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Abstract: The spatial fragmentation of high-resolution remote sensing images makes the segmentation
algorithm put forward a strong demand for noise immunity. However, the stronger the noise immunity,
the more serious the loss of detailed information, which easily leads to the neglect of effective
characteristics. In view of the difficulty of balancing the noise immunity and effective characteristic
retention, an adaptive distance-weighted Voronoi tessellation technology is proposed for remote
sensing image segmentation. The distance between pixels and seed points in Voronoi tessellation is
established by the adaptive weighting of spatial distance and spectral distance. The weight coefficient
used to control the influence intensity of spatial distance is defined by a monotone decreasing function.
Following the fuzzy clustering framework, a fuzzy segmentation model with Kullback–Leibler
(KL) entropy regularization is established by using multivariate Gaussian distribution to describe
the spectral characteristics and Markov Random Field (MRF) to consider the neighborhood effect of
sub-regions. Finally, a series of parameter optimization schemes are designed according to parameter
characteristics to obtain the optimal segmentation results. The proposed algorithm is validated
on many multispectral remote sensing images with five comparing algorithms by qualitative and
quantitative analysis. A large number of experiments show that the proposed algorithm can overcome
the complex noise as well as better ensure effective characteristics.

Keywords: adaptive distance-weighted; Voronoi tessellation; Markov Random Field (MRF);
Kullback–Leibler (KL) entropy; fuzzy clustering; remote sensing image segmentation

1. Introduction

Image segmentation plays a crucial role in remote sensing image interpretation, segmentation
accuracy can directly affect the quality of interpretation [1]. The goal of image segmentation is to partition
the image into a group of homogeneous regions, and the features in the homogeneous region are highly
similar [2]. With the development of the spatial resolution of remote sensors, the high-spatial-resolution
remote sensing images provide rich surface features. However, the fine spatial structure also increases
the heterogeneity of homogeneous regions and complicates the spatial correlation. These characteristics
bring big challenges to high-accuracy remote sensing image segmentation in balancing the noise
immunity and effective characteristic retention [3,4].

At present, the commonly used segmentation methods include watershed [5,6], level set [7,8],
clustering [9,10], and so on. In watershed methods, the image is regarded as landforms and the gray as
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altitude. The segmentation results are obtained by the boundary of the basin according to the lowest
altitude. It can detect the weak boundary, but it is also easy to cause over-segmentation. The basic
idea of the level set is to express the plane closed curve implicitly as the level set of two-dimensional
surface function and achieve segmentation by the evolution of the level set function. However, it is
sensitive to gradient information. Clustering methods gather pixels with similar features to complete
segmentation. It is simple and easy to implement, and widely studied in remote sensing image
segmentation. According to the basic processing unit, the clustering algorithm can be divided into
two types, pixel-based [11,12] and region-based [13,14]. The pixel-based algorithms, even the popular
fuzzy C-means (FCM) algorithm which integrates the fuzzy set theory, are susceptible to outliers [15].
To improve the robustness, a series of segmentation algorithms with spatial constraints is proposed.
Modified FCM (FCM_S) [16] added a regularization term defined by the dissimilarity between
neighborhood pixels and clusters. However, noise immunity is only slightly improved. Enhanced FCM
(EnFCM) [17] and Fast Generalized FCM (FGFCM)[18] built a weighted image based on the spectra of
neighboring pixels and executed segmentation based on the grayscale. The segmentation accuracy
increased, but the segmentation boundaries usually have a certain error with the real [19]. Fuzzy Local
Information C-Means (FLICM) [20] and Reformulated FLICM (RFLICM) [21] defined the local fuzzy
factor described by the spatial distance and the local variation coefficient of central pixel respectively.
Although the noise immunity is improved obviously, there are still a lot of mis-segmented pixels [22].
In the statistical framework, on the basis of using probability distribution to describe the random
characteristics of the spectra to reduce sensitivity, Markov Random Fields (MRF) is also utilized to
establish the prior probability based on the neighborhood system to further enhance the robustness [23].
Chatzis and Varvarigou [24] integrated the statistical model into the fuzzy structure and proposed
Hidden Markov Random Field FCM (HMRF_FCM). The Gaussian distribution is used instead of
Euclidean distance to model dissimilarity between pixels and clusters. The KL entropy regularization
term is established by the prior probability based on MRF. Although HMRF-FCM has achieved great
success, the robustness is still not insufficient because of the pixel-based processing [25]. Nowadays,
region-based methods have become an inevitable trend of image segmentation due to the good
performance in smoothing noise and the advantage of describing local characteristics [26,27].

