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Abstract: Taking a typical forest’s underlying surface as our research area, in this study, we employed
unmanned aerial vehicle (UAV) photogrammetry to explore more accurate canopy parameters
including the tree height and canopy radius, which were used to improve the Noah-MP land surface
model, which was conducted in the Dinghushan Forest Ecosystem Research Station (CN-Din).
While the canopy radius was fitted as a Burr distribution, the canopy height of the CN-Din forest
followed a Weibull distribution. Then, the canopy parameter distribution was obtained, and we
improved the look-up table values of the Noah-MP land surface model. It was found that the
influence on the simulation of the energy fluxes could not be negligible, and the main influence of
these canopy parameters was on the latent heat flux, which could decrease up to −11% in the midday
while increasing up to 15% in the nighttime. Additionally, this work indicated that the description of
the canopy characteristics for the land surface model should be improved to accurately represent the
heterogeneity of the underlying surface.

Keywords: forest canopy parameters; UAV-based photogrammetry; land surface modeling

1. Introduction

The land surface process is the lower boundary condition of atmospheric movement, and the
different types of underlying surface have multiple weather and climate effects [1]. The development
of land surface models provides a way to help us understand the complex processes and interactions
between the land surface and the atmosphere across micro to global scales. It can provide a simple
and realistic way to show the transfer of energy, mass and momentum through the numerical
parameterization of land surface models [2]. It is well known that the differences in underlying surface
characteristics are embodied by using different land surface parameters [3]. Generally, the measurement
of pollutant deposition and the estimation of ecological impact depend on the accuracy of the
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simulation results of land–air exchange flux; thus, the improvement of canopy properties is urgently
needed for the modeling of land–atmosphere interaction processes [4].

Additionally, the creation of land surface models and coupled atmosphere and environment
models can be improved by refining the land surface inputs and parameters [5]. However, the treatment
of vegetation, especially the forest canopy structure, has been set as one large leaf in land surface
models for a long time [6]. The vegetation canopy is commonly defined by the canopy top and
bottom, crown radius and leaves with prescribed dimensions, orientation density, and radiometric
properties [7]. Although some 3D computer simulation models are suitable for studying smaller-scale
scenes with fine structures, the demands of extreme computational resources have still made it difficult
for them to be applied at a large scale [8]. In this case, the range of typical parameter values in forests
remains a large source of uncertainty [4].

The parameterizations about the forest canopy structure of land surface models that are commonly
coupled in meteorological or climate simulations are listed in Table 1 [9–15]. Different parameterization
schemes divide the canopy into one layer, two layers or multiple layers to calculate the energy
decomposition or radiative transfer in the canopy [16–19]. For the calculation of the atmospheric
dynamic process, the current land surface models that have been widely used in climate and hydrology
researches, such as simple biosphere model (SiB4) and biosphere atmosphere transfer scheme (BATS),
are based on the measured empirical wind speed profile in the canopy and provide an empirical
solution to calculate the turbulent exchange in the canopy [20,21].

Unmanned aerial vehicles (UAVs) provide an effective platform for quickly and cheaply obtaining
the parameters of vegetation canopies [22]. This technique has been expected to become increasingly
common in forest studies with the availability of more efficient data processing software [23,24].
The communities have begun using UAVs to map canopy gaps, tree heights and leaf angles,
etc. [25–28]. Furthermore, UAV-borne LiDAR systems could allow the accuracy of the parameter
measurements to reach the centimeter level, which would noticeably influence the surface wind profile
and momentum [23,29,30]. Additionally, UAV photogrammetry can obtain more abundant spectral
characteristics of images, which is important for vegetation species identification; therefore, it would
potentially improve the accuracy of air quality numerical models and climate models [31]. However,
the application of measurement results from these above techniques and the performance of mass and
energy exchange simulations between ecosystems and the atmosphere in land surface models still
needs further exploration.

In this study, a typical subtropical forest’s underlying surface was taken as the research area;
we mainly focused on the establishment of the connection between forest canopy parameters including
the tree heights and crown radius of this forest by UAV photogrammetry and obtained these accurate
canopy parameters for land surface model improvement. With these canopy parameters used to
replace the original default value of the model, the difference of the simulated heat flux caused by
using these accurately obtained canopy parameters was explored.
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Table 1. Forest canopy parameterization in land surface models.

