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Abstract: This article studies the design, modeling, and implementation challenges for a target detection
algorithm using multi-sensor technology of a co-operative autonomous offshore system, formed by
an unmanned surface vehicle (USV) and an autonomous underwater vehicle (AUV). First, the study
develops an accurate mathematical model of the USV to be included as a simulation environment for
testing the guidance, navigation, and control (GNC) algorithm. Then, a guidance system is addressed
based on an underwater coverage path for the AUV, which uses a mechanical imaging sonar as the
primary AUV perception sensor and ultra-short baseline (USBL) as a positioning system. Once the target
is detected, the AUV sends its location to the USV, which creates a straight-line for path following with
obstacle avoidance capabilities, using a LiDAR as the main USV perception sensor. This communication
in the co-operative autonomous offshore system includes a decentralized Robot Operating System (ROS)
framework with a master node at each vehicle. Additionally, each vehicle uses a modular approach
for the GNC architecture, including target detection, path-following, and guidance control modules.
Finally, implementation challenges in a field test scenario involving both AUV and USV are addressed
to validate the target detection algorithm.

Keywords: target detection; co-operative; autonomous; multi-robot; USV; AUV

1. Introduction

In recent years, the use of autonomous offshore vehicles, which includes autonomous underwater
vehicles (AUVs) and unmanned surface vehicles (USVs), for marine interventions has attracted increasing
interest from research scientists, maritime industries, and the military. These interventions include several
activities such as offshore surveillance, offshore target detection, seabed explorations, or search and
rescue (SAR) missions. Additionally, the use of multi-robot platforms can improve the performance in
these activities, as they can include above and below-water characterization. Regarding a multi-robot
platform, Vasilijević et al. [1] presented the co-operative robotic system consisting of an AUV and a USV
for ocean sampling and environmental monitoring. In [2], the study used a heterogeneous collaborative
system of above, surface, and underwater robots to obtain a multi-domain awareness on a floating
target. The heterogeneous system consists of a USV, an AUV, and an unmanned aerial vehicle (UAV).
Additionally, Gu et al. [3] presented a homogeneous study, where a guidance and control law design
method for coordinated path following of networked under-actuated robotic USVs under directed
communication links. In [4], the control scenario simulated a homogeneous AUV fleet to study formation
tracking control and collision-obstacle avoidance.

To accomplish the target detection in the offshore environment, the availability of accurate USV and
AUV mathematical models is crucial for simulation study purposes, controller design, and development.
The theoretical six-degrees-of-freedom (DOFs) dynamic model [5], based on nonlinear equations of
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motion, can be used for the design and modeling of the AUV. Equally, the USV can use the same
dynamic model of the AUV but with reduced order for the three DOFs horizontal plane control
(surge, sway, and yaw motions). Several tools can help to obtain the coefficients of the dynamic model
equations and the necessary transfer functions of each vehicle. These tools can include the parameter
estimation from MATLAB-Simulink [6], and the system identification (SI) [7,8], introduced to develop
the mathematical model using field test data. In [9], SI of the maneuvering data determined the
hydrodynamic coefficients of a USV. Also, the mathematical model of the USV includes the propulsion
and power system. Commonly, the rudder and propeller, or waterjet propulsion systems provide the
heading and the speed control of most existing USVs. In [10], a twin waterjet propelled USV was
modeled based on SI, but it neglects the calculation for the dynamics of the propulsion system.

Target detection in offshore environments is a fundamental activity that combines different perception
sensors. Numerous studies use passive (stereo cameras) or active (LiDAR or radar) perception methods
to obtain situational awareness of a USV. Nonetheless, most of the obstacle detection methods rely on
depth measurements, in which LiDAR sensors are the most reliable method of obtaining depth data.
Correspondingly, sonar devices are still the most convenient option for collecting data on underwater
environments. Mechanical imaging sonar, multibeam, profiler, or sidescan are some of the main sonar
imaging and ranging devices. For the target detection with sonar devices, how detectable is a target
is mainly dependent on the physical characteristics of the target and acoustic signal. Some studies use
sonar devices for target detection capabilities, as in [11], where a profiler sonar was adopted for obstacle
detection. According to [12], a method for underwater obstacle detection (standard buoy) was developed
using forward-looking sonar and a probabilistic local occupancy grid.

Correct localization and navigation are crucial to ensure the accuracy of the gathered data for all these
applications. Above the water surface, most of the autonomous systems rely on radio or global positioning
and spread-spectrum communications, as a GPS-compass installed in the USV platform. However,
those signals propagate only in short distances in an underwater scenario, where acoustic-based
systems perform better. Regarding underwater navigation, the three fundamental methods are dead-
reckoning (DR) and inertial navigation systems (INS), acoustic navigation, and geophysical navigation
techniques [13]. These navigation methods require specific survey and navigation sensors installed
in the AUV. The Girona 500 [14] is an example of AUV that performs the traditional dead-reckoning
navigation utilizing a doppler velocity log (DVL) and a solid-state attitude and heading reference
system (AHRS). Also, the absolute position can be obtained through a GPS when the vehicle is on
the surface and using an ultra-short baseline (USBL) while underwater. The high-accuracy USBL
system allows the localization of the AUV and the communication between the vehicle and the surface
unit. In [15], the study provided a navigation algorithm for an underwater vehicle with a Kalman
filter to estimate the error state via measurement residuals from aiding sensors. These aiding sensors
incorporate an attitude sensor, a DVL, a long-baseline (LBL) system, and a pressure sensor. In acoustic
navigation techniques, acoustic transponders and modems perform localization by measuring the
time-of-flight of signals from acoustic beacons or modems. USBL navigation allows an AUV to localize
itself relative to a USV, and it provides an efficient and reliable acoustic communication network [16].
In [17], the study presented the design and implementation of an USBL-aided navigation approach for
an AUV in a two-parallel extended Kalman filter (EKF). It also includes the measurements provided
by a DVL, a Visual Odometer, an inertial measurement unit (IMU), a pressure sensor, and a GPS.