There are two key issues on region-based segmentation methods [28], (1) how to generate
the sub-regions, (2) how to realize segmentation based on sub-regions. For the first issue, the most
commonly used algorithm is the Simple Linear Iterative Clustering (SLIC) [29,30] in superpixel
algorithms [31,32]. The sub-regions are generated by assigning pixels to the nearest seed points,
where the dissimilarity measure between pixels and seed points is modeled by combing spatial
and spectral distance with scale parameters. For the second issue, the general way is to cluster
sub-regions with similar characteristics [33]. For example, Yang et al. [34] proposed a local spectral
angle as the similarity measure to merge the adjacent sub-regions. Zhou et al. [35] extracted
spectral, shape, and texture features to represent the characteristics of sub-regions for describing
the similarity. Lei et al. [36] proposed a superpixel-based fast fuzzy c-means clustering algorithm
(SF_FCM). The sub-regions generated by multi-scale morphological gradient reconstruction watershed
transform are clustered according to the histogram. However, traditional region-based methods must
execute clustering operations based on optimal sub-regions results. The state of sub-regions cannot be
adjusted adaptively according to the current segmentation result, which leads to a great dependence of
segmentation results on sub-region results. The Voronoi-based segmentation algorithm proposed by
Li.et al. [37] fortunately can solve this problem. Taking the spatial distance as the dissimilarity between
pixels and seed point, the image is divided into a group of sub-regions by Voronoi tessellation technology.
Based on the Voronoi sub-region, the segmentation models established under the fuzzy clustering
framework are studied for remote sensing images [25]. The moving-updating operation of seed points
during segmentation provides an effective tool for the adaptive adjustment of the sub-regions state.
However, stronger noise immunity is easy to ignore useful detailed information.
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To further improve the performance of the region-based segmentation algorithms in preserving
effective details, a novel Voronoi tessellation technology with adaptive weighted distance is proposed
for remote sensing image segmentation. To divide the image domain into many sub-regions with
high spectral homogeneity and spatial connectivity, the distance between pixels and seed points in
Voronoi tessellation extends from only spatial information to both spatial and spectral. An adaptive
weight coefficient, modeled by a monotone decreasing function, is designed to control the spatial
connectivity. After dividing, the dissimilarity between Voronoi sub-regions and clusters is modeled by
the negative logarithm of the Gaussian probability distribution function (pdf) to further accurately
describe the cluster characteristics. To consider the effect of spatial neighborhood system, the prior
probability in Kullback–Leibler (KL) entropy regularization is defined based on MRF theory. Then,
the optimal segmentation result is obtained by solving the segmentation model parameters according
to parameter characteristics. The main contributions of this paper are summarized as follows,

(1) We design a monotone decreasing function as the adaptive weight coefficient to control
the influence intensity of spatial information. The farther the spatial distance is, the more
important the spectral information is. Therefore, both the spectral homogeneity and spatial
connectivity of sub-regions can be ensured greatly.

(2) Integrating the adaptive distance-weighted Voronoi tessellation into the fuzzy clustering
framework can describe the segmentation uncertainty more effectively and better balance
the noise immunity and effective characteristic retention.

This paper is organized as follows. In Section 2 the adaptive distance-weighted Voronoi tessellation
is introduced first, and then the establishing and solving of the regionalized segmentation model are
discussed in detail. In Section 3, the experiments are designed to demonstrate the effectiveness of
the proposed algorithm qualitatively and quantitatively. In Section 4, a deep analysis of the performance
of the proposed algorithm is further discussed. Finally, the conclusion is exposed in Section 5.

2. Methods

An image I = {Ii(ai, bi): i = 1, . . . , n, (ai, bi) ∈ Ω} is formed by giving the spectral information on
a finite set of 2-D rectangular discrete pixel lattice Ω = {(ai, bi): i = 1, . . . , n}; where i and n are the index
and the total number of pixels, Ii= (Iie: e = 1, . . . , h) is the spectral characteristic vector of pixel i, e, and
h are the index and the total number of spectral channel, (ai, bi) is lattice position of pixel i, respectively.
For dividing the image domain into a series of sub-regions, the seed points set G = {gj(uj, vj): j = 1, . . . ,
m, (uj, vj) ∈ Ω} need to be produced first, where j and m are the index and the total number of seed
points, gj= (gje: e = 1, . . . , h) and (uj, vj) are spectral characteristic vector and lattice position of seed
point j, respectively. The sub-regions corresponding to seed points can be expressed as V = {V j: j = 1,
. . . , m}.