Land Surface Models Noah Noah-MP CLM RUC SSiB PX

Vegetative components

One vegetation type One vegetation type Subgrids with up to Multiple vegetation types by One vegetation type One vegetation type
in one gridcell without in one gridcell with 10 vegetation types in using land use fractions in in one gridcell without in one gridcell without
dynamic vegetation dynamic vegetation one gridcell with dynamic one gridcell without dynamic dynamic vegetation dynamic vegetation
and carbon budget and carbon budget vegetation and carbon budget vegetation and carbon budget and carbon budget and carbon budget

Photosynthetic pathway No Yes, ¶ = 1 Yes, ¶ = 1 No No Yes, § = 1
Phenology Yes, ¶ = 1 Yes, § = 1 Yes, † = 1 Yes, ¶ = 1 No Yes, ¶ = 1
Relative leaf nitrogen profile No Yes, ¶ = 2 Yes, § = 1 No No No
Leaf dimension No No Yes, ¶ = 1 No Yes, ¶ = 1 No
Leaf area index Yes, ¶ = 1 Yes, ¶ = 2 Yes, ¶ = 2 Yes, ¶ = 2 Yes, ¶ = 1 Yes, § = 1

Canopy heights Yes, ¶ = 2 Yes, ¶ = 2 Yes, ¶ = 2 No Yes, ¶ = 1 No
Length of live crown No No No No No No
Length of dead crown No No No No No No
Crown radius No Yes, ¶ = 1 Yes, ¶ = 1 No No No
Number of branches No Yes, ¶ = 1 No No No No
Branch zenith No No No No No No

¶: Number of parameters; §: Using subroutines; †: Using modules (multiple subroutines).
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2. Materials and Methods

2.1. Study Area and Field Data Collection

The study was carried out in the Dinghushan Forest Ecosystem Research Station, which represents
the subtropical forest areas in South China (Fluxnet Site Code: CN-Din). This site is located in the
Dinghushan biosphere reserve in Zhaoqing, Guangdong province, China (as shown in Figure 1,
and also in Chang et al. [32]). The majority of the area is covered by a 100-year-old subtropical
evergreen broadleaf and pine–broadleaf mixed forest, mainly consisting of Castanopsis chinensis,
Schima superba and Pinus massoniana, etc. [33,34]. The vegetation is fairly homogeneous within a
distance of ∼1 km in the direction of the dominant wind direction (northeast). The gap area accounts
for 3∼25% of forest area, and the average size is about 80∼100 m2, which makes it difficult to use a
larger UAV to carry LiDAR instruments or other big equipment. UAV images over the study site were
collected between August 2019 to September 2019, as part of a comprehensive observation experiment
in CN-Din [35].

Figure 1. Location and geographic features of Dinghushan Station.

2.2. Workflow from UAV Photogrammetry to Land-Atmospheric Simulation

A workflow was developed to calculate the canopy parameters required to improve the land
surface model using UAV photogrammetry (Figure 2). We used the built-in tools and algorithms to
process the UAV images from a set of images on the same subject, by means of structure from motion
(SfM) techniques [36,37]. Three-dimensional reconstruction terrain-oriented software was employed to
create the point clouds and orthomosaics [38]. Additionally, a state-of-the-art land surface model was
employed to investigate the effects of UAV-based photogrammetry for the extraction of precise forest
canopy parameters as inputs for meteorological or climate models [39].
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Figure 2. Main workflow to estimate the effects of land–air energy budgets by refined canopy
parameters from high-resolution UAV photogrammetryFigure 2. Main workflow to estimate the effects of land–air energy budgets by refined canopy

parameters from high-resolution unmanned aerial vehicle (UAV) photogrammetry.

2.3. Airborne Equipment and Processing Software Setup

A DJI Phantom 3 Professional UAV equipped with a classic FC300X_3.6_4000x3000 (RGB) camera
was used for image acquisition. The equipment is mature, stable, low cost, easy to carry and moderately
difficult to operate. The comparison of the equipment is shown in Table 2. It can be seen that the
camera is a non-professional measuring camera—the lens is not strictly calibrated and there is no
set control point for calibration—and so the digital image captured has an optical distortion error.
In addition, compared with LiDAR, the ability of visible light cameras to acquire forest interlayer
structures is insufficient [23].