Safe and adequate control of the offshore vehicles depends notably on proper guidance, navigation,
and control (GNC) systems. This study adopts a path-following as the guidance system for both
offshore platforms. The path-following approach is closer to practical engineering, and it is easier
to implement than trajectory tracking. A generally used method for path-following in autonomous
vehicles is the named line-of-sight (LOS) guidance. LOS guidance is classified as a three-point guidance
scheme, involving a commonly stationary reference point along with the interceptor and the target [5].
In [18], the study developed a guidance-based algorithm for path-following using the LOS algorithm
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in offshore operations. Additionally, in [10], a path-following with obstacle avoidance based on the
safety boundary box approach was implemented in a USV with a LOS-based guidance system.

Due to the co-operative offshore system in this study, it becomes necessary to fuse information
obtained from the individual vehicles. Robot Operating System (ROS) has been an effective tool when
working with multi-robot systems. This tool is a flexible framework for writing robot software and
provides the tools to acquire sensors’ data, process it, and generate the necessary response for the vehicle
actuators [19]. Multi-robot systems can either be centralized with a ROS master node at the ground
control station (GCS) or decentralized with each autonomous vehicle (AV) running an independent
ROS master. In the case of the decentralized control techniques, they are more flexible, profitable,
and generally reduce the communication network requirements compared with centralized control [20].
However, they are also more challenging due to obstacles, uncertainties, and communication constraints,
such as noises, delays, dropouts, or failures. In this case, the multi-master approach provides a solution
where each vehicle keeps its own ROS master and also exchange the necessary information with other
components of the multi-robot system. In [21], they proposed a package that efficiently developed
multi-master architectures.

In the presented manuscript, the mathematical model of the USV consists of the simplified
three DOFs dynamic model [5], where their parameters are obtained from field test data using the
parameter estimation tool. Additionally, the waterjet model has been included in the mathematical
model of the USV using data from the manufacturer and transfer functions based on SI. The AUV
platform considered in this study does not incorporate a DVL, neglecting the velocity feedback of the
vehicle. However, the installed USBL provides an absolute position and a communication link between
the USV and the AUV. Thus, the AUV platform includes a basic setup for underwater localization,
but it is not able to precisely locate the vehicle underwater. The path-following algorithm uses the
LOS approach for heading control to simplify the guidance control of the AUV, keeping a constant
depth and constant surge speed. The target detection algorithm uses a modular ROS architecture to
provide a computationally cheap and simple implementation in both offshore platforms. Furthermore,
the offshore system includes two different perception sensors based on the same target detection
algorithm. Finally, a multi-master architecture is in charge of the interaction between the AUV and
USV, providing an easy plug-and-play solution for the multi-robot system.

In this work, a model-based GNC architecture for a co-operative autonomous offshore system
is proposed for target detection using multi-sensor technology. In Section 2, the USV modeling and
simulation are presented using the parameter estimation tool to define the waterjet and USV maneuvering
model. Furthermore, this section includes an overview of the USV and AUV platforms. Then, in Section 3,
the GNC system for the co-operative tasks is included using the LOS-based guidance system for control.
The target detection algorithm is developed using a mechanical imaging sonar at the AUV and a LiDAR
at the USV as the primary perception sensor for underwater and surface inspection, respectively. Finally,
in Section 4, the implementation of a GNC architecture is described as modular and multilayer for the
multi-robot system. A control scenario in a field test is shown in this section to validate the proposed
target detection algorithm.

2. Modeling and Simulation for the Offshore Vehicles

The co-operative autonomous offshore system consists of two different vehicles: a USV and an
AUV. This section gives an overview of both subsystems, and it describes the simulation model of the
USV, which provides the capability to develop the GNC algorithms.

2.1. Overview of Under-Actuated USV

This article uses an under-actuated USV as the primary vehicle in the co-operative autonomous
offshore system. The USV is an aluminum hull with a thrust vectoring waterjet propulsion system, which
provides optimal maneuverability using a twin waterjet configuration. Figure 1 shows a simplified
model of the vehicle, where the port and starboard (STDB) waterjets produce the necessary thrust forces
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to move forward, backward, sideways or performing turns. Additionally, Figure 1 includes the position
and orientation of the USV in the North-East-Down (NED) coordinate system. The NED coordinate
system is related to planar Cartesian coordinates, so a coordinate transformation is performed from the
GPS-compass output to get the USV’s absolute position. This transformation is between longitude and
latitude (l, µ) from the world geodetic system 84 (WGS84) coordinate system and ETRS-TM35FIN [22],
which displays the NED position (xUSV, yUSV). The Euler angles provide the USV heading or yaw angle
ψ. The motion of the USV has three DOFs, which are surge, sway, and yaw (linear (u, v), and angular r
velocities) while ignoring roll, pitch, and heave motions.

EUSV

NUSV

E

N

v

u

ψ

r

FPORT

FSTDB

B

Figure 1. Simplified model of the unmanned surface vehicle (USV) using the North-East-Down (NED)
coordinate system. USV motion is described by surge u (linear longitudinal motion), sway v (linear
transverse), and yaw motion r (turning rotation about its z-axis).

2.2. USV Modeling

The development of an adequate maneuvering model will simplify the GNC algorithms design
and simulation. The three DOFs horizontal plane model for maneuvering of a USV consists of the
rigid-body kinetics [5]

Mν̇ + C(ν)ν + D(ν)ν = τ + τwind + τwave, (1)

where ν = [u, v, r]T is the velocity vector composed of surge, sway and yaw. τ = [τu, 0, τr] is the
vector forces and moments generated by twin waterjet configuration, while τwind and τwave are the
environmental forces. M, C(ν), and D(ν) are the mass, Coriolis and damping matrices, respectively,
where M and C(ν) combine added and rigid-body terms. The mass matrix M is defined by

M = MRB + MA =

m− Xu̇ 0 0
0 m−Yv̇ mxg −Yṙ

0 mxg −Yṙ Iz − Nṙ

 , (2)

where m is the mass of the vehicle, Iz is the moment of inertia about zb axis, rb
g =
[
xg, yg, zg

]ᵀ is the vector
from origin ob to centre of gravity CG, and Xu̇, Yv̇, Yṙ, and Nṙ represent hydrodynamic added mass.
The moment of inertia Iz at the pivot point has been estimated based on the calculation of the moments
of inertia in the rear Iz,rear and front Iz,front of the USV. These moments of inertia are defined by

Iz,rear = mpt l2
pt +

(
1
3

mhull cg

)
l2
pivot, (3)

Iz,front =
1
3

mhull
(
1− cg

)
κ
(
lUSV − lpivot

)2 , (4)

where mpt is the estimated powertrain mass (engines, waterjets, fuel, etc.), lpt is the estimated location
of the powertrain mass, mhull is the hull weight without powertrain mass, cg is the relative center of
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mass point having one as the front of the USV, lpivot is the pivot point location, κ is a scaling factor as
the mass is not evenly distributed from the pivot point to the front of the USV, and lUSV is the length of
the USV. The total moment of inertia Iz is defined by

Iz =
(

Iz,rear + Iz,front
)

Icor, (5)

where Icor is the tuning factor for the moment of inertia.
The Coriolis-centripetal matrix C(ν) can always be parameterized such that C(ν) = Cᵀ(ν) [23].

However, linearization of the Coriolis and centripetal forces CRB(ν) and CA(ν) about zero angular
velocity (p = q = r = 0) implies that the Coriolis and centripetal terms can be removed from the above
expressions, that is CRB(ν) = CA(ν) = 0 [24]. Additionally, the mathematical model is simplified to
take into account only surge and yaw motions, so Coriolis and centripetal terms have been removed at
the three DOFs dynamic model in this study.

The different damping terms contribute to linear and quadratic damping [5]. Nonetheless, it is
generally difficult to distinguish these effects. The total hydrodynamic damping matrix D(νr) is the
sum of the linear part Dlin and the nonlinear part Dnlin(νr) such that

D(νr) = Dlin + Dnlin(νr), (6)

where Dlin is the linear damping matrix produced by potential damping and possible skin friction,
and Dnlin(νr) is the nonlinear damping matrix as a result of the quadratic damping and higher-order
terms, defined by

Dlin =

−Xu 0 0
0 −Yv −Yr

0 −Yr −Nr

 , (7)

Dnlin(νr) =

−X|u|u 0 0
0 −Y|v|v 0
0 0 −N|r|r

 |νr| . (8)

The USV used in this study includes the AJ245 waterjet units [25]. The nozzle position Pnozzle varies
the direction of the jet flow, which generates the force needed for turning. Thus, the total thrust force
Ftotal combines the engine rpm of the waterjet nrpm and Pnozzle. The variable nrpm is directly gathered
from the waterjet engine, and Pnozzle is a variable from −10,000 to 10,000, with 0 as the neutral position
and equal to forward motion. Table 1 shows the data obtained from the manufacturer Alamarin-Jet Oy
for these waterjet units at a specific operating point. This operating point is selected at 1800 rpm, nozzle
in the neutral position, and bucket in the full up position.

Table 1. Data obtained from manufacturer for an operating point of a single AJ245 waterjet unit.

Surge Speed [kt] Thrust Force [kN]

2 2
4 1.85
6 1.7

The thrust forces and torques for the mathematical model of the USV are defined according to the
manufacturer’s data and an affinity law. Thus, a two-dimensional (2D) lookup table can include the
relation between the shaft rotational speed of the waterjet engine N with the thrust force per waterjet
F. The affinity law used to obtain the thrust force at the waterjet units is defined by

F1

F2
=

(
N1

N2

)2
. (9)
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Figure 2 shows the results for the affinity law with the manufacturer’s data for a waterjet engine
from 600 to 2400 rpm, which match the operational engine speeds of this study.

600 800 1000 1200 1400 1600 1800 2000 2200 2400

Waterjet engine [rpm]

0

500

1000

1500

2000

2500

3000

3500

4000

T
hr

us
t [

N
]

2 kt
4 kt
6 kt

Figure 2. Thrust force F generated by the waterjet propulsion system depending on the shaft rotational
speed N.

In the mathematical model, a 2D lookup table provides the engine rpm and the surge speed of the
USV as inputs, and the total thrust generated by the waterjet unit as output. Also, a one-dimensional (1D)
lookup table f (Joyu) obtains the engine rpm depending on the joystick input for surge motion, and a
second-order transfer function adds the waterjet dynamics of the engine rpm into the mathematical
model. This transfer function is obtained using the SI tool from MATLAB and the field test data of the
USV. Thus, the engine rpm is calculated based on the combination of the 1D lookup table and the engine
rpm transfer function, defined by

nrpm(s) =
0.317s2 + 2.793s + 1.828

s2 + 3.499s + 1.828
f (Joyu). (10)

In the case of the heading motion of the USV, the total efficiency ηnozzle for the thrust force depends
on the nozzle position (which refers to the angle of the waterjet thrust force αnozzle). According to the
waterjet manufacturer, if the nozzle position is deviated to a maximum nozzle angle ηnozzle = ±25◦

(related to Pnozzle = ±10,000) , efficiency drops exponentially to 30–40% of the maximum (center).
The exponential function is obtained using the general exponential model.

ηnozzle(Pnozzle) = a exp(b Pnozzle), (11)

where a = 1 and b = −9.163× 10−5.
Similarly to the dynamics of the waterjet calculation for the engine rpm, the nozzle position

includes a 1D lookup table f (Joyr) and a first-order transfer function. This transfer function is obtained
also from the SI tool from MATLAB based on field test data. The nozzle position of each waterjet is
defined by

Pnozzle(s) =
− exp(−0.25s)

0.1s + 1
f (Joyr). (12)

Regarding the behavior of the second-order transfer functions for both engine rpm and nozzle
position, Figure 3 shows the comparison between the SI tool transfer function and field test data for
both nrpm and Pnozzle variables.
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Figure 3. Comparison between the USV field test data and the system identification (SI) transfer
functions: (a) Engine rpm nrpm. (b) Nozzle position Pnozzle.

Additionally, the parameters for the 1D Lookup table are obtained from field test data and are
presented in Table 2.

Table 2. 1D Lookup Table parameters.

Joyu 400 500 600 700 800 900 1000

nrpm 690 920 1110 1300 1480 1650 1820

Joyr 0 50 150 200 250 300 400

Pnozzle 0 1175 3500 4665 5830 7000 9325

Finally, the vector τ = [τu, 0, τr], which represents the forces and moments generated by the two
waterjets, is defined by {

τu = (FPORT + FSTDB)ηnozzle

τr = lpivot sin(αnozzle)(FPORT + FSTDB)ηnozzle
. (13)

Figure 4 shows the schematic with all the necessary functions for the USV dynamic model,
from the joystick controller input to the vehicle’s position output. The waterjet model includes the
1D lookup table to translate between joystick commands to rpm, the second-order transfer function,
and the 2D lookup table related to the thrust force of each waterjet unit. Furthermore, it also includes
the 1D lookup table to translate between joystick commands to the nozzle position, the first-order
transfer function, the thrust force efficiency depending on the nozzle position, and the calculation of
the total torque. Both thrust force τu and torque τr are the inputs in the mathematical model of the
USV based on the three DOFs dynamic model. The position and orientation of the USV are performed
by integrating the velocity vector ν.
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Figure 4. Schematic of the mathematical model of the USV including both waterjet propulsion system
and USV dynamic models.

2.3. USV Model-Validation Using Parameter Estimation

The matrices M and D(ν) of the three DOFs Dynamic model are estimated with the parameter
estimation tool from MATLAB-Simulink. The matrices are defined in the Simulink model by creating
the matrices from input values. Then, the MATLAB-Simulink tool can estimate the individual
coefficients of the dynamic matrices.

There are two different parameter estimation runs related to surge and yaw motion. Table 3 shows
the constant values shared in both experiments, while Table 4 shows the coefficients obtained from the
parameter estimation tool with their results. Only surge and yaw motion coefficients, Xu, Xu̇, X|u|u
and Nr, Nṙ, N|r|r respectively, have been considered and estimated in this study, as the mathematical
model focuses in these two USV motions.

Table 3. Principal characteristics of the under-actuated USV.

Parameter Value

m 3500 [kg]
mpt 1100 [kg]
mhull 2400 [kg]
lUSV 8 [m]
lpivot 2.40 [m]
lpt 2.16 [m]
κ 0.70
cg 0.30
Icor 0.6
Iz from (5) 11,284.61

[
kg m2

]
xg 0.0425 [m]

Table 4. Parameter estimation results for the surge and yaw motion coefficients.

Parameter Value

Xu −10.586
Xu̇ −3277
X|u|u 315.45
Nr 3907.9
Nṙ −36.555
N|r|r 3459.6

Figure 5 shows the comparison between the field tests, which include raw and filtered USV linear
and angular velocity, the three DOFs dynamic model with the coefficients obtained from the parameter
estimation, and the SI results from [10], for the joystick controller input shown in Figure 3. As shown
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in both linear and angular velocities results, the parameter estimation results improve the previous SI
approach, giving an accurate output of the USV maneuvering compared to the field test results.
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Figure 5. Comparison plot between SI tool, parameter estimation (PE) app, and field test data: (a) Surge
motion. (b) Heading motion.

2.4. Overview of the AUV

This article uses a high configurable AUV platform for different scientific instrumentation.
This vehicle contains basic instrumentation and sensors for localization and target detection, including a
USBL and a depth sensor for underwater localization and navigation, an AHRS from the flight
control for the navigation of the AUV, and a mechanical imaging sonar (Tritech Micron [26]) as main
underwater perception sensor.

Figure 6a shows a simplified model of the AUV. This AUV uses a six-thruster configuration to provide
thrust forces when moving in the surge, sway, heave motions, or performing turns. Also, the position
and velocities of the AUV are illustrated in Figure 6a. The general AUV motion in six DOFs is modeled
by using the NED local coordinate system. AUV position and velocities are considered with the
following vectors

η = [N, E, D, φ, θ, ψ]> , ν = [u, v, w, p, q, r]> , (14)

where N, E, D denote the NED positions in Earth-fixed coordinates, φ, θ, ψ are the Euler angles, u, v, w
are the body-fixed linear velocities, and p, q, r are the body-fixed angular velocities [5].

The design and modeling of the AUV should be studied using a theoretical six DOFs dynamic
model [27]. However, due to the lack of instrumentation, it is not possible to obtain accurate navigation
data. Thus, the AUV is not fully simulated, and just simple control commands are established for
navigation. Once that navigation data is available, it is possible to use the same approach as the USV
mathematical model to obtain the six DOFs dynamic model, using the parameter estimation or SI
tools based on field test data. Regarding the control of the AUV, thrusters are located as it is shown in
Figure 6b, where thrusters T1, T2, T3, and T4 effects in surge, sway, and yawing, and thrusters T5 and
T6 effects in heave and rolling motions.
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Figure 6. Six-thruster configuration in the AUV: (a) Simplified model of the considered vehicle using
the NED coordinate system. (b) Thrust forces with their direction for each thruster.

3. Gnc System for the Co-Operative Tasks

This study has the target detection and the guidance algorithms as main modules of the GNC
architecture of the offshore multi-vehicle system. This section describes both of these algorithms for
each platform and the description of the multi-vehicle guidance system.

3.1. Target Detection System

The mechanical imaging sonar installed at the AUV and the LiDAR at the USV are the primary
perception sensors in the co-operative autonomous offshore system. The target detection algorithm includes
the application in both perception sensors, depending on the position of the objects (underwater or over
the water surface).

For the mechanical imaging sonar, the employed algorithm consists of analyzing the acoustic
intensity at every bin to determine the presence of an underwater vehicle. The Tritech Micron sonar [26]
has an operating frequency chirp centered on 700 kHz, a beamwidth of 35◦ vertical and 3◦ horizontal,
a range from 0.3 to 75 m, a range resolution of approximately 7.5 mm, and a configurable mechanical
resolution of 0.45◦, 0.9◦, 1.8◦, and 3.6◦. In this study, the maximum range used to detect an obstacle is
10 m, a forward field-of-view (FoV) of 90◦, and a mechanical resolution of 1.8◦. If the target is known a
priori to be narrow, the imaging sonar can be configured with a lower resolution to detect the object.

Regarding the data obtained from the mechanical imaging sonar, it contains the heading of the
beam θscan, the location of the specific point in Cartesian coordinates Pscan, and the intensity at every
bin Iscan. The dynamic range of the mechanical imaging sonar is 80 dB. Then, the dynamic range
controls allow to adjust the position of a sampling window within the defined dynamic band range of
the received signal, and it translates the intensity at every bin to an integer value ranging between 0
and 255.

After data acquisition from the mechanical imaging sonar, Algorithm 1 shows the post-processing
steps for target detection. This algorithm includes the position of the highest intensity value for each
bin in polar coordinates, filtering the data in the range of [0,1.5] meters to avoid possible noise from
the AUV structure.

Algorithm 1 provides the post-processing of a single bin of a specific angle. An additional function
forms an array of number of scans nscans, obtained from θscan,min, θscan,max, and θscan,increment parameters
of the mechanical imaging sonar to create the complete array of scans from the sonar. After gathering
the scan array, the position of the targets needs to be calculated. The data from the perception sensors
is obtained in the body-fixed reference frame (BODY), and it requires a translation into an absolute
coordinate system. This translation is defined by[

xobs
yobs

]
= Rz(ψAV)

[
xscan

yscan

]
, (15)
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where Rz(ψAV) is the rotation matrix around the z-axis using the heading angle ψAV of the selected AV.
This rotation matrix translates between the BODY and the East-North-Up (ENU) coordinate system.
The rotation matrix Rz(ψAV) in 2D is defined by

Rz(ψAV) =

[
cos(ψAV) sin(ψAV)

− sin(ψAV) cos(ψAV)

]
. (16)

Algorithm 1: Post-processing of the mechanical imaging sonar data for target detection.

Input : Intensities Iscan, positions Pscan in Cartesian coordinates [X,Y], and current heading
θscan value obtained from the mechanical imaging sonar.

Output : Position micron of the highest intensity value in polar coordinates.
1 initialization;
/* Remove data in the range from 0 to 1.5 m to avoid possible noise from the

AUV structure. nscan equal to number of scans. */
2 for i = 1 to nscan do
3 calculate distance dscan from Pscan;
4 if dscan(i) < 1.5 then
5 remove intensity Iscan(i);
6 end
7 end
8 find maximum intensity Iscan,max from the Iscan data;
9 calculate value ρscan related to distance in polar coordinates;
/* Return values for intensities greater than integer value of 80. Output in

polar coordinates. */
10 if Iscan,max > 80 then
11 return micron = [θscan, ρscan];
12 else
13 return micron = [θscan, NaN];
14 end

After locating the obstacle by the mechanical imaging sonar in the ENU coordinate system,
the target’s origin position (No, Eo) is defined by[

No

Eo

]
=

[
NAV

EAV

]
+ Rx(γ)

[ xobs,init+xobs,end
2

yobs,init+yobs,end
2

]
, (17)

where Rx(γ) is the rotation matrix around x-axis with γ = pi [rad]. This matrix is used to translate
between ENU to NED coordinate system used for the offshore navigation. The Rx(γ) rotation matrix
in 2D is defined by

Rx(γ) =

[
1 0
0 cos(γ)

]
. (18)

Algorithm 2 includes the detected target localization for the perception sensor data array. This algorithm
distinguishes between different targets depending on the consecutive elements in the data array, and the
origin position of the targets is sent to the GNC algorithm to proceed with the autonomous navigation
of the offshore system.
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Algorithm 2: Localization of the detected targets.

Input : scan data array in Cartesian coordinates and RobotPose (position and orientation).
Output : Obstacle origin [No, Eo] calculated in absolute NED coordinates.

1 initialization;
2 translate scan data from BODY to ENU according to (15);
3 define consecutive non-NaN elements of the scan data array as same obstacle data;
4 if obstacle data is non-empty then
5 create vector to distinguish between different obstacles;
6 define obstacle.x and obstacle.y for the different obstacles detected by the scan;
7 define number of obstacles nobs as equal to number of columns in obstacle.x;
8 if nobs > 0 then
9 for i = 1 to nobs do

10 calculate the obstacle origin [No(i), Eo(i)] in NED according to (17);
11 end
12 closely spaced obstacles are defined as same obstacle origin [No, Eo];
13 end
14 end

Figure 7 shows the steps from the scan data obtained from the mechanical imaging sonar in the
BODY reference frame to the final origin position of the detected targets. Figure 7a shows the raw
data from the mechanical imaging sonar. Then, Figure 7b shows the post-processing described in
Algorithm 1. Finally, Figure 7c,d represents the origin position of the targets in NED coordinate system,
with relative to origin [0,0] and absolute coordinates respectively.
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Figure 7. Post-processing of the mechanical imaging sonar data in the target detection algorithm:
(a) Scan data acquired from sonar. (b) Post-processing based on Algorithm 1. (c) Relative position in
NED with origin as [0,0] and calculation of target’s origin. (d) Absolute position in NED of the targets.

Regarding the USV platform, the SICK MRS1000 LiDAR [28] is the primary perception sensor.
This LiDAR has four spread-out scan planes and a multi-echo analysis to be used in harsh environment
applications, as it can avoid the noise produced by fog, rain, or dust. Also, this device has a 275◦

aperture angle, and a working range from 0.2 to 64 m. Thus, in case that the target is above the water
surface, it can be detected by the LiDAR sensor.

The algorithm for target detection is similar to the described for the mechanical imaging sonar.
The only difference is that the LiDAR contains four spread-out scan planes, acquiring three-dimensional
(3D) scan data (see Figure 8a). The target detection algorithm is simplified by translating the received
data to 2D by avoiding the z-axis from the sensor data (see Figure 8b). Figure 8c shows the maximum
detection range and aperture angle with the scan data in the BODY reference frame. Finally, Figure 8d
shows the origin’s position of the targets in the NED coordinate system after applying Algorithm 2.
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Figure 8. Post-processing of the LiDAR in the target detection algorithm: (a) LiDAR scan data in 3D.
(b) LiDAR scan data in 2D. (c) Detection area of the USV in BODY including scan data. (d) Absolute
position in NED of the targets.

The same procedure detects obstacles from the LiDAR for the path-following with the obstacle
avoidance algorithm. After obtaining the origin position [No, Eo] from Algorithm 2, the obstacle avoidance
algorithm can define a safety boundary box around the obstacle [10].

3.2. Guidance System for Multi-Vehicle System

The multi-vehicle system aims firstly to detect a target using the AUV in a specific offshore area,
and after that, sends the location to the USV to do further exploration of the target. Thus, a path-
following algorithm is essential for both AUV and USV subsystems. This algorithm intends to reach
every waypoint of a specific path independent of time. A commonly used method for path-following
is the named LOS guidance, which is chosen as a reference trajectory in this study.

3.2.1. Auv Guidance System

The heading control can use a LOS vector from the AUV position to the next waypoint, similar
to [5]. The LOS path-following controller used in this study is the same as the one defined in [10].
However, the AUV movement includes a heave motion, which is avoided by keeping a constant
depth for the path-following algorithm. This controller computes the course angle ψd based on the
path-tangential angle χp and the velocity-path relative angle χr. The lookahead-based steering can be
implemented related to the heading controller applying the transformation defined as

ψd = χp + χr − β, (19)

where the variable sideslip (drift) angle β [5] has been omitted in this study to simplify the steering
law. The velocity-path relative angle χr establishes that the velocity has the direction facing a path
location that is in a lookahead distance ∆(t) > 0 along of the direct projection [29]. The path-tangential
angle χp and the velocity-path relative angle χr are defined as

χp = atan2(Ek+1 − Ek, Nk+1 − Nk), (20)

χr(e) = arctan(−KPe− KI

∫ t

0
e(τ)dτ), (21)

where (Nk, Ek) and (Nk+1, Ek+1) are the positions of the passed and next waypoint, respectively,
the proportional gain is KP = 1/∆(t) > 0, and KI > 0 represents the integral gain. The cross-track
error e(t) is given by

e(t) = −[NAUV(t)− Nk] sin(χp) + [EAUV(t)− Ek] cos(χp). (22)
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The switching mechanism is declared as a sphere of acceptance for AUVs [30]. This mechanism
selects the next waypoint as a lookahead point if the AUV position lies within a sphere with a radius R
around the position (Nk+1, Ek+1, Dk+1). The sphere of acceptance is defined as

[Nk+1 − N(t)]2 + [Ek+1 − E(t)]2 + [Dk+1 − D(t)]2 ≤ R2
k+1, (23)

where, if the time AUV position (N(t), E(t), D(t)) satisfies Equation (23), the next waypoint
(Nk+1, Ek+1, Dk+1) needs to be selected. Radius R is equal to three AUV lengths LAUV (R = 3LAUV),
as the position is only obtained from the USBL system.

After obtaining the course angle from the LOS path-following algorithm, this algorithm sends
the heading commands to the yaw controller to match the aimed path. The main control system of
the AUV is formed by three separate PID controllers for surge, heave, and yaw motions. Apart from
the heading controller, the heave controller keeps the AUV at a constant depth. Their PID parameters
for heading controller are obtained by using rapid control prototyping based on the Ziegler-Nichols
PID tuning [31] during field tests. Both amplitude Kzn and period Tzn are calculated for the AUV at
the water tank, and then, the PID parameters are defined based on Table 5. Furthermore, a simple
proportional controller has been selected in the heave controller. The surge motion is implemented as
a constant PWM value to the thrusters.

Table 5. PID parameters for AUV.

Controller Tzn [s] Kzn KP KI KD

Yaw 2.10 5.80 0.580 0.276 0.812
Heave - - 300 0.0 0.0
LOS - - 0.333 0.0 0.0

3.2.2. USV Guidance System

Same as the AUV guidance system, USV heading control uses a LOS vector from the USV position
to the next waypoint. The LOS path-following controller used in this study is the same as the one
defined in [10], including the obstacle avoidance capabilities with the safety boundary box approach.
The LOS path-following controller of the USV uses the same path-tangential angle χp defined in
Equation (20), the velocity-path relative angle defined in Equation (21), and the total lookahead-based
steering from Equation (19). The switching mechanism is selected as a circle of acceptance for surface
vehicles [5]. It selects the next waypoint as a lookahead point if the position of the USV lies within a
circle with radius R around (Nk+1, Ek+1). This circle of acceptance is defined as

[NUSV(t)− Nk+1]
2 + [EUSV(t)− Ek+1]

2 ≤ R2
k+1, (24)

where, if the time surface vehicle position (NUSV(t), EUSV(t)) satisfies (24), the next waypoint (Nk+1, Ek+1)
needs to be selected. Radius R is equal to two USV lengths LUSV (R = 2LUSV).

3.2.3. Multi-Vehicle Guidance System

At the beginning of the control scenario, the USV keeps its position in dynamic positioning (DP)
mode while the AUV is trying to search for targets in the coverage area. A DP vessel is a vessel that
maintains its position exclusively using active thrusters [24]. This study considers the use of conventional
controllers with cascade with low-pass and notch filters to simplify the implementation. The control
problem is solved by using PID-controllers for surge, sway, and yaw motions.

The AUV in this study aims to detect a target in a specific offshore area. The coverage area is
defined as a set of waypoints to cover a far-reaching range inside. However, this coverage area has
been substituted by a straight-path to simplify the control scenario. After detecting the object by the
target detection system, it sends a stop command to the AUV, and the vehicle stays in its position until
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it received further instructions from the USV. As the AUV does not contain enough instrumentation to
have a precise localization of the subsystem, the AUV in this study stops its thrusters instead of having
a DP control of its final position. Additionally, if the target detection algorithm does not recognize any
target in the coverage area, the AUV stops after reaching the last waypoint of the predefined path.

After receiving the target position by the USV, the path-following algorithm creates the waypoints
with a straight-line trajectory. The first waypoint matches the current position of the USV at the time
that the target position is received, and the last waypoint is the target position itself. With a constant
distance between waypoints of 10 m, the number of waypoints is related to the length of the straight-line
path. These waypoints are sent to the LOS path-following algorithm to calculate the course angle of the
USV. Furthermore, an additional switching mechanism is included using the same principle as the circle
of acceptance defined in (24) to stop the LOS path-following controller once the USV has reached the
last waypoint of the predefined path. Then, the guidance system does not send any heading or surge
commands to the controllers, and there is no output from the target detection algorithm. In this case,
the USV changes to DP internal algorithm keeping its position constant.

Figure 9 shows the priority control level for the multi-vehicle guidance system. First, the AUV
starts the path-following of the coverage area based on predefined waypoints. The vehicle continues
to the next waypoint until the mechanical imaging sonar detects a target. Then, the AUV stops its
operation, and the target position is transmitted to the USV. The USV keeps its position in DP mode
and, when the target position is received, it starts the path-following with obstacle avoidance operation
with the target position as the final waypoint of the USV trajectory. After reaching the last waypoint,
the USV stops and uses the DP mode to keep its position, allowing the GCS to have further inspection
of the detected target. Additionally, the steering wheel and 3-axis joystick, both forming the manual
control of the USV, provides the safety feature in the autonomous algorithm.

CAN-ID equal to 
manual control?

YES

USV moves in 
manual mode

NO
Is target 

detected?

NO

USV DP mode

Target position is 
sent to the USV.

Is target 
detected?

NO

AUV continues to 
next waypoint

AUV moves in 
autonomous mode

YES

YES
Path-following module 

creates path with target 
position as last waypoint.

USV manual 
control

USV moves in 
autonomous mode

AUV stops

Figure 9. Stateflow diagram for priority control level in the multi-vehicle guidance system. The target
detection algorithm at the AUV enables the autonomous operation of the USV.

4. Experimental Validation

4.1. System Implementation

For this particular study, the USV and AUV platforms incorporate multiple mechatronic systems
to implement the target detection algorithm. Both vehicles include high-level control (computers with
ROS), which performs complex computations and processes the data obtained from localization and
perception sensors, and low-level control (sensors and actuators units), that runs as the basic interface
for vehicle operations. Also, an intermediate-level (or mid-level) control is included, which is the main
link between low-level data acquisition and high-level logic operations.

Figure 10 shows the mechatronic systems used in the USV, including also the connection to the
AUV and external MATLAB-Simulink computer through the main network switch. These devices are
the link to the co-operative autonomous offshore system. In general, the USV platform is equipped with
a payload for navigation (high precision GPS-Compass), LiDAR as the main perception sensor, SeaTrac
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acoustic system for USBL localization, and communication with the AUV, and WiFi for communication
with the GCS. The USV system implementation is the same as the one studied in [10]. For the high-level
control, the ROS master includes the necessary stand-alone ROS-nodes for the path-following with
obstacle avoidance. The display computers act as intermediate-level control for translation between
CAN bus and ROS messages. Also, they are in charge of sending joystick commands to the waterjet
control units based upon priority levels.
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Water-Jet STBD Control unit

C
A

N
-B

U
S

N
et

w
o

rk
 s

w
it

ch

Main computer #1
(ROS master)

LiDAR AUV

MATLAB-Simulink 
computer (ROS node)

USBL #1

Figure 10. System overview of the USV platform with high-level (blue boxes),intermediate-level (white
boxes), and low-level control (purple boxes), including the connection to the AUV platform (adapted
from [10]).

Figure 11 shows the mechatronic systems used in the AUV platform. The AUV is connected
to the USV via a neutrally buoyant tether to have a direct connection between the vehicles.
Similarly to the USV platform, the AUV contains high-level control with the ROS computer and an
intermediate-level control as a bridge between the main ROS computer and the companion computer,
which communicates using the MAVLink protocol. The low-level control includes actuators and
sensors, formed by six thrusters and their respective electronic speed controllers (ESCs), a pressure
sensor for depth measurements, a mechanical imaging sonar as the perception sensor, and the USBL
SeaTrac acoustic system for positioning and communication. Finally, the AUV includes a companion
computer with the flight controller and the ROS computer (Linux computer) connected to a network
switch. The ROS computer performs the complex computations for autonomous operation and
target detection.

Network switch

Pixhawk

Network switch

HD 
camera

ESCs

ROS computer #2 
(ROS master)

Companion 
computer

Mechanical 
sonar

Li-Po 
batteries

USBL #2

Pressure 
sensor

Thrusters

ROS computer #1 
(ROS master)

Figure 11. System overview of the AUV: High-level (Robot Operating System (ROS) computers), intermediate-
level (companion computer and Pixhawk flight controller), and low-level control (thrusters, ultra-short
baseline (USBL), pressure sensor, and mechanical imaging sonar).

The approach used in this study for the multi-robot architecture is multimaster-fkie, which provides
simplicity and ROS compatibility [21]. This package is a fully compatible multi-master implementation
for topic and services transactions. Nevertheless, this implementation can cause some drawbacks due
to the continuous master state scanning and the delay between changes in advertising, as well as
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information exchange. As this study requires a total of three ROS topics, this package is useful as an easy
plug-and-play solution.

Figure 12 illustrates the communication between the USV and AUV platforms, including the
nodes for the multimaster-fkie architecture. The exchanged topics are /target, which is the position
of the detected target, /usv_gps obtained from the USV GPS-compass and used to get the absolute
Cartesian coordinates of the AUV position, and /usv_heading which rotates the USBL coordinate
system according to the heading of the USV. The diagram also includes the links between the high-level,
mid-level, and low-level control in both platforms.

roscore

multi-
master fkie

USBL #2

Mechanical 
sonar

bridge

roscore

multi-
master fkie

GPS

LiDAR

rosserial

ThrustersWaterjets

GNC
GNC

Pressure 
sensor

USBL #1

/target

/USVGPS

/USVHeading

Figure 12. Communication of the autonomous offshore system based on the multimaster-fkie architecture.
Each vehicle shows the internal connection between the sensors and actuators with the rest of the system.

4.2. Modular System for Multi-Sensor Technology

The target detection algorithm uses a modular approach to include target detection from each
perception sensor, path-following, and guidance control from both USV and AUV platforms. Each of
these modules runs a separate ROS node in the autonomous offshore system. This approach has
been previously studied and successfully implemented in [10,32]. However, the algorithms of the
mentioned studies did not include co-operative capabilities between multiple autonomous vehicles.

Figure 13 illustrates the modular architecture with all topics involved, defining the subscribers
and publishers of each topic. The only difference between the two vehicles is the path-following model
at the USV for obstacle avoidance, which is in charge of modifying the USV trajectory using the safety
boundary box approach.

The GPS-Compass obtains the absolute position of the USV in global coordinates, while the
USBL collects the position of the AUV in the BODY reference frame of the USBL. The ROS topic
/odometry in the AUV is based on the low-level serial messages accepted and generated by the SeaTrac
USBL beacons [16]. These serial messages are ASCII-Hex characters of the message string, which are
decoded into an array of bytes representing their values. The ROS topic is generated using the Serial
package [33], which translates the RS232 messages to a ROS topic array. After that, PING messages are
sent from the main USBL #1 beacon located at the USV, and the response from the AUV (USBL #2)
produces the necessary serial messages containing the AUV position in the BODY USBL coordinate
system. Finally, the change from this reference frame to the NED coordinate system is defined by the
combination of a translation and a rotation matrix. These matrices use the initial heading of the USBL
and the /heading and /gps variables from the GPS-Compass.
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Figure 13. Schematic of the modular multi-vehicle guidance system with target detection. All different
modules from USV and autonomous underwater vehicle (AUV) were included. ROS topics /gps,
/heading and /target (purple connectors) are the exchange topics in the control scenario.

The predefined path for the AUV is defined as the ROS topic /path_coverage, which includes the
waypoints for the GNC algorithm in the control module. The GNC guidance algorithm generates the
required AUV heading command, sending this parameter to the AUV controller. The controller generates
the required inputs /rc_channel3, /rc_channel4, /rc_channel5, and sends them to the companion
computer for surge, heave, and yaw motions, respectively, based on the BlueRov-ROS-playground
ROS package [34].

Regarding the USV, the exchanged ROS topic /target contains the target’s origin position. Thus,
once this topic is received in the path-following model, it defines the necessary waypoints to perform
the autonomous mission. These waypoints are sent to the GNC model, where the LOS-algorithm
calculates the required course angle for the controller. Finally, the controller generates the required
joystick commands for surge /Joyu and yaw /Joyr to reach the LOS values. These joystick commands
are sent to the low-level control (display computers) to perform the autonomous USV operation,
using the same outputs as a manual three-axis joystick.

4.3. Experimental Results

The control scenario for this study includes target detection, path-planning, and guidance control in
both offshore vehicles. However, even though the modular ROS architecture provides a computationally
cheap and easy implementation in both offshore platforms, the operation of both platforms in an
offshore scenario depends highly on environmental elements such as wind or wave drift forces. As the
guidance control bases its operation on simple PID controllers without the compensation of these
environmental elements, it makes it highly challenging to gