) B.S.P.), and trembling
aspen (Populus tremuloides Michx.) trees, and wetlands composed of black spruce and tamarack
(Larix laricina (Du Roi) K. Koch) forests with shrubs, sedges, and moss understory [68].
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Figure 4. Display of the study sites Kirby, LiDEA I and LiDEA II in northeastern Alberta. Each area is
presented with an inset at a larger scale showing a false color aerial photo of example linear disturbances.
Airborne imagery is the property of the Boreal Ecosystem Recovery and Assessment (BERA) project.

The study sites are covered with different densities and types of linear disturbances, including
from narrowest to widest: low-impact and legacy seismic lines, roads, pipelines, and power lines.
The terms “legacy” and “low-impact” seismic lines indicate: (i) the era in which the lines were
constructed; and (ii) the resulting physical characteristics of the disturbance. Early legacy surveys
involved clearing vegetation along 5- to 10-m wide corridors using bulldozers. Low-impact surveys,
which began around 2000 in Alberta, involved narrower corridors (~2- to 4-m wide) cleared using
mulchers and other light equipment. Readers interested in further information on seismic lines are
referred to Dabros et al. [4].

LiDEA II has the lowest density of disturbances, being a sparse grid of legacy lines. LiDEA I has
the densest low-impact grid, road networks, and pipelines. Kirby has legacy and low-impact lines,
roads, and a very wide powerline disturbance. Both Kirby and LiDEA I have wellpads, cutblocks,
constructions, and other non-linear clearings that were not addressed in this study. The study areas
provide a variety of western-boreal forest stands and wetlands affected by linear features of different
widths and in different densities.

2.3.1. Remote Sensing Data

Dense airborne LiDAR data (~40 pts/m2) was obtained over the three sites by OGL Engineering
of Calgary, AB, Canada during August of 2017. The platform used to obtain this data was a Cessna
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210T aircraft, which flew at 67 m/s ground speed and at 850 m above ground carrying a LiDAR
sensor (Leica ALS70, Leica Geosystems AG, Heerbrugg, Switzerland), an optical sensor (Leica RCD30,
Leica Geosystems AG, Heerbrugg, Switzerland), a global navigation satellite system (GNSS, Rohde &
Schwarz, Munich, Germany) unit, and an inertial measurement unit. OGL Engineering performed noise
removal, georeferencing, and ground classification of the LiDAR points using Bentley Microstation
with Terrasolid software. We then rasterized the ground points into a digital terrain model (DTM)
and the first-return points into a digital surface model (DSM) in ESRI ArcMAP (Version 10.7.1) using
25 cm grid cells. Finally, a CHM was obtained by subtracting the DTM from the DSM. We resampled
the 25 cm ground-sampling-distance (GSD) CHM into five additional CHMs of 50 cm, 1 m, 2 m, 4 m,
and 8 m GSD to simulate coarser products that could be obtained from sparse LiDAR (Section 2.4).
These CHMs were used as FLM inputs to map linear features in the study areas and test the effect of
spatial resolution on output quality (our second hypothesis).

2.3.2. Reference Data

As reference data for our accuracy assessments associated with our first two hypotheses, we used
field-measured seismic line locations obtained during a stocking survey performed as part of the
Boreal Ecosystem Recovery Assessment (BERA; www.bera-project.org) project. A total of 59 sites
were selected from the three study areas across gradients of line width (legacy and low-impact lines)
and orientation (north-south, east-west, and diagonal). Each site was comprised of a 150-m stretch
of seismic line, within which detailed field surveys measuring seismic-line centers and widths were
made in the summer of 2017.

Centerline Location Reference Samples

We randomly selected 245 points from the field survey (at least 10 m apart from one another)
on the seismic lines across our study sites to measure the location of the centerline. To do this,
a surveyor visited each point and laid out a rope perpendicular to the line connecting two edges.
Then, they located the center point of the rope using a tape and measured the X, Y, and Z coordinates
of that center point using a Real Time Kinematic (RTK) GNSS system (Trimble R8—8 mm horizontal
and 15 mm vertical precision-Trimble, Sunnyvale, USA). The surveyor also recorded the general width
of the line by averaging a few (3–5) measurements within 10 m of the points. 100 of these points were
located on legacy lines and the rest (145) were located on low-impact lines. Kirby, LiDEA I, and LiDEA
II had 93, 81, and 71 sample points, respectively.

Line Width Reference Samples

We randomly selected 103 points at least 10 m apart from one another on the seismic lines across
our study sites to measure the width of the disturbance. To do this, a surveyor visited each point and
laid out a rope perpendicular to the line connecting two edges. They then used a tape to measure the
width of the line and used a RTK GNSS system (Trimble R8) to measure the X, Y, and Z coordinates
of the edge points. 48 of these points were located on legacy lines (mean width 7.15 m with a range
of 4.72–10.45 m and standard deviation of 1.24 m) and the rest (55) were located on low-impact lines
(mean width 4.50 m with a range of 3.249–6.70 m and standard deviation of 0.65 m). LiDEA I and
LiDEA II had 55 and 48 sample points, respectively.

2.4. Accuracy and Statistical Analyses

To assess the accuracy of the proposed workflow relative to the resolution of the input CHM
raster (our second hypothesis), we performed a series of tests. To create base layers for these tests,
we resampled a high-resolution (25 cm pixel-size) CHM raster using bilinear sampling and iteratively
doubling the cell size to obtain coarser rasters (Figure 5). We assume that, for the purposes of these tests,
the resampled rasters are suitable representations of CHMs generated from LiDAR point clouds of
different point densities. We applied the FLM workflow to each resampled raster to obtain centerlines

www.bera-project.org
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and footprint polygons (Figure 5) attainable at different CHM resolutions. Then, we performed spatial
accuracy tests of the centerline locations and footprint polygon widths using field data of Kirby, LiDEA
I, and LiDEA II for reference, which are explained in the following subsections.
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Figure 5. Output centerlines (blue) and footprint polygons (red) of legacy seismic lines mapped with
the proposed software tool overlaid on CHM raster resampled from 25 cm (a) resolution to 50 cm (b),
1 m (c), 2 m (d), 4 m (e), and 8 m (f).

Even though the FLM mapped all linear disturbances across the three study areas, accuracy tests
were performed only on seismic lines (legacy and low-impact), which were the focus of our field efforts.
Seismic lines are the narrowest linear disturbances on the landscape, and we therefore assume the
most difficult to map. In addition to absolute errors, we also report our accuracy results relative to line
width, and therefore assume that they represent worst-case scenarios of what might be expected on
wider, more-prominent features such as roads, pipelines, and powerlines.

Using the highest-resolution CHM (25-cm pixel size) and its respective output layers, we attributed
the seismic lines of Kirby (2.2.4) and performed multivariate analysis of variance (MANOVA) of line
groups to test our third hypothesis, as explained in 2.4.2. Centerline and footprint accuracy assessments
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were performed in ArcGIS (Version 10.7.1), and line attribute MANOVA was performed in R (version
3.5.1; R Core Team, 2018).

2.4.1. Centerline Spatial Error Assessment

Centerline location samples (Section 2.3.2) were used as reference points to assess the accuracy
of centerlines generated by the FLM. We measured the shortest distance from a reference point to its
corresponding line from the FLM. The absolute difference between field-measured and FLM-predicted
centerline locations was calculated using Equation (1):

MD =

∑i=n
i=1 Dir

n
(1)

where MD is the absolute mean deviation of centerline measured in m, Dir is the vertical distance from
reference center point r to FLM-generated centerline i, and n is the total number of samples. A second
relative measure of mean deviation, normalized by line width, was calculated using Equation (2):

MD (%) =

∑i=n
i=1

Dir
Wi ∗ 100
n

(2)

where MD (%) is the percent mean deviation of centerline and Wi is the general width of line i as
measured in the field.