Furthermore, the UAV flies horizontally and the camera lens tilts downward at about 45 degrees.
The pilot manually operated the UAV, creating circular flight paths over the target area. The average
flight altitude for this study was set at 100 m with a horizontal velocity of about 3 m/s (as shown in
Figure 3). This resulted in photographs with a ground sample distance (GSD) of 7.2 cm on average.
The flight line was planned for the images to have an 85% overlap in flight direction and 60% side
overlap. The Pix4D software was then used to create a dense point cloud with a mean point density of
42.6 points/m for the 100 m high flights [38]. There were 55,520 (median) keypoints per image in total;
67 out of 67 images were calibrated (100%) and all images enabled a dataset quality check. The relative
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difference between the initial and final focal length was 3.19% for camera optimization, and the median
of the number of matches per calibrated image was 19,330.2. The root mean square error (RMSE) of
the absolute geolocation variance in each direction was (X 1.40%, Y 2.34%, Z 0.53%). Point cloud data
were divided into six categories: unclassified, ground, road surface, high vegetation, building and
other human-made objects. The ground and high vegetation data were required for this study out of
the six categories of point cloud data. In addition to the point cloud data, a digital orthophoto model
(DOM) and digital surface model (DSM) were also output. Then, a canopy height model was derived
by subtracting the DOM from the DSM using the Green Valley International LiDAR360 software [40].
Finally, the parameters of the canopy, including the tree height and tree radius, were built from the
point cloud and the canopy height model [41].

(a) The flight line

(b) UAV image results (c) Crown radius results

Figure 3. The flight line and UAV image acquisition results.
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Table 2. Comparison of common measurement schemes for consumer and professional UAVs.

Platform & Scheme DJI Phantom DJI M600 Equipped with DJI M600 Equipped
3 Professional Five-Lens Tilt Camera with Lidar

Full weight of equipments ∼4 kg ∼30 kg ∼30 kg
Packaging & dimensions 390 × 360 × 210 mm 525 × 480 × 640 mm 525 × 480 × 640 mmof transport
Procurement cost ∼CNY10,000 ∼CNY110,000 ∼CNY210,000
Operator 1∼2 person 2∼3 person 2∼3 person

Main advantage
Low cost, easy to Higher measurement Highest measurement
carry and moderate and can obtain more abundant accuracy and strong
operation difficulty spectral characteristics of images penetration ability

2.4. Land Surface Model Setup

In this work, we chose the Noah-MP land surface model to estimate the effects of the updated
parameters. This model—as a state-of-the-art model—consists of 12 biophysical and hydrological
processes that control heat fluxes between the surface and the atmosphere. Additionally, these processes
also include dynamic vegetation, stomatal conductance, surface exchange coefficients for heat and
water vapor, radiation interactions with the vegetation canopy and the soil, hydrological processes
within the canopy and the soil, a multi-layer snowpack and a frozen ground and aquifer model for
groundwater dynamics [13].

On the other hand, due to the lack of observed surface heat flux data during the UAV flight,
we evaluated the simulation impact of UAV-based parameters by using the validated benchmark
observation dataset, which has been analyzed in our previous study; i.e., Zhang et al. [42]. Table 3
shows the setup of option combinations, which were verified and chosen by an ensemble simulation
test [32]. The average monthly diurnal latent heat flux (LH) and sensible heat flux (SH) obtained from
observations and simulated from the option combinations in the previous study are shown in Figure 4.
It is worth noting that this setup of Noah-MP was able to closely simulate SH in spring, autumn and
winter months, while overestimating SH during June to September and underestimating LH in the
midday during these months.

Table 3. The setup option of the Noah-MP land surface model.

Physical Processes Options Reference

Options for dynamic vegetation Dynamic vegetation model Dickinson et al. [43]
Options for canopy stomatal resistance Ball-Berry scheme Ball et al. [44]
Options for soil moisture factor Noah type (based on soil moisture) Chen et al. [45]for stomatal resistance
Options for runoff and groundwater Simple groundwater model (SIMGM) Niu et al. [46]
Options for surface layer drag coefficient Original Noah (Chen97) Chen et al. [47]

Options for radiation transfer Modified two-stream, Niu and Yang [48]gap = f (3Dstructure, solarangle)
Options for frozen soil permeability Linear effects, more permeable (NY06) Niu and Yang [49]
Options for supercooled liquid water No iteration (NY06) Niu and Yang [49]
Options for ground snow surface albedo Canadian land surface scheme (CLASS) Verseghy [50]
Options for partitioning precipitation Jordan scheme Jordan [51]into rainfall & snowfall
Options for lower boundary condition TBOT at ZBOT (8m) read from Barlage et al. [52]of soil temperature a file (original Noah)
Options for snow and soil temperature Semi-implicit Niu et al. [13]time scheme
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Figure 4. The monthly average diurnal latent heat flux (LH) and sensible heat flux (SH) results from
observations and simulated with the original parameters.
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3. Results

3.1. Comparison of UAV-Based and Model-Original Canopy Parameters

The description of the forest canopy characteristics in the land surface model was still set by
a landcover map with an attribute look-up table, although the observation techniques significantly
improved the ability to determine canopy-structure variables over large areas. As shown in Figure 5,
the forests were divided into five classifications in the Noah-MP model, which included deciduous
broadleaf forest, deciduous needleleaf forest, evergreen broadleaf forest, evergreen needleleaf forest
and mixed forest.

