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Abstract: Typhoons or mature tropical cyclones (TCs) can affect inland areas of up to hundreds of
kilometers with heavy rains and strong winds, along with landslides causing numerous casualties
and property damage due to concentrated precipitation over short time periods. To reduce these
damages, it is necessary to accurately predict the rainfall induced by TCs in the western North Pacific
Region. However, despite dramatic advances in observation and numerical modeling, the accuracy
of prediction of typhoon-induced rainfall and spatial distribution remains limited. The present study
offers a statistical approach to predicting the accumulated rainfall associated with typhoons based on
a historical storm track and intensity data along with observed rainfall data for 55 typhoons affecting
the southeastern coastal areas of China from 1961 to 2017. This approach is shown to provide an
average root mean square error of 51.2 mm across 75 meteorological stations in the southeast coastal
area of China (ranging from 15.8 to 87.3 mm). Moreover, the error is less than 70 mm for most stations,
and significantly lower in the three verification cases, thus demonstrating the feasibility of this
approach. Furthermore, the use of fuzzy C-means clustering, ensemble averaging, and corrections to
typhoon intensities, can provide more accurate rainfall predictions from the method applied herein,
thus allowing for improvements to disaster preparedness and emergency response.
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1. Introduction

Coastal areas with high population densities and rapid growth and urbanization have relatively
vulnerable structures to coastal flooding, such as the sea-level rise and storm surge due to climatic
extremes [1,2]. The losses caused by these disasters have also continued to increase in recent years.
The western North Pacific (WNP) is one of the oceanic regions most prone to typhoons [3–9]. Since China
is located on the west coast of the WNP, it is greatly affected by typhoons, particularly along the east
coast [10]. The strong winds, heavy precipitation, and storm surge of typhoons pose serious threats to
China’s social economy and national personal safety. For example, the super typhoon “Mangkhut”
affected many provinces and regions over South China in September 2018. The number of people
affected was close to 3 million, with ~1200 houses damaged and ~174.4 thousand hectares of crops
being affected. The direct economic loss exceeded CNY 5.2 billion (USD 77.5 million) [11].

Failure to properly manage water resources due to incorrect rainfall forecasts during the typhoon
season can lead to serious flooding or water shortage, regardless of how well forecast and water
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management was carried out before the typhoon [10,12]. In recent years, however, the development
of satellite observations and mathematical modeling, along with integration and data assimilation
techniques using various observational datasets, typhoon tracking and intensity prediction have
continuously improved [13–20]. Nevertheless, typhoon-induced rainfall prediction remains very
difficult and less accurate than typhoon track prediction [21–29]. For example, Li et al. [26] established a
non-parametric statistical method using numerical models and typhoon intensity predictions to estimate
the maximum daily rainfall and three-day cumulative rainfall amounts. Previously, Ebert et al. [27]
noted that a satellite-based tracking of tropical rain could improve the short-term prediction of
typhoon-induced heavy rainfall. More recently, Kim et al. [28] hypothesized that typhoons with similar
tracks have similar rainfall patterns, and demonstrated the use of tracks, intensities, and precipitation
data for 91 typhoons affecting the Korean Peninsula over the course of several decades to establish a
statistical model for forecasting typhoon-induced rainfall over that region.

Although typhoon-induced rainfall prediction models are constantly being improved, the rainfall
conditions related to typhoons differ from region to region and most of the aforementioned methods
were developed according to one or other specific regions [26–30]. While the establishment of a
typhoon-induced rainfall prediction model requires accurate track and intensity forecasts; however,
complex physical processes such as the interaction between typhoon and land also need to be considered.
These factors may cause rapid changes in precipitation during the passage of typhoons [21,22]. Therefore,
typhoon-induced rainfall prediction is particularly challenging work.

The purpose of the present study is to establish a new statistical prediction model based on the
principle of track similarity, using fuzzy C-means clustering, intensity correction, and other methods
to optimize typhoon-induced accumulated rainfall (TAR) forecasts over China. The following section
introduces the data used to develop the prediction model and describes how the TAR of each typhoon
in the western North Pacific in recent decades is determined. Then, in Section 3, typhoons with tracks
similar to that of the target typhoon are selected. In addition, TAR correction is conducted based
on typhoon intensity, and the optimal number of similar-track typhoons is selected for ensemble
averaging. After substituting the previous typhoon data, the results of the prediction model are given.
Finally, Section 4 provides a summary and conclusions, including a discussion of the advantages of
this method as well as the limitations that can be improved in future work.