We repeated these calculations for centerline products generated using CHM inputs of different
resolutions (25, 50, 100, 200, 400, and 800 cm). Finally, we reported overall deviation (absolute and
percent) and deviations for legacy and low-impact lines separately. In order to test the first element of
our first hypothesis, we compared the accuracy metrics of the FLM products with those from the best
publicly available datasets [69], generated through manual photo-interpretation using z tests.

2.4.2. Line Footprint Width Assessment

Line-width samples (Section 2.3.2) were used as reference data to assess the accuracy of polygons
delineated by the FLM, which we equate to estimates of footprint width. We first assessed if the
footprint of a field-measured line was detected at all by the FLM. This was done by visually inspecting
each reference (line) sample overlaid on the corresponding footprint polygon layer in ArcMap (Version
10.7.1), then calculating the detection rate using Equation (3):

DR =
Nd
n
∗ 100 (3)

where DR is the detection rate; Nd is the number of lines detected by the proposed workflow; and
n is the total number of sample lines. If a line was not detected, we assigned zero (0) to the width
value of that line. If a line was detected, we calculated its predicted width from the output footprint
layer. To do so, we calculated the mean footprint polygon width in a 12.5-cm buffer around the field
measurement. Then, the absolute difference between field-measured and FLM-predicted line widths
was calculated using Equation (4):

MAE =

∑i=n
i=1

∣∣∣(Wir−Wio)
∣∣∣

n
(4)

where MAE is the mean absolute error measured in m, Wir is the width of a line i as measured in the
field (reference width), Wio is the width of line i from the FLM output footprint layer o; and n is the
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number of samples. A second relative measure of mean absolute error, expressed as a percentage of
line width, was calculated using Equation (5):

MAE (%) =

∑i=n
i=1 |

(Wir−Wi)
Wir | ∗ 100
n

(5)

where MAE (%) is mean absolute error expressed as a percentage of line width.
We repeated these calculations for polygon products generated using CHM inputs of different

resolutions (25, 50, 100, 200, 400, and 800 cm resolution). In order to test the second element of our first
hypothesis, we compared the accuracy metrics of the FLM products with those from the best publicly
available datasets [69], generated through manual photo-interpretation using z tests.

2.4.3. Line Treatment Types MANOVA

A portion of the seismic lines in the Kirby study area received restoration treatment in 2015,
including silvicultural treatments and planting of native seedlings. On wetland areas, where the water
table is close to the surface, mounding is a common treatment that enhances the survival rate for
newly planted seedlings by creating microsites that are relatively drier than their surroundings [10,70].
On upland areas, CWD are commonly added either in piles or across the entire extent of the seismic
lines [71]. Mounding and CWD are applied with the dual purposes of enhancing the survivability of
seedlings as well as reducing line use by wildlife and humans [71]. Lines with mounding and/or CWD
treatment were visually identified and labeled on aerial images of the study area, with the aid of a 2015
line-treatment proposal layer. The line-treatment proposal layer was helpful as a general guide to
identify treatments, but was not always reliable given field conditions (wetland/upland) encountered
by operators also dictated the final treatment type. Consistent site-wide treatment information could
not be obtained in LiDEA I or LiDEA II.

In order to test our third hypothesis, that high-resolution CHMs would provide enough information
to characterize line types and ground conditions, we labeled lines based on size and treatment: legacy
and low-impact seismic lines (legacy lines wider than 5 m and low-impact lines narrower than
5 m, respectively). Each line was then subdivided into treatment subgroups: untreated, mounded,
and CWD. All lines were divided into 100 m segments for the purpose of this classification. Extremity
segments shorter than two standard deviations from the mean (in meters) were removed from the
analysis. These segments were attributed using FLM (Section 2.2.4), producing attributes of size,
shape, and CHM variables. Line-segment attribute values were incorporated as continuous dependent
variables grouped by the line labels (independent variable) in a multivariate analysis of variance
(MANOVA). Our alternate hypothesis was that the variance between groups would be greater than
the variance within groups (α = 0.01). In other words, different line categories and treatments would
produce different attribute signatures when studied using the proposed software tool.

3. Results

3.1. Linear-feature Mapping Performance

Figure 6 shows all linear disturbances mapped across the three study areas: Kirby, LiDEA I,
and LiDEA II. Footprint polygons were generated for both seismic lines as well as wider linear
disturbances. Center lines were generated only for seismic lines. The total length of seismic lines
and footprint area, as well as the processing times for each project area, are summarized in Table 2.
Altogether, the FLM mapped and attributed more than 675 km of linear features with a processing
time of just over 47 min.
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Figure 6. Mapped linear features (seismic lines and wide disturbances) using 25 cm pixel-size CHM
inputs in the study areas Kirby, LiDEA II, and LiDEA I. The latter includes an inset map shown at larger
scale with footprint polygons outlined in red overlaying an orthophoto background. Wide disturbances
include roads, pipelines, and power lines.

Table 2. Numeric results of mapping seismic lines (SL) and wide linear disturbances (WLD, i.e., roads,
pipelines, power lines) using 25 cm pixel-size inputs. Processing time is given for the center-line step
on seismic lines, which is the same order of magnitude as for the footprint step, obtained using Python
2.7.16 (34-bit) with 8 processing cores on an Intel Core i7-2600 CPU at 3.40 GHz.

SL Length
(km)

SL
Footprint (ha)

WLD
Footprint (ha)

Surveyed
Area (ha)

Disturbance
Area (%)

Processing
Time (minutes)

Kirby 344.66 130.69 176.05 4,416.30 7 23.2
LiDEA I 86.25 37.44 54.77 827.88 11 8.7
LiDEA II 244.72 142.47 0.00 9,972.06 1 15.5

LiDEA I was the densest area in terms of linear disturbances, followed by Kirby and LiDEA II.
The latter did not have any wide linear disturbances except seismic lines. The total footprint area of
seismic lines in LiDEA II was larger than that of Kirby, even though the latter had larger total seismic
line length, given LiDEA II had mostly legacy lines and Kirby had a mix of low-impact and legacy lines.

Seismic lines in Kirby were attributed with length, bearing, orientation, sinuosity, area, average
width, perimeter, perimeter-area ratio (PAR), average vegetation height, vegetation volume and
vegetation roughness. PAR showed interesting spatial patterns and is presented in Figure 7. Wide legacy
seismic lines, which are mostly positioned NE-SW or NW-SE, displayed low PAR except where there
was CWD treatment. Low-impact lines, which are mostly positioned N-S or E-W, displayed low PAR
on wetlands and high PAR on upland forest stands.
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3.2. Accuracy Assessments

3.2.1. Centerline Spatial Error

Figure 8 presents the percent mean deviation of predicted line center from field measured center
as absolute unit (A), and relative to the seismic line width (B), for different input CHM resolutions.
We focus our observations on the relative measures of error since they account for the size of the
physical disturbance so are more insightful.

As expected, mean deviation increased as the spatial resolution of the input CHM resolution
decreased, supporting our second hypothesis. Also, low-impact lines exhibited higher mean deviation
and legacy lines exhibited lower mean deviation consistently across resolutions. This might be because
low-impact lines are narrow, complex in shape and difficult to map, whereas legacy lines are generally
wider, straight, and therefore easier to delineate. Accuracy did not vary remarkably up to 200 cm input
resolution, and mean deviation remained well below 20% of line width. The best-case scenario for
legacy and low-impact seismic lines was 6.44% (0.46 m) and 11.02% (0.44 m) deviation, respectively,
with 25 cm resolution inputs. In contrast, publicly available line datasets had average deviation over
60% for our study sites. Statistically, FLM centerlines were significantly more accurate (p < 0.01) than
publicly available lines when the input CHM resolution was of 4 m or less. These results support our
first hypothesis–that the FLM is more accurate than publicly available datasets produced through
manual digitizing.
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Figure 8. Mean deviation of mapped centerlines from field-measured center points expressed in
absolute units (A) and percentages relative to line width (B) for different input CHM resolutions.
Dashed lines show the accuracy of the best publicly available linear-feature datasets in our study sites.

3.2.2. Line Footprint Width

Figure 9 presents the MAE of predicted line in absolute unit (A) and relative to field measured line
width in percent (B) using different input CHM resolutions. Once again, we focus our observations on
the relative metrics.

In accordance with our second hypothesis, lower MAE was observed at higher CHM resolution
(lower pixel size) in most cases. The best-case scenario for legacy and low-impact seismic lines was
17.27% (1.19 m) and 27.41% (1.21 m) MAE respectively with 25 cm resolution inputs. Overall, MAE
(Figure 9-blue trendline) and low-impact line MAE (Figure 9-grey trendline) exhibited a sharp increase
after 100 cm CHM resolution, whereas legacy lines maintained low MAE up to 200 cm resolution and
then exhibited a sharp rise. This is due to the fact that low-impact lines are generally narrow and
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thus a CHM that is coarser than 1 m resolution cannot be used to accurately map the linear footprints,
whereas legacy lines are generally wide and thus even a 2 m CHM can be used to map their footprint.
Therefore, in the case of line widths, these results only support our first research hypothesis when
using high-resolution (<1-m pixel size) inputs.
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Figure 9. Mean absolute error (MAE) of predicted line width with reference to field-measured line
width for different input CHM resolutions. Charts express errors in absolute units (A) and percentages
relative to line width (B). Dashed lines show the accuracy of the best publicly available linear-feature
datasets in our study sites. Note that while width-error levels could exceed the values presented here,
measurements were confounded by situations where line spacing began to approach 2x the resolution
of the CHMs being tested. As a result, we limit our recording of errors here at 100% MAE (4 m).

3.3. Line Treatment Types ANOVA

Lines were grouped based on size classes (legacy lines and low-impact lines) and treatments
(untreated, CWD, mounding), presented in Table 3. The MANOVA results suggest that the variance
between groups was significantly greater than within groups with a p value smaller than 0.001. Similarly,
the ANOVA of each individual factor (sinuosity, PAR, average width, average height, roughness) also
rejected H0 with p values smaller than 0.001. To visualize the variance of the dependent variables
between groups we created boxplots of each MANOVA factor (Figure 10).
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((D), root mean square height, RMSH), perimeter/area (E), and sinuosity ((F), unitless).
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Table 3. Seismic lines were grouped based on size and treatment classes. Size classes include legacy
and low-impact lines. Treatment classes include untreated, CWD, and mounding. * Legacy Mounding
lines were discarded due to their small sample size.

ID Group Sample Size

1 Legacy CWD 38
2 Legacy Mounding * 14
3 Legacy Untreated 734
4 Low-impact CWD 165
5 Low-impact Mounding 95
6 Low-impact Untreated 2024

Line width was, as expected, much greater on legacy lines than low-impact lines; it was mostly
above 5 m for the former and below 5 m for the latter. Low-impact Mounded lines presented large
width and average height, as well as lower PAR and sinuosity when compared to untreated low-impact
lines (162%, 124%, 61% and 54% on average, respectively). Lines with CWD presented large average
height and roughness, as well as small width and PAR when compared to untreated lines (123%, 118%,
97% and 91% on average, respectively). Lines with CWD were distinct from lines with mounding
relative to sinuosity, perimeter/area and average width (166%, 140% and 73% on average, respectively).
These results not only show statistical significance but also conform with expectations for different types
of forest lines and ground conditions, therefore supporting our third hypothesis–that CHM-derived
line attributes can provide valuable information about forest line characteristics.

A few tests were made comparing predicted average line width between groups of lines separated
by treatment, size and terrain type (upland vs. lowland). Upland lines were narrower than lowland lines
(average 4.47 and 7.14 m, respectively), regardless of treatment, both for legacy and low-impact groups.
Low-impact upland lines were the narrowest type even without treatment (avg. 3.55 m). Low-impact
mounded lines (avg. 6.61 m) were narrow when compared to legacy untreated lowland lines (60%
average width) but wide when compared to low-impact untreated lowland lines (128% average width).
CWD lines (avg. 4.61 m) showed a similar pattern when compared to their legacy and low-impact
untreated upland counterparts (67% and 144%, respectively).

4. Discussion

We tested three research hypotheses in this study, each of which were corroborated by our results.
The first was that FLM outputs would be more accurate than the best publicly available linear-features
dataset in the region [69] in the task of delineating linear-feature center lines (polylines) and footprints
(extent polygons). We observed significant differences (p < 0.01 for z tests) in centerline accuracy for all
but the coarsest-resolution (800-cm pixel size) CHM we tested, with the FLM performing better than
the public dataset produced by human photo-interpreters. The difference was less pronounced when
measuring seismic line width, but still present in high-spatial-resolution (<1m pixel size) CHM data.

Our second hypothesis was that coarser-resolution input CHMs would reduce the accuracy of
FLM output lines and polygons. We observed strong direct relationships between error levels and
CHM resolution, both for center-line location and footprint widths.

Finally, we hypothesized that high-resolution CHMs would provide enough information to
attribute lines with variables that would be useful for characterizing line types and ground conditions.
We observed statistically significant (p < 0.001) differences in FLM attributes between lines grouped
by both size class (legacy and low-impact) and treatment status (untreated, CWD, and mounding),
in addition to statistically significant (p < 0.001) differences between each individual FLM attribute
(sinuosity, PAR, average width, average height, and roughness).
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4.1. Contributions to Linear Disturbance Mapping Literature

Our work contributes substantially to the linear-disturbance mapping literature and is the first
study, that we are aware of, to employ LiDAR CHMs to extract linear disturbances in complex forest
scenes. As Wegner et al. [57] stated, the most important attribute of a linear network is its connectedness,
and the LCP approach used by the FLM has proven to be an effective strategy for delineating and
attributing even subtle linear disturbances like seismic lines. LiDAR-derived CHMs can effectively
capture the structural contrast between linear disturbances and surrounding vegetation and present
a good foundation for mapping linear features.

Linear disturbance mapping with the FLM software tool takes some practice and effort but can
produce layers of excellent quality and detail across extensive application areas. Given that 1-m
resolution LiDAR-derived CHMs are now becoming common in many jurisdictions, we expect that
the proposed workflow will be useful in future regional assessments of linear disturbances in many
forest types.

The capacity of the FLM to generate valuable information products over large areas is expected
to provide significant aid to researchers and resource managers working in forested environments.
For example, the woodland caribou (Rangifer tarandus caribou) is a threatened species in Alberta whose
decline has been linked to habitat fragmentation [71]. In our study areas, the FLM was able to identify
linear features with little or no vegetation or CWD, which serve as barriers to caribou predators and
humans [72] and might therefore benefit from targeted restoration efforts.

4.2. Advantages of Semi-Automated Approach

The FLM yields accurate, consistent, and extensive outputs that are either not feasible or
unattainable via manual delineation or fully automatic detection. Manual delineation can be
either accurate or extensive, but not both without contributing exceptional resources to the task.
Fully automated methods available in the literature commonly aim to be extensive while suffering
from large commission and omission errors, especially on narrow features such as low-impact seismic
lines [73]. A semi-automated approach used by the FLM capitalizes on the analytical power of the
human brain in conjunction with the raw processing power of modern computers. For any given
application area, we expect the FLM approach to require longer setup time but produce substantially
more accurate and insightful outputs than either manual or fully automated approaches.

We are not aware of other methods in the literature that enable extensive delineation and attribution
of linear features. We expect line attribution to be useful in studying vegetation growth trajectories,
human and wildlife line use, and managing line restoration projects.