The main differences among these forest types were the tree canopy top height, canopy bottom
height and the crown radius. The quantities of tree heights and crown radiuses observed by the UAV
method are also shown in Figure 5. This shows that the distribution of the Dinghushan forest appeared
to present two stages, which could indicate the characteristics of a successional subtropical forest.
It should be noted that the measurement accuracy in this study is not as good as that using professional
visible light measurement equipment, and the acquisition ability of the forest interlayer structure is not
as good as that of LiDAR. Compared with LiDAR techniques, the ability of visible light photographs
to acquire the forest interlayer structure was still insufficient [23]. However, compared with the
current parameter look-up table in the Noah-MP land surface model, the result of photogrammetry
significantly increased the accuracy.

Figure 5. The distribution of UAV-based canopy parameters and the model-original look-up table values.
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Additionally, the histograms of these two parameters (tree heights and crown radius) are
shown in Figure 6, and the corresponding distributions were fitted as Weibull or Burr distributions,
while the functions and coefficients are listed in Table 4. It can be seen from Figure 6 that the medians
(standard deviations) of the tree height and crown radius were 12.2± 5.4 m and 1.9± 1.5 m, respectively.
These features were replaced into the attribute look-up table and then used for the Noah-MP model,
which is further discussed in Sections 3.2 and 4.1.

(a) Tree height fitting

(b) Crown radius fitting

Figure 6. Histogram and distribution fits of UAV-based canopy parameters.
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Table 4. Fitted coefficients for the distribution of UAV-based canopy parameters.

Canopy Parameter Dist Type Functions Coefficients

Tree height Weibull f (x|a, b) = b
a (

x
a )

b−1e−(x/a)b
a = 14.26, b = 2.44

Crown radius Burr f (x|α, c, k) = 1− 1
(1+( x

α )
c)k α = 1.46, c = 4.73, k = 0.44

3.2. Performance of the Surface Energy Budget Simulation

The effect of replacing the model’s original canopy parameters with the results obtained from
the UAV on the surface energy components is shown in Figure 7. It can be seen that, after replacing
parameters, most of the SH and ground heat flux (G) values were not significantly changed, and only
a few points exceeded the 10% standard derivation threshold line (black dash line in Figure 7a),
which corresponded to a significant change. After using more accurate canopy parameters, the SH
changed at a range from −5.5 to 1.7 W/m2 with a slightly decreased mean (−0.2 W/m2), and the G
was basically stable at the mean value of 2.7 × 10−5 W/m2.

The LH changed in a range from −0.4 to 6.1 W/m2 with a slightly increased mean
(0.7 W/m2). Additionally, as shown in Figure 7b, the three components of LH were increased,
and the order from high to low was as follows: ground evaporative heat to atmosphere
(−3.8 ∼0.47 ∼10.0 W/m2), transpiration flux (−1.2 ∼0.09 ∼0.16 W/m2) and vegetation canopy
evaporative heat to atmosphere (−0.3 ∼0.07 ∼1.9 W/m2).

Furthermore, in order to see the more detailed impact, the energy fluxes simulated by the
UAV-based canopy parameters and the model’s original values were compared in terms of the hourly
averages through the diurnal cycle. Figure 8 shows the diurnal variation of SH, LH and G. It can be
seen that all three energy components presented significant diurnal variations, and the corresponding
curves appeared with a single peak at noon and a value close to zero or negative at night.

On the other hand, Figure 8 also shows the diurnal changes of surface heat fluxes caused by
different driving factors. This indicates that the replacement of canopy parameters using UAV-based
results mainly has an effect on LH during the day and night, while it influences the SH and G in the
opposite direction at night. After replacing canopy parameters with UAV-based results, the simulated
LH flux was decreased by up to −11% in the midday while increasing up to 15% in the nighttime.
This was probably due to the improvement of canopy characteristics, which directly affected the
calculation of canopy stomata [19].

Moreover, while the G increased by about 5∼30% at the same time and showed an increasing
trend in the daytime, the SH decreased by about 10∼60% at nighttime. At the time of the day and
night boundary, the SH and the G showed the largest change, which might be due to the breakage
of the boundary layer [53]. A high sensitivity of the canopy height to evapotranspiration was also
reported in a previous study [54]. Although the changes of surface heat budgets in their study and
ours have shown a similarly small range, the description of the canopy characteristics of the land
surface model still needs to be improved due to the expression of heterogeneity for the underlying
surface being overlooked.
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(a) Simulated surface heat fluxes

(b) Simulated latent heat flux subitems

Figure 7. Comparison of surface heat flux items caused by different driving factors.
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(a) Sensible heat flux (b) Ground heat flux

(c) Latent heat flux

Figure 8. Diurnal changes of surface heat fluxes caused by different driving factors.

4. Discussion

4.1. Issues Related to Canopy Exchange Coefficients

To understand the influence of canopy parameters on the above-mentioned surface energy
changes, we extracted the simulated results of the canopy exchange coefficient. As shown in Figure 9a,
for the canopy heat exchange coefficient, the parameters driven by UAV measurement increased by
about 0.5∼2% compared with that of the default model. This would be the main reason for the change
of the surface sensible heat simulation.

At the same time, Figure 9b shows the simulation results of the canopy momentum exchange
coefficient. It can be seen that, after changing the parameters of canopy height and crown radius,
the exchange coefficient of momentum increased by nearly 5% during the daytime. As the momentum
exchange coefficient of the canopy was calculated by the aerodynamic resistance for momentum over
the canopy, it might have an impact on the variation of wind speed in the canopy. However, because the
model cannot deliver the wind profiles inside and outside the canopy, a mesoscale meteorological
model should be carried out in the next phase to investigate its effect on turbulence dissipation.
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(a) Coefficient of heat

(b) Coefficient of momentum

Figure 9. Distribution of simulated canopy exchange coefficients.

4.2. Issues Related to Vegetation Variables

The Noah-MP land surface model includes a routine calculation for the dynamic simulation of
vegetation carbon assimilation processes, while the 3D vegetation model in the radiation transfer
scheme uses canopy height to compute the total available energy at the vegetation surface [55].
Figure 10 shows the simulated vegetation variables of the Noah-MP land surface model; this indicates
that the input of the UAV’s observed canopy height and radius increased the average leaf area index
about 1.58 × 10−2, the stem area index about 1.1 × 10−3 and the green vegetation fraction about
1.8× 10−3 during the simulated period. The variation mainly appeared on the right sides of each
frequency peak of the above variables, which means that more accurate canopy parameters input can
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restrict and improve the estimation of vegetation carbon assimilation processes inside the land surface
model. These results could influence the temperature and the vegetation growth characteristics [7].

(a) Leaf area index

(b) Stem area index

(c) Green vegetation fraction

Figure 10. Distribution of simulated vegetation features.
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5. Conclusions

In this study, a method to obtain local canopy parameters by unmanned aerial vehicle
photogrammetry was applied, and then a simulation with the Noah-MP model was performed
over a typical subtropical forest area in South China. The results demonstrated that this method could
represent the description of forest canopy characteristics in a more detailed manner. The canopy
height in the CN-Din area was fitted as a Weibull distribution, while the canopy radius followed a
Burr distribution; the medians (standard deviations) of the UAV-based tree height and crown radius
were 12.2 ± 5.4 and 1.9 ± 1.5 m, respectively. It is worthwhile to note that this result was still
insufficient in comparison with UAV-borne LiDAR systems. Overall, it was found that this method
had strong deliverability, reasonable cost and acceptable precision and could obtain the forest land
surface parameters of several square kilometers and improve the land surface model.

The updating of these local canopy parameters would significantly affect the simulation of energy
fluxes, especially for the latent heat flux, which could decrease up to −11% in the midday while
increasing up to 15% in the nighttime. Additionally, the sensible heat flux decreased by about 10∼60%
at nighttime, while the ground heat flux increased by about 5∼30% at the same time, showing an
increasing trend during the daytime. Furthermore, the updating of local canopy parameters could also
change the canopy heat exchange coefficient through the slight increase of vegetation variables.

Although the changes of surface heat budgets showed a small range, the description of the
canopy characteristics of the land surface model still needs to be improved. Moreover, the updating of
canopy parameters could increase the exchange coefficient of momentum by nearly 5% during the
daytime. Finally, the calculation of the total available energy at the vegetation surface showed that the
input of the UAV observed canopy height and radius could increase the average leaf area index by
about 1.58× 10−2, the stem area index by about 1.1× 10−3 and the green vegetation fraction by about
1.8× 10−3 during the simulated period.

To further enhance the capability of simulating the surface heat budgets of land surface models
and to improve the land surface parameterization scheme of climate and meteorological models, a work
combining both UAV LiDAR and photogrammetry should be considered, as LiDAR can provide a
more accurate 3D canopy structure, which influences the surface wind profile and the momentum.
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