2. Data and Methods

2.1. Data

To establish the TAR prediction model, the daily rainfall data without any gaps between 1961 and
2017 from 537 meteorological stations in China (Figure 1a; http://data.cma.cn) were used, along with
best-track data for a total of 1536 typhoons in the WNP were used during the period 1961–2017
(Figure 1b). Typhoon intensity correction was performed and the effects of ensemble averaging and
typhoon similarity levels were analyzed using primarily the 55 tropical cyclone (TC) datasets affecting
75 meteorological stations in the southeast coastal area of China listed in Table 1. The 6-hourly location
and intensity data for the typhoons, including the specific date, time, longitude, latitude, maximum wind
speed, and typhoon number, were obtained from the Regional Specialized Meteorological Center
(RSMC)—Tokyo.

Due to the proximity of typhoons to mid-latitude regions, typhoons will transition into tropical
storms under the impacts of landfall, cold air mixing, and other factors, leading to a rapid weakening
of their intensities. Nevertheless, the impact of the associated rainfall will impact large areas and
generate disasters such as debris flows and floods that may cause losses of life and property. Therefore,
in order to better estimate the rainfall that a typhoon can cause, the present study includes the period
after each typhoon turns into a tropical storm.

http://data.cma.cn
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Figure 1. Weather stations and typhoon track data used in the present study: (a) the locations of the
meteorological stations (n = 537); and (b) the long-term average of the tropical cyclone (TC) track
density in the western North Pacific (WNP) region during the period 1961–2017. The solid line in (b)
indicates the location of the WNP subtropical high represented by 5880 gpm during the study period.

Table 1. The 55 typhoons used in the present study.

No Name ID Maximum Wind (kt) No Name ID Maximum Wind (kt)

1 FREDA 7713 55 29 MORAKOT 0309 45

2 ROSE 7804 45 30 VAMCO 0311 35

3 DELLA 7812 45 31 DUJUAN 0313 80

4 GORDON 7908 55 32 KOMPASU 0409 45

5 PERCY 8014 100 33 RANANIM 0413 80

6 MAURY 8108 50 34 AERE 0417 80

7 IRVING 8217 85 35 SANVU 0510 50

8 WAYNE 8304 110 36 BILIS 0604 60

9 WYNNE 8402 55 37 BOPHA 0609 55

10 VAL 8517 45 38 WUTIP 0707 35

11 ELLEN 8620 70 39 NURI 0812 75

12 GERALD 8714 80 40 HAGUPIT 0814 90

13 NONAME 8803 35 41 MOLAVE 0906 65

14 FAYE 8907 55 42 FANAPI 1011 95

15 GORDON 8908 100 43 NANMADOL 1111 100

16 DOT 9017 75 44 SAOLA 1209 70

17 AMY 9107 95 45 CIMARON 1308 40

18 BRRENDAN 9108 60 46 UTOR 1311 105

19 GARY 9207 55 47 TRAMI 1312 60

20 BECKY 9316 55 48 USAGI 1319 110

21 TIM 9405 95 49 KALMAEGI 1415 75

22 CAITLIN 9412 45 50 LINFA 1510 50

23 HELEN 9505 50 51 NIDA 1604 60

24 GLORIA 9608 65 52 CHANTHU 1617 85

25 SALLY 9616 85 53 PAKHAR 1714 55

26 OTTO 9802 65 54 GUCHOL 1717 35

27 MAGGIE 9903 75 55 KHANUN 1720 75

28 TRAMI 0105 40
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2.2. Calculation of Typhoon-Induced Accumulated Rainfall (TAR)

The first step in establishing the TAR prediction model is to calculate the TAR for each local station.
The specific calculation process is as follows:

(1). Determine whether the rainfall for a specific location is caused by the typhoon. Only when the
distance between a typhoon and a specific location is less than a certain value can the typhoon
be considered to have an impact on that location’s rainfall. The selection criterion used in the
present study is that the distance between the typhoon and the meteorological station must be
less than or equal to 500 km. [9,31–33]

(2). As the typhoon will have a continuous impact on the rainfall in a specific area, the rainfall on the
day in which the region is affected is considered, along with that of the day before and the day
after, as being caused by the typhoon. That is, the total duration of rainfall caused by a typhoon
in a specific location is represented by the time period of the typhoon entering and leaving a
500 km range of the area within a time window ± 1 day of its landfall.

(3). The TAR values for each typhoon at each station are obtained by adding up the daily rainfall in
the previously determined period.

It was noted that a substantial error would arise if coexisting typhoons were used to establish a
TAR prediction model, which would result in an inaccurate model forecast. To prevent this problem,
typhoons of this type were discarded during the prediction model establishment process.

2.3. Selection of Typhoons Using the Fuzzy C-Means Clustering Algorithm

In the present study, the fuzzy C-means clustering (FCM) algorithm was used to select typhoons
with similar tracks. This is a partitioning algorithm in which objects with the greatest similarities are
grouped into the same cluster and objects with few similarities into separate clusters. The FCM was
proposed by Bezdek [34] as an improvement on the hard C-means clustering method and enables
an estimate of the degree to which each data point belongs to a certain cluster, i.e., the degree of
membership. In detail, the FCM divides n vectors Xi (i = 1, 2,..., n) into a number (c) of fuzzy groups
and identifies the clustering center of each group so that the value function of the dissimilarity index
is minimized. A fuzzy division is then used to assign a degree of membership between 0 and 1 and
examine how well each data point belongs to each group. According to the FCM, the membership
matrix U assigns the values of the elements between 0 and 1, while the constraints of the normalization
dictate that the total membership of the dataset must always be equal to unity, as indicated by
Equation (1):

c∑
i=1

ui j = 1, ∀ j = 1, · · · , n (1)

Then, the value function (or objective function) of the FCM is given by Equation (2):

J(U, c1, · · · , cc) =
c∑

i=1

Ji =
c∑

i=1

n∑
j

um
ij d

2
i j (2)

where ui j is between 0 and 1, ci is the clustering center of the fuzzy group i, and di j = ‖ci − xi‖ is the
Euclidean distance between the i-th clustering center and the j-th data point.

In the process of clustering typhoons using the FCM method, the membership coefficient Wik is
calculated. This indicates the probability, Xi, that each typhoon belongs to the target typhoon group
Ck [28,35]. The value of Wik is determined by the partial derivative of the sum of squared errors (SSE)
according to Equations (3) and (4):

SSE =
K∑

k=1

n∑
i=1

WikPd(xi, ck)
2 (3)
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Wik =
{

1
d(xi,ck)

2 }

1
p−1

∑K
K=1 {

1
d(xi,ck)

2 }

1
p−1

(4)

where d(xi, ck)
2 is the distance between each typhoon track and the target typhoon track.

When using the FCM method to cluster all the typhoon tracks, these must first be divided into
lines with the same number of location points. In the present study, all typhoons were uniformly
interpolated according to the typhoon with the largest number of location points in its track data.
In addition, the FCM membership coefficient was used as a criterion for screening typhoons that
were similar to the target typhoon: the larger the coefficient value, the higher the typhoon similarity.
For example, the eight typhoons with the greatest similarity to typhoons Usagi (#1319) and Nesat
(#1117) according to the FCM method are indicated in Figure 2. Typhoon Usagi (#1319) made landfall
on the coast of Fujian Province in southern China in 2013 and affected the surrounding areas of Taiwan
and southern provinces of China (Figure 2a), whereas typhoon Nesat (#1117) passed through Hainan
Province and Qiongzhou Strait in 2011 and then caused serious damage to the surrounding areas,
including Hainan, Guangdong, and other provinces (Figure 2b). The results in Figure 2 indicate that
the tracks of typhoons Nuri (#0812) in 2008 and Sharon (#9404) in 1994 are the most similar to those of
Usagi (#1319) and Nesat (#1117), respectively.

Figure 2. Top eight typhoon tracks most similar to those of: (a) Usagi (#1319) and (b) typhoon Nesat
(#1117). The identification number and similarity level of the selected typhoons are indicated in the key.