Our results suggest that linear disturbances can be reliably mapped using the FLM if the resolution
of the input CHM is high relative to the size of the disturbance. In our analyses we observed that
most legacy lines—commonly 10 m wide—were accurately mapped by the FLM using CHMs with
resolution of 2 m or less, and low-impact lines—commonly less than 5-m wide—required CHMs twice
as detailed for accurate mapping (see Figures 8 and 9). Therefore, we suggest as a rule-of-thumb that
the input CHM should have a resolution of at least one fifth of the width of the forest lines being
mapped. Wide linear disturbances such as those associated with roads, railways, pipelines, and power
lines should be easily detectable with most commonly available aerial LiDAR datasets.

4.3. Line Attribution

Given the results presented for the MANOVA of line attributes generated by the proposed
software tool, we believe that outputs of our workflow are imbued with sufficient information to
distinguish between different line conditions, including treatment, size, and possibly other factors such
as vegetation condition and wetness. The purpose of the line attribute analysis in this study was not to
assess the accuracy of individual attributes in relation to the real measure of those factors in the field,
but to simply assess if each factor and the union of several factors could be helpful in distinguishing
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line types and ground conditions. For example, we did not measure the height and roughness of
vegetation in the field to compare those measures to the predicted height and roughness according
to our workflow. However, we expected lines with vegetation treatment to have taller and rougher
vegetation than untreated lines, and that pattern is evident in the results we presented. Similarly,
legacy lines were, predictably, much wider and had lower PAR than low-impact lines. Interestingly,
treated lines were wider on average than their untreated counterparts of the same size class. We assume
this effect is due to two factors: wider lines are more often targeted for treatment; and mounding may
require more horizontal space than the usual size of low-impact lines.

Lines crossing wetlands were much wider than upland lines in general (160% wider on average).
Lines treated with mounding, which is mostly a wetland type of treatment, also were much wider than
other types of lines (127% wider on average). It is well known that lowland vegetation is much slower
to regenerate than upland vegetation on linear disturbances [6,74]. Observations like these suggest
that FLM outputs could help researchers understand the factors limiting forest restoration on seismic
lines and provide a valuable assessment tool for resource managers doing restoration planning.

Since line attribution yielded predictable results that could be interpreted as functions of real-world
factors (line size, treatment, environment) we consider it almost certain that these factors could be
reliably predicted by a model using FLM-generated line attributes as predictor variables. More study
is required in this context.

4.4. Limitations

As a semi-automated toolset, the FLM requires some operator interaction in order to work as
intended. The first critical operator interaction is the creation and editing of seed points for creating
LCPs and LCCs. If the vertices of the input lines are misplaced, local problems may occur. LCPs of
line segments where the vegetation is denser on the line than in the adjacent forest, be it due to
advanced line regeneration or to adjacent cut-blocks or lakes, can present local deviations outside the
disturbances favoring areas with lower tree density. Another rare problem is LCPs can occasionally cut
sharp corners by a few meters between sparse canopy or ignore small deviations on lines. Because of
these limitations, we expect users to perform quality checks and refine inputs as needed (see flowchart
of Figure 2) so that outputs are correct.

The second major operator interaction in the proposed workflow is the establishment of least-cost
corridor thresholds (LCCTs) at each line. As a rule-of-thumb, low-impact seismic lines can be mapped
with a fixed low LCCT, and larger classes of lines can be either mapped with fixed higher LCCTs or
variable thresholds relative to adjacent forest density obtainable via a Zonal Threshold tool included
in the FLM toolset. Setting up proper line thresholds requires familiarity with the workflow and/or
trial-and-error iterations and therefore can be challenging and prone to local errors. Assuming the
user can determine proper LCCTs via quality checks and iterative refinements (Figure 2) the proposed
software tool is capable of mapping accurate and extensive linear disturbances. Ideally, future versions
of the software would automate some of these steps to minimize human interaction.

Despite these current limitations, our assessment is that the time and effort required to produce
accurate output products with the FLM is a tiny fraction of what would be required by fully
manual operations.

4.5. Future Work

Line attributes obtained with the proposed software tool via spatial analysis of the center line,
footprint polygon, and CHM could be used to generate classifiers and models to study the effect of
treatments, predict regeneration trajectories and map line conditions across large application areas.
Such efforts could contribute to wildlife studies, fragmentation analyses, biodiversity assessments,
and restoration planning. Additional useful attributes could be incorporated to lines such as adjacent
forest density, adjacent tree heights, line connectivity, and derived properties such as light incidence
and relative line size to adjacent forest openings. The accuracy of line attributes relative to ground truth
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could be assessed so that individual attributes could be used as direct estimations of real-world metrics.
Network analysis of attributed lines could measure accessibility and thus help identify focal points
which would benefit the most from CWD and mounding treatment, effectively diminishing predator
and human use of the whole network. Line attributes, as well as classes, could be generalized to label
large-scale regions such as townships, counties or National Topographic Series grids, enabling high-level
management and planning. Such developments could greatly enhance our understanding of the impact
of linear disturbances in forests and allow for more sophisticated strategies on vegetation management.

At the time of writing, the FLM relies on proprietary licenses, namely ArcGIS and its Spatial Analyst
extension. By using these licenses, we shortened the development cycle of the FLM since all tools are
integrated in the same set of ArcPy libraries–making them compatible amongst themselves–enabling
us to focus on higher-level development. On the other hand, this limitation not only restricts the
accessibility of the tool to the public but also increases processing times given the ArcPy library is
notoriously slow to import. An important future step would be to translate the software tool to a fully
open-source format, which would involve significant effort, likely making use of multiple open-source
libraries and assuring their compatibility. Translating to user-friendly open source format is especially
challenging when the target audience is not familiar with code distribution practices.

Some steps incorporated into the adopted workflow are relatively inefficient and could be replaced
by more sophisticated methods in order to achieve faster run times, which could be useful in very
large application areas (e.g., provincial or continental scale). For example, the cost distance tool
in ArcPy is processing intensive and relatively inefficient to determine an LCP or an LCC because
it considers all cells as potential path nodes. Cost distance is arguably the main bottleneck in the
adopted workflow. This step could potentially be replaced by modified versions of Dijkstra or A-star
path-finding algorithms [75]. Such a replacement would substantially lower the number of cell
iterations and potentially remove intermediate steps such as the clipping of the cost-raster, reducing
both processing and memory requirements.

We elected to compare the accuracy of FLM outputs in the boreal forest to those derived from
a publicly available dataset generated by human photo-interpreters [69] since this type of linear-feature
inventory is common to forests everywhere. However, we encourage other authors to test our findings
in different forest types, and to compare the LCP approach we have adopted to other algorithms that
appear in the literature.

5. Conclusions

We have presented a novel semi-automated workflow for extensively mapping high-resolution
forest lines and linear footprint, as well as obtaining valuable line attributes for characterizing ground
conditions. Our workflow utilizes the FLM toolset, which was designed by us to be accessible
and open-source (though currently with ArcPy dependencies) and is intended to aid industry,
scientists, and government personnel to better study the current state as well as future implications
of linear disturbances in forests. Our accuracy tests showed that the developed tool reliably predicts
line center and width (best case 11% and 22.7% mean deviation relative to width, respectively),
being consistently more accurate than the best publicly available dataset in the area, produced by
human photo-interpretation. Additionally, the FLM was able to generate CHM-derived attributes to
individual linear features which can separate lines into different classes (legacy, low-impact, untreated,
mounded, woody material), with statistical significance (p < 0.001). Our results suggest that this work
may pave the way to enhanced vegetation-recovery predictions as well as management planning on
a line-per-line basis in regional scale. We released the tool in a code-sharing platform in the hopes that
collaborators and others may not only make use of the toolset, but also share their expertise suggesting
new features, fixes, and improvements so that the whole community can benefit from an increasingly
powerful toolset. We have learned that there are yet great advances to be made in linear-disturbance
mapping in forests, that CHMs contain valuable information that is not used to its fullest potential in
forest management, and that detailed line analysis in a continental scale may yet be possible.
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