2.1. Adaptive Distance-Weighted Voronoi Tessellation

Voronoi tessellation is a spatial tessellation technology that divides the space into several sub-spaces
according to the distance between points and seed points. the pixel has not only spatial position
information but also spectral characteristic information, thus the distance can be described from two
aspects by Equations (1) and (2),

ds
i j = d

[
(ai, bi),

(
u j, v j

)]
=

∣∣∣∣∣∣∣∣(ai, bi) −
(
u j, v j

)∣∣∣∣∣∣∣∣
2
=

√
(ai − u j)

2 + (bi − v j)
2, (1)

dc
i j = d

[
Ii, g j

]
=

∣∣∣∣∣∣∣∣Ii − g j

∣∣∣∣∣∣∣∣
2

√∑h

e=1
(Iie − g je)

2, (2)

where d[·] represents distance function, and it is usually defined by Euclidean distance, dij
s and dij

c are
the spatial distance and spectral distance between pixel i and seed point j, respectively.
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In the traditional Voronoi-based segmentation algorithms, the distance is only modeled based on
the spatial distance. Then, the sub-region V j is obtained by

V j =
{
(ai, bi) : ds

i j ≤ ds
i j′ , j, j′ ∈ {1, . . . , m}, j , j′

}
. (3)

Although Equation (3) provides a good way for overcoming the complex noise, the spectral
information must be considered by model constraints in the segmentation process. This method is
deficient in the accurate description of image characteristics.

To consider the comprehensive effect of spatial position and spectral characteristic information in
Voronoi tessellation, the mixed distance dij of spatial distance dij

s and spectral distance dij
c is established.

Then, the sub-region V j is re-obtained by Equations (4) and (5),

V j =
{
(ai, bi) : di j ≤ di j′ , j, j′ ∈ {1, . . . , m}, j , j′

}
(4)

di j =

√
ws

i j ·

(
ds

i j

)2
+ wc

i j ·

(
dc

i j

)2
, (5)

where wij
s and wij

c are the weighted coefficients of spatial distance and spectral distance respectively,
they are satisfied wij

s + wij
c = 1. In order to make full use of the spatial distance to overcome the noise,

and to finely describe the image characteristics with the help of spectral information, the adaptive
weight coefficient determined by a monotone decreasing function with the increasing spatial distance
is constructed by Equation (6),

ws
i j =

1

1 + exp
(
−(Ms − ds

i j)
α
) , (6)

where Ms is the maximum value of dij
s (i∈{1, . . . , n}, j∈{1, . . . , m}), α is the adaptive factor, α∈[0,1].

The curve of wij
s with different α is shown in Figure 1. It shows that the weight is independent of

the spatial distance when α = 0, and the bigger α is, the closer the weight is to 1.

Figure 1. Weight curve with different α.

In particular, dij
s and dij

c are in different orders of magnitude, which easily leads to invalid distance.
Therefore, a normalization operation is performed according to Equations (7)–(10).

d
s
i j = min

i = 1, . . . , n
j = 1, . . . , m

(
ds

i j, dc
i j

)
+ ξs(ds

i j − min
i = 1, . . . , n
j = 1, . . . , m

(
ds

i j

)
), (7)

d
c
i j = min

i = 1, . . . , n
j = 1, . . . , m

(
ds

i j, dc
i j

)
+ ξc(dc

i j − min
i = 1, . . . , n
j = 1, . . . , m

(
dc

i j

)
), (8)
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where d
s
i j and d

c
i j are the normalized spatial and spectral distance, ξs and ξc are the corresponding

normalization coefficient respectively,

ξs =

max
i = 1, . . . , n
j = 1, . . . , m

(
ds

i j, dc
i j

)
− min

i = 1, . . . , n
j = 1, . . . , m

(
ds

i j, dc
i j

)

max
i = 1, . . . , n
j = 1, . . . , m

(
ds

i j

)
− min

i = 1, . . . , n
j = 1, . . . , m

(
ds

i j

) , (9)

ξc =

max
i = 1, . . . , n
j = 1, . . . , m

(
ds

i j, dc
i j

)
− min

i = 1, . . . , n
j = 1, . . . , m

(
ds

i j, dc
i j

)

max
i = 1, . . . , n
j = 1, . . . , m

(
dc

i j

)
− min

i = 1, . . . , n
j = 1, . . . , m

(
dc

i j

) , (10)

According to Equations (5)–(10), dij can be rewritten as,

di j =

 1

1 + exp(−(Ms − d
s
i j)
α)
·

(
d

s
i j

)2
+

1−
1

1 + exp(−(Ms − d
s
i j)
α)

 · (ds
i j

)2


1
2

, (11)

where Ms is the maximum value of d
s
i j (i ∈ {1, . . . , n}, j ∈ {1, . . . , m}).

The visualization of the spatial distance effect is shown in Figure 2. Figure 2a represents
the traditional Voronoi tessellation, Figure 2b represents the adaptive distance-weighted Voronoi
Tessellation, where the depth of color represents the intensity of spatial distance effect to
the corresponding seed point. It can be seen that pixels in the boundary between two homogeneous
regions have smaller spatial distance effects, which can consider more spectral information and help to
further accurately describe the image characteristics.

Figure 2. Visualization of spatial distance effect. (a) Traditional Voronoi tessellation; (b) Adaptive
distance-weighted Voronoi Tessellation.

2.2. Segmentation Model

Assume that there are k homogeneous regions in the image, the fuzzy relationship between
sub-regions and clusters can be expressed as R = [rjl]m×k, where rjl is fuzzy membership of sub-region
V j belonging to cluster l, and satisfied

∑k
l=1 r jl = 1, r jl ∈ [0, 1]. Then, the regionalized fuzzy cluster

objective function can be defined as,
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J(R, G,θ) =
∑m

j=1

∑k

l=1
r jls jl + λ

∑m

j=1

∑k

l=1
N jr jl log

r jl

ρ jl
, (12)

where sjl is the dissimilarity measure between sub-region V j and cluster l, λ is the regularization term

coefficient used to control the fuzzy degree, N j = #
{
(ai, bi) : (ai, bi) ∈ V j

}
is the number of pixels in

sub-regions V j, “#” is the counting symbol, ρjl is the scale factor that protects small-scale cluster from
being easily affected by large-scale.

Assuming that the spectra of pixels in sub-region V j follow independently identically Gaussian
distribution, the joint probability of pixels in V j conditional on Lj = l can be defined as,

p
(
I( j)

∣∣∣∣L j = l,µl,
∑

l

)
=

∏
(ai,bi)∈V j

p
(
Ii

∣∣∣∣(ai, bi) ∈ V j, L j = l,µl,
∑

l

)
=

∏
(ai,bi)∈V j

1

(2π)
h
2
∣∣∣∑l

∣∣∣ 1
2

exp
(
−

1
2
(Ii − µl)

∑
−1

l
(Ii − µl)

T
)
,

(13)

where I(j) = {Ii: (ai, bi) ∈ V j} represents the spectra of sub-region V j, θ = {µ, Σ} is distribution parameter
set, µ = {µl: l = 1, . . . , k} and Σ = {Σl: l = 1, . . . , k} are mean and covariance of Gaussian distribution
that cluster l follows, L = {Lj: j = 1, . . . , m }, Lj ∈ {1, . . . , k} is the cluster label to which sub-region
V j belongs. The lager the dissimilarity measure is, the higher the consistency of features is. Thus,
combining Equation (13), sjl can be defined as negative log-likelihood of the probability,

s jl = − log p(I( j)

∣∣∣L j = l,µl, Σl)

=
∑

(ai,bi)∈V j
− log

1

(2π)
h
2 |Σl|

1
2

exp
(
−

1
2
(Ii − µl)Σ

−1
l (Ii − µl)

T
)
, (14)

In order to consider the spatial constraints, the positions and cluster labels of pixels can be regarded
as a random field that is called the label field. Then, based on MRF, the scale factor can be defined by
the prior probability of sub-region V j belonging to cluster l according to Hammersley-Clifford theorem
by Equation (15),

ρ jl = p(L j|L j′ , j′ ∈ δ j) =
1
Z

exp
(
−

∑
c∈C

Uc
(
L j, L j′

))
, (15)

where δ j =
{

j′ : V j′ ∼ V j
}

is the neighborhood system of sub-region V j, as shown in Figure 3,
the pink represents the center sub-region V j, the green represents the neighbor sub-regions
V j′ , “~” represents neighborhood relationship; j′ is the index of neighborhood sub-regions;

Z =
∑k

L j=1 exp
(
−

∑
c∈C Uc

(
L j, L j′

))
is the normalization term; c is the index of cliques; C is the clique

set; Uc is the potential energy of clique c. In the region-level, C is the binary clique composed of all
adjacent sub-regions. Thus, Uc can be defined based on the Potts model,

Uc(L j, L j′) =

{
0 L j = L j′

β L j , L j′
, (16)

where β is neighborhood sub-regions interaction intensity, β∈[0, 1].

2.3. Parameter Estimation

According to the characteristics of parameters, some applicable solution schemes are designed to
obtain the optimal parameter.
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Figure 3. Neighbor system visual model.

(1) For R, it needs to achieve the minimization objective function under the constrain
k∑

l=1
r jl = 1, r jl ∈ [0, 1], thus, it is necessary to establish Lagrange function L(R, G, θ) by Equation (17),

L(R, G,θ) =
∑m

j=1

∑k

l=1
r jls jl + λ

∑m

j=1

∑k

l=1
N jr jl log

r jl

ρ jl
+

∑m

j=1
υ j

(∑k

l=1
r jl − 1

)
, (17)

where υ = {υj: j = 1, . . . , m} is Lagrange coefficient. Let ∂L(R,G,θ)
∂r jl

= s jl + λN j

(
log

r jl
ρ jl

+ 1
)
+ υ j = 0, then,

rjl can be obtained by eliminating υj,

r jl =
ρ jl exp

(
−

1
λN j

s jl

)
∑k

l′=1 ρ jl′ exp
(
−

1
λN j

s jl′

) , (18)

(2) For θ, the analytical formulas can be obtained directly from derivatives. Let ∂L(R,G,θ)
∂µl

= 0,
∂L(R,G,θ)

∂Σl
= 0, then, µl and Σl can be obtained by Equations (19) and (20),

µl =

∑m
j=1 r jl

∑
(ai,bi)∈V j

Ii∑m
j=1 N jr jl

, (19)

∑
l
=

∑m
j=1 r jl

∑
(ai,bi)∈V(Ii − µl)

T(Ii − µl)∑m
j=1 N jr jl

, (20)

(3) For G. It is implicitly expressed in the objective function and cannot be solved by derivative.
To determine the optimal position of seed points, a special descent method based on the image
domain is designed. Suppose that the seed point of sub-region V j slightly changes its location from
the original position (uj, vj) to candidate position (uj, vj) + o(uj, vj), i.e., (uj, vj)*, and all other seed
points remain at the same position, where o(uj, vj) represented the descent direction is a minimal
moving distance. Let V = {V1, V2, . . . , V j, . . . , Vm} be the sub-regions set generated by the original
seed points set G = {g1(u1, v1), g2(u2, v2), . . . , gj(uj, vj), . . . , gm(um, vm)} and V* = {V1, V2, . . . , V j*,
. . . , Vm} be the candidate sub-regions set generated by the candidate seed points set G* = {g1(u1, v1),
g2(u2, v2), . . . , gj*(uj, vj)*, . . . , gm(um, vm)}. Owing to the slight moving operation, the sub-regions
change slightly. This change occurs only in V j and its adjacent sub-regions, as shown in Figure 4,
where the green represents adjacent sub-regions, the black heavy line area represents V j, the red heavy
line area represents V j*, the blue represents the newly added area, the yellow represents the discarded
area, the purple represents overlapping areas. From this property, the judgment function can be
calculated by Equation (21),
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∆J = J(R, G∗,θ) − J(R, G,θ)

=
∑

j∪δ j

k∑
l=1

r jls∗jl + λ
∑

j∪δ j

k∑
l=1

N∗jr jl log
r jl
ρ jl
−

 ∑
j∪δ j

k∑
l=1

r jls jl + λ
∑

j∪δ j

k∑
l=1

N jr jl log
r jl
ρ jl


=

∑
j∪δ j

∑k
l=1 r jl

(∑
(ai,bi)∈V∗j\(V

(t)
j ∩V∗j)

s(il) −
∑

(ai,bi)∈V j\(V
(t)
j ∩V∗j)

s(il)

)
+ λ

∑
j∪δ j

∑k
l=1

(
N∗j −N j

)
r jl log

r jl
ρ jl

,

(21)

where s(il) can be regarded as the dissimilarity between pixel i and cluster l.

s(il) = − log p(Ii|(ai, bi) ∈ V j, L j = l,µl, Σl, )

= − log
1

(2π)
h
2 |Σl|

1
2

exp
(
−

1
2
(Ii− µl)Σ

−1
l (Ii− µl)

T
)
, (22)

Figure 4. Solution model of G.

If ∆J < 0, accept the candidate seed point (uj, vj)*, otherwise, stay at the same.

2.4. Summary of the Proposed Algorithm

The process of the proposed algorithm can be summarized as follows, and the algorithm flow
chart is shown in Figure 5.

Figure 5. Flow chart of the proposed algorithm.
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S1 Initializing the generating point set G(0) = {gj
(0)(uj, vj)(0): j = 1, . . . , m, (uj, vj)(0)

∈ Ω}, the fuzzy
membership R(0) = [rjl

(0)]m×k, and the iteration indicator τ = 0;
S2 Calculating the spatial distance dij

s(τ) and spectral distance dij
c(τ) by Equations (1) and (2);

S3 Calculating the normalized distance d
s
i j
(τ) and d

c
i j
(τ) by Equations (7)–(10);

S4 Calculating the mixed distance dij
(τ) by Equation (11), and then the Voronoi tessellation of

image domain is completed by Equation (4);
S5 Calculating distribution parameter set θ(τ) by Equations (19) and (20), and calculating

the dissimilarity measure sjl
(τ) by Equations (13) and (14);

S6 Calculating the prior probability ρjl
(τ) by Equations (15) and (16);

S7 Calculating fuzzy membership R(τ) by Equation (18);
S8 Calculating the objective function J(τ) (R, G, θ) by Equation (12);
S9 Updating the seed points set G(τ) by Equations (21) and (22);
S10 Repeating S2–S9 until the objective function is minimized, i.e., |J(τ)(R, G, θ) − J(τ−1)(R, G, θ)| < ε,

where ε is a minimal non-negative number.

3. Experimental Results

To verify the effectiveness of the proposed algorithm, the experiments based on the proposed
algorithm and five comparing algorithms including FCM_S [16], HMRF_FCM [24], SLIC_FCM [29],
SF_FCM [36], VT_HMRF_FCM [25] are carried out on simulated image and multispectral remote sensing
images. The characteristics of these comparing algorithms are listed in Table 1. The simulated image can
provide a controllable environment for better evaluation and verification. In addition, the effectiveness
of the proposed algorithm is also discussed by qualitative and quantitative evaluation, respectively.

Table 1. The characteristics of comparing algorithms.

Algorithms Key Technology for Segmentation Typicalness

FCM_S
A regularization term defined by

membership weighted neighborhood
pixel dissimilarity measure

playing a guiding role in considering
neighborhood constraint

HMRF_FCM
Taking Gaussian distribution to describe
the dissimilarity and using MRF to model

the neighborhood effect

An effective and widely studied
pixel-based segmentation method

SLIC_FCM
Using SLIC to obtained the sub-regions,
and then the segmentation is realized

based on FCM

The classical method of generating
sub-regions in image processing

SF_FCM
Generating sub-regions by multi-scale
morphological gradient reconstruction

watershed transform

The recent effective method in
region-based segmentation algorithms

VT_HMRF_FCM
The sub-regions are generated based on

Voronoi tessellation according to
the spatial information

A region-based algorithm with good
noise immunity that tessellation and

optimization can be carried out
simultaneously

3.1. Simulated Image

Figure 6a is the simulated image generated by the template with distribution parameters, as shown
in Figure 6b and Table 2, where I-V are five homogeneous regions representing grass, water, forest, road,
and artificial surface, respectively. There are similar means in regions I and III, the similar standard
deviation in regions I and II, the sharp boundary between regions I and II, and slender geometry-shape
in region IV.
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Figure 6. Simulated image and template. (a) Simulated image; (b) Template with five homogeneous regions.

Table 2. Gaussian distribution parameters for generating the simulated image.

Parameters Bands
Homogeneous Regions

I II III IV V

Mean
R 80 80 20 100 200
G 200 100 150 100 200
B 120 200 80 50 250

Standard deviation
R 20 20 10 30 10
G 20 30 20 30 10
B 20 20 30 30 8

Figure 7 is the representative segmentation result of the simulated image, where the three in
the column represent segmentation results, outline images of segmentation regions, and superposition
images of outline and simulated image, as shown in Figure 7a1–a3, the six in the row represent
FCM_S, HMRF_FCM, SLIC_FCM, SF_FCM, VT_HMRF_FCM, and the proposed algorithm, as shown
in Figure 7a1–f1. It can be seen that the speckle noise is unavoidable in the segmentation results based on
pixel-based algorithms, as shown in Figure 7a1–a3,b1–b3. SLIC_FCM can effectively solve the speckle
noise, but it cannot effectively distinguish the boundaries between homogeneous regions with similar
spectra and segment the slender roads, as shown in Figure 7c1–c3. For SF_FCM, the boundary is
eroded, especially in regions II and IV, as shown in Figure 7d1–d3. VT_HMRF_FCM greatly improves
the smoothness and accuracy of the segmentation boundary, but it fails in the slender road, as shown
in Figure 7e1–e3. For the proposed algorithm, it cannot only solve the problem of mis-segmentation of
regions with similar spectra, but also realize the effective segmentation of the slender road, as shown
in Figure 7f1–f3.

To analyze the quality of sub-regions, the fitting deviation of sub-regions to homogeneous
regions are shown in Figure 8. Figure 8a1–d1 are the sub-regions results of SLIC_FCM, SF-FCM,
VT_HMRF_FCM and the proposed algorithm respectively, Figure 8a2–d2 shows the corresponding
fitting deviation image, Figure 8a3–d3 shows the detail views. In Figure 8a1–a3, the sub-regions of
SCLIC_FCM always cross the boundaries of homogeneous regions because the fixed weight used to
integrate spatial and spectral information is easy to make the spectral information not giving full play.
In Figure 8b1–b3, due to the neglect mechanism of gradient details, the boundaries of the sub-regions
deviate from that of the homogeneous regions. In Figure 8c1–c3, although the phenomenon of
sub-regions crossing the boundary of homogeneous regions has been partially improved by optimizing
the location of the seed points, it is still not accurate enough on the slender road. In Figure 8d1–d3,
the sub-regions generated by the adaptive distance-weighted Voronoi tessellation can fit the boundary
of the homogeneous regions smoothly and accurately.



Remote Sens. 2020, 12, 4115 11 of 18

Figure 7. Representative segmentation results of simulated image. (a1–a3) FCM_S; (b1–b3) HMRF_FCM;
(c1–c3) SLIC_FCM; (d1–d3) SF_FCM; (e1–e3) VT_HMRF_FCM; (f1–f3) The proposed algorithm.

Figure 8. Visualization of the quality of sub-regions. (a1–a3) SLIC_FCM; (b1–b3) SF_FCM; (c1–c3)
VT_HMRF_FCM; (d1–d3) The proposed algorithm.

To quantitatively evaluate the effectiveness of the proposed algorithm, the User’s Accuracy (UA),
Producer’s Accuracy (PA), Overall Accuracy(OA), and Kappa coefficient (Kappa) are calculated based
on the confusion matrix built by segmentation results and template, as shown in Table 3. It shows that
FCM_S is at the lowest accuracy, the OA and Kappa are only 74.48% and 0.63, respectively. Those of
HMRF_FCM are 95.85% and 0.93 respectively, which is mainly influenced by the UA of region III.
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The OA of the three region-based algorithms, SLIC_FCM, SF_FCM, and VT_HMRF_FCM, are all above
96%, Kappas are also above 0.93. For the proposed algorithm, the OA and Kappa are 98.90% and 0.98,
which is much higher than the algorithms mentioned above.

Table 3. Quantitative evaluation of simulated image segmentation results.

Algorithms Accuracy (%)
Homogeneous Regions

I II III IV V

FCM_S
UA 99.79 96.73 21.58 83.69 99.91
PA 62.96 99.58 70.64 97.82 99.96

OA(%) = 74.48, Kappa = 0.63

HMRF_FCM
UA 99.35 91.85 79.75 94.35 99.22
PA 95.14 98.83 95.24 95.60 99.56

OA(%) = 95.85, Kappa = 0.93

SLIC_FCM
UA 97.38 99.51 95.57 87.09 99.91
PA 96.07 99.24 95.17 92.86 99.04

OA(%) = 96.02, Kappa = 0.93

SF_FCM
UA 96.27 97.45 99.07 96.22 97.08
PA 98.35 97.05 96.99 88.29 98.26

OA(%) = 96.67, Kappa = 0.94

VT_HMRF_FCM
UA 99.65 96.92 99.58 84.17 99.91
PA 95.09 99.45 99.65 99.48 99.30

OA(%) = 96.80, Kappa = 0.94

The proposed
algorithm

UA 99.45 98.24 99.51 96.18 99.82
PA 98.73 99.52 99.44 99.18 98.26

OA(%) = 98.90, Kappa = 0.98

3.2. Remote Sensing Image Segmentation

To verify the segmentation effect for multispectral remote sensing images, many different types of
images are tested with the proposed algorithm and five comparing algorithms, where the representative
images are selected and shown in Figure 9. Figure 9a1–d1 represents slender geometric features, different
features with similar spectral characteristics, the same features with different spectral characteristics,
features with high spatial fragmentation, respectively. Figure 9a1,c1 is 128 × 128 and 256 × 256 pixels
from WorldView−2 images with 0.5 resolution, Figure 9b1,d1 is 128 × 128 and 256 × 256 pixels from
IKONOS images with 1 resolution. Figure 9a2–d2 shows the template images corresponding to
Figure 9a1–d1, I-V represent different homogeneous regions.

Figure 9. Multispectral remote sensing images. (a1–d1) Images 1–4; (a2–d2) The corresponding templates.
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Figure 10 is the representative segmentation result of multispectral remote sensing images.
From left to right, the six columns represent FCM_S, HMRF_FCM, SLIC_FCM, SF_FCM,
VT_HMRF_FCM, and the proposed algorithm, respectively. FCM_S usually makes a big
mis-segmentation, such as regions II and III in Figure 10a1, and exists many speckle noise, such as region
I in Figure 10a2 and region IV in Figure 10a4. Although HMRF_FCM has greatly improved the confusion
phenomenon because of the advantage of the statistical model, there is still a lot of segmentation noise,
especially for the region with a big variance, as shown in Figure 10b4. For SLIC_FCM, the segmentation
noise is solved, but the results have a high under segmentation rate, such as region III in Figure 10c2
and region II in Figure 10c3. SF_FCM is good at segmenting homogeneous regions and difficult to
overcome heterogeneous elements in regions with a big variance, as shown in the comparison between
Figure 10d1,d4. VT_HMRFC_FCM has a strong ability to overcome heterogeneity, but it is easy to
ignore the positive details, such as the slender road of region II in Figure 10e1 and the gap between
houses of region III in Figure 10e2. For the proposed algorithm, it can overcome the heterogeneity
while maintaining a great deal of positive information. The slender road, gaps, and the regions with
big variance are effectively segmented, as shown in Figure 10f1–f4.

Figure 10. Segmentation results of multispectral remote sensing images. (a1–a4) FCM_S; (b1–b4) HMRF_FCM;
(c1–c4) SLIC_FCM; (d1–d4) SF_FCM; (e1–e4) VT_HMRF_FCM; (f1–f4) The proposed algorithm.

Table 4 is the quantitative evaluation of multispectral remote sensing image segmentation
results. It shows that the highest OA and Kappa of FCM_S are only 83.26% and 0.77, respectively.
The accuracy of HMRF_FCM is higher than SLIC_FCM, but less than SF_FCM, such as Figure 9a1,d1.
For Figure 9a1, SF_FCM and VT_HMRF_FCM have similar accuracy. But for the images with strong
heterogeneity, SF_FCM is much lower than VT_HMRF_FCM, such as Figure 9d1. However, the accuracy



Remote Sens. 2020, 12, 4115 14 of 18

of the proposed algorithm is always the highest one, the OA and Kappa can be as high as 98.23% and
0.97, respectively.

Table 4. Quantitative evaluation of multispectral remote sensing images segmentation results.

Algorithms
Figure 9a1 Figure 9b1 Figure 9c1 Figure 9d1

OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa

FCM_S 72.28 0.59 82.97 0.77 83.26 0.66 48.75 0.35
HMRF-FCM 90.00 0.84 89.44 0.85 92.67 0.85 65.58 0.54
SLIC-FCM 82.18 0.72 85.46 0.80 83.64 0.67 60.02 0.47

SF-FCM 95.92 0.93 87.28 0.82 83.34 0.66 68.56 0.58
VT-HMRF-FCM 95.72 0.93 93.60 0.91 90.11 0.80 93.80 0.91
The proposed

algorithm 98.23 0.97 96.89 0.95 93.42 0.87 97.07 0.95

4. Discussion

To study the proposed algorithm deeply, the parameters influence and comprehensive performance
are further discussed in this section, where the number of sub-regions m can control the fineness
of the segmentation, the regularized term coefficient λ controls the fuzzy degree of clustering,
the neighborhood sub-regions interaction intensity β determines the degree of spatial constrain,
and the adaptive factor α is used to balance the weight of spatial and spectral information. In addition,
OA is used as the evaluation criteria.

4.1. Parameter Influence Analysis

The influence of different model parameters on segmentation results is discussed by the control
variate method, as shown in Figure 11. Figure 11a–d represent m, λ, β, and α respectively. Figure 11a
shows that the OA increases from rapid to slow with the increased m, but the running time increases
steadily. The bigger the m is, the more updating of seed points is needed. According to segmentation
efficiency, it can be seen that the best value range of m is 80–100. It can achieve higher accuracy in
less time. Figure 11b illustrates that λ has little effect on segmentation results in the range of 0.1–0.7.
In Figure 11c, the OA drops sharply from 0.7, and the highest value is at 0.3. In Figure 11d, OA shows
a decreasing trend from 0.2. Generally, the best value of α is about 0.2.

4.2. Comprehensive Performance Analysis

Figure 12 is the box-plot for multispectral remote sensing image segmentation results, which is
used to evaluate the comprehensive performance of algorithms. The dotted line covers the range of OA.
The box shows the range of centralized data. The red line represents the median. Figure 12a–d
corresponds to Figure 9a1–d1, respectively. It shows that HMRF_FCM, SLIC_FCM, SF_FCM,
and VT_HMRF_FCM have different degrees of instability in segmenting different types of images,
FCM_S is stable at a relatively low level, the proposed algorithm is stable at a high level and always
above 90%. Besides, the greater the variance of the image, the more obvious the advantage of
the proposed algorithm, as shown in Figure 12d.
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Figure 11. Influence analysis of different model parameters. (a) m; (b) λ; (c) β; (d) α.

Figure 12. Box-plot of the overall accuracy of multispectral remote sensing images segmentation results
based on the proposed and comparing algorithms. (a–d) represent images 1–4.
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5. Conclusions

In this study, an adaptive distance-weighted Voronoi tessellation is proposed to deal with
the difficulty of balancing the noise immunity and effective characteristic retention in remote sensing
image segmentation. The monotone decreasing function is designed to describe the weight for coupling
spatial distance and spectral distance in Voronoi tessellation, which provides a new technique for
ensuring the spectral homogeneity and spatial connectivity of sub-regions as much as possible. The pdf
of Gaussian distribution used to model dissimilarity can effectively describe the random distribution
characteristics of spectra. The Voronoi sub-regions-based fuzzy clustering objective function established
by KL entropy regularization term based on MRF model not only can accurately model the segmentation
uncertainty, but also effectively model the spatial neighborhood effect at sub-region level. Besides,
the parameter solving methods are designed according to the characteristics, which can greatly
approach the optimal solution.

A large number of experiments show that the proposed algorithm can keep effective detail
information while keeping high noise immunity. The segmentation accuracy is significantly improved,
especially for the images with large spectral variance and great differences of cluster scale. However,
there are still some limitations, one is that the number of Voronoi sub-regions needs to be determined
according to the empirical knowledge, another is that the unimodal distribution cannot effectively
describe the multimodal distribution caused by complexed scene. To solve these limitations,
the initialization method of the number of sub-regions and modeling method based on multimodal
distribution can be further studied.
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