3. Results

3.1. Correcting the TAR Using Typhoon Intensity Information

Since it is impossible for different typhoons to have exactly the same intensity and structure,
every typhoon is unique. Therefore, it is not theoretically possible to accurately predict the amount of
rainfall caused by a typhoon based only on the track of one typhoon only. In other words, even when
two typhoons have exactly the same tracks, differences in their intensities will result in different rainfall
amounts, with higher intensity typhoons usually resulting in more rainfall [36]. Therefore, a typhoon
wind intensity correction (TWIC) was used in the present study to further reduce the error in the
TAR prediction model. The effects of the TWIC and ensemble averaging were first assessed using the
training datasets of 55 TCs and then verified for model performance later in Section 3.3.

The eastern and southern coastal areas of China were selected as target areas for prediction during
the training of this model because these are the areas that are most frequently affected by typhoons,
whereas the inland areas of China are rarely affected. In the process of TAR correction based on TC
wind speed, data from typhoons affecting 75 weather stations along the southeastern coast of China



Remote Sens. 2020, 12, 4133 6 of 14

(Pearl River Basin and Southeast River Basin) were used. Typhoons that occur simultaneously in the
same region were not used for this process, as it is difficult to obtain their individual TAR periods and
rainfall amounts accurately.

After processing the data, the 55 most representative typhoons with high data accuracy and
their corresponding similar-track typhoons were finally selected. The TC wind speed and average
rainfall values during the passage of these typhoons were then calculated from the data obtained from
75 stations in the southeast coastal area of China. Using these data, the linear regression equation
relating the TC wind speed of the 75 weather stations and the average TAR during typhoon passage
was obtained (Figure 3) and the best fit was given by Equation (5):

PTAR = 0.654V + 10.891 (5)

Figure 3. Linear relationship between the TC wind speed (V, m/s) and the average typhoon-induced
accumulated rainfall (TAR) (PTAR, mm). The average TAR and TC wind speed were obtained using the
most similar typhoons from 55 storms and 75 stations.

The equation shows that there is a positive correlation between the TC wind speed (V, m/s) and the
average TAR (PTAR, mm). This shows a significant relationship (p < 0.05) between the TC wind speed
and the average TAR (R2 = 0.654 ± 0.291). During the training process for the TAR prediction model,
this linear equation was adopted to apply an intensity correction to all typhoons with similar tracks.

3.2. Effects of Track Similarity, Ensemble Averaging, and Intensity Correction on the TAR Predictions

The similarity level of the typhoon track, the number of ensemble averages, and whether the
typhoon intensity is corrected may have an impact on the TAR prediction. To examine the influence of
the typhoon track similarity level, the accuracy of the prediction result is judged by the root mean
square error (RMSE), where a smaller error indicates a more accurate result. The results presented
in Figure 4 (black line) show that the use of a single typhoon with the most similar track to predict
the TAR values of the target typhoon in the target areas from 1961 to 2017 gives an average RMSE
of 62.2 mm. However, if the typhoon with the second-best track similarity is used alone for the
prediction, the RMSE is slightly decreased to 60.8 mm, while using only the typhoon rainfall data with
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the third-best track similarity decreases the average RMSE to 58.7 mm. Thereafter, the average RMSE
continues to decrease as the similarity of the selected typhoon increases. In general, the prediction
error decreases with the use of individual typhoons with increasing track similarity levels, but the use
of only a single typhoon in the TAR prediction process may nevertheless result in an unsatisfactory
error reduction even if its track is very similar to that of the target typhoon.

Figure 4. A comparison of the change in the RMSE of the prediction obtained with the increasing
number of ensemble typhoons used before (black line) and after (red line) TC wind intensity correction.
“X” represents the optimal ensemble number after TC wind intensity correction.

To further reduce the prediction errors, ensemble averaging (EA) was then considered [21,37].
To detect the influence of EA on the TAR prediction result, the number of high track-similarity typhoons
used in the prediction at each station was increased step-by-step to form an ensemble, then their
average TAR values were calculated and compared with the observed values. The results in Figure 4
(black line) indicate that as the number of typhoons in the ensemble increases, the RMSE initially
decreases to a minimum of 51.5 mm with an ensemble of the 27 most similar typhoons, and gradually
increases thereafter.

Then, to study the influence of typhoon wind intensity correction upon TAR prediction, the TAR
obtained after TWIC was calculated using the EA method, and the results were compared with those
obtained without TWIC in Figure 4. Here, the red line indicates a decrease of 0.5–0.9 mm in the average
RMSE after the TWIC. In other words, the TWIC helps reduce the error in TAR predictions. In addition,
the above results indicate an optimal ensemble number of 26 when using the EA method to predict
the TAR.

Based on the results of the above analysis, the operational process of the statistical TAR prediction
model used in the present study for the southeast coastal area of China is as follows:

(1). The model is used when the predicted typhoon track is judged as potentially having an impact
on rainfall in the target area (i.e., when the distance between the typhoon center and the stations
is less than 500 km).

(2). According to the historical typhoon tracks, the top 27 typhoons that are most similar to the track
of the target typhoon are selected.

(3). The TWIC equation is used to correct the TAR according to the typhoon intensity for selected
typhoons observed at 75 stations.

(4). The TAR of selected typhoons is averaged after intensity correction.
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The spatial distribution of the RMSE (mm) and correlation coefficients of 55 typhoons at 75 stations
in the eastern and southern coastal areas of China from 1961 to 2017 estimate using this TAR prediction
model during the training period are presented in Figure 5. Here, the RMSE of the 55 typhoons at
the majority of stations is seen to be below 70 mm. The particularly large error and low correlation at
the southern and eastern coastlines of China may be due to the impact of the co-existing rainy front
in southeastern China and the relatively strong TC passing through the coastal areas, since a strong
rainfall intensity with considerable regional variations can reduce the accuracy of TAR predictions.

Figure 5. Graphs showing the average RMSE (a) and correlation coefficient (b) calculated using the
prediction model for 55 typhoons at 75 stations during the model training period.

3.3. Model Performance

Typhoon Sarika (#1621), which affected the coastal area of southern China in 2016, typhoon Nesat
(#1709), which affected the coastal area of southeast China in 2017, and typhoon Utor (#0104),
which passed between Hainan Island and Taiwan, were then used to evaluate the actual performance
of the TAR prediction model. The three typhoons had different tracks as they approached and made
landfall in China, with Sarika (#1621) crossing Hainan Island and moving northwestward to land along
the southern coastline of Guangxi Province in China, while Nesat (#1709) landed in Fujian Province
through the Taiwan Strait after passing through northern Taiwan and then moving southwest. The FCM
approach was used to selected typhoons with the most similar tracks, then their TAR intensities were
corrected according to the aforementioned equation and were then averaged. The most similar tracks
obtained from the FCM analysis are presented in Figure 6. By averaging the TC wind intensity-corrected
historical TAR records of these typhoons, the TAR values of Sarika (#1621), Nesat (#1709), and Utor
(#0104) at the 75 stations in the southeastern coastal and southern coastal areas of China were predicted
and compared with the observed values. The results indicate RMSE values of 35.7, 55.5, and 47.2 mm
for typhoons Nesat (#1709), Utor (#0104), and Sarika (#1621), respectively. Thus, the error in the results
of TAR prediction for two of the three typhoons using the proposed statistical model is lower than the
average error (51.2 mm) obtained using 55 typhoons during the model training period.
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Figure 6. Verification of the prediction model established in the present study: (a) the TC tracks used;
(b–d) the selected typhoon trajectories most similar to those of (b) typhoon Nesat (#1709); (c) typhoon
Utor (#0104); and (d) typhoon Sarika (#1621). The typhoon numbers and similarity levels are indicated
in the key.

The observed TAR values for typhoons Nesat (#1709), Utor (#0104), and Sarika (#1621) are
presented, along with the differences between observed and predicted values, in Figure 7. Here,
the predicted TAR spatial pattern for typhoon Nesat (#1709) is seen to be very similar to the observed
outcome, except that the TAR for part of the area farther away from the coast is overestimated.
For typhoon Utor (#0104), the predicted results show significant differences in the Southeastern
and Pearl river basins, being slightly overestimated in the former and underestimated in the latter
compare to the observation. For typhoon Sarika (#1621), the distribution of predicted TAR values in the
southern and southeastern coastal areas of China is very similar to the actual observations, although it is
overestimated in Fujian Province and underestimated in Guangdong Province. These results are further
illustrated by the violin plots (boxplot-density trace synergism) in Figure 8. In conclusion, the results
of the TAR prediction model presented in this study are effectively similar to the actual observations
and indicate the overall good performance of the model for predicting the spatial distribution of
TAR values.
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Figure 7. TAR estimation at 75 stations along the southern and southeastern coasts of China for
typhoons Nesat (#1709), Utor (#0104), and Sarika (#1621): (a) the observed values; and (b) the difference
between observed and predicted values.
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Figure 8. Violin plots (boxplot-density trace synergism) of the TAR difference between the observed
and predicted values for 75 stations along the southern and southeastern coasts of China for typhoons
Nesat (#1709), Utor (#0104), and Sarika (#1621). The white circles indicate the median value of the TAR
difference for 75 stations.

4. Summary and Conclusions

A statistical approach for predicting typhoon rainfall was developed herein based on the historical
storm track, intensity, and rainfall data for 55 typhoons affecting the southeastern coastal areas of
China from 1961 to 2017. Specifically, the statistical model was based on the principle of track
similarity. Since tropical cyclones (TCs) with similar tracks tend to produce relatively similar rainfall
patterns, therefore, historical TC rainfall data with similar tracks were used to predict the accumulated
rainfall caused by the target TC. In addition, TC intensity correction and ensemble averaging for
multiple similar TC tracks were used to reduce prediction errors. The fuzzy C-means clustering (FCM)
algorithm was used to select the typhoons with the most similar tracks to that of the target typhoon.
The typhoon-induced accumulated rainfall (TAR) values of the selected typhoons observed at each
of the 75 stations were corrected according to typhoon intensity, and then averaged to provide an
estimate of the target typhoon’s TAR value at each station.

The results indicated an average error of 51.2 mm across the 75 stations in the coastal area of
southern China. In addition, three typhoons that were excluded from the model training process
(i.e., Nesat (#1709), Utor (#0104), and Sarika (#1621)) were subsequently used to generate a forecast
according to their best-track data and, thus, verify the predictive performance of the model. The resulting
RMSE for the predicted TAR of Utor (#0104) is slightly high (55.5 mm), while those of Nesat (#1709)
and Sarika (#1621) were 35.7 and 47.2 mm, respectively. The latter two errors were lower than the
average error (51.2 mm) obtained during the model training period, thus proving the feasibility of the
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model for use in actual predictions. Subsequently, the spatial distribution results of the TAR values
for the three typhoons predicted by this model at 75 stations were analyzed and found to be similar
to the actual observations. This further demonstrated the overall good performance of the model in
predicting the spatial distribution of the TAR values.

Nevertheless, the TAR prediction model presented in this study is limited to predicting only
the accumulated rainfall caused by typhoons; it cannot predict the change in rainfall over time at
all locations. Although numerical weather prediction (NWP) models are more advanced in this
respect, the results predicted by the proposed statistical model have greater significance in certain
contexts—especially for regulating reservoir discharge and flood control. The roles of the proposed
model are to provide a more accurate forecast of the TAR at the target site, to coordinate the prediction
of traditional numerical models, and to ensure that the region has responded well to typhoon-related
rainfall measures.

Predicting rainfall caused by typhoons is challenging because, in addition to the track and intensity
of the typhoon, many factors such as the regional terrain, the interaction of the typhoon with the land,
and the speed of the storm translation can have certain effects upon the TAR. Notably, the TAR prediction
model established in the present study did not consider these factors. Additionally, the number of
typhoon samples used to build the TAR prediction model in the southern and southeastern coastal
areas of China was not large. If additional factors are considered in future research, such as a correction
for storm translation speed and size, and if the effective sample size is increased by using more typhoon
data, the predicted results might become more accurate. In addition, confirmation is required via a
comparison with NWP-based ensemble prediction models. All these approaches can help improve the
performance of the TAR prediction model over China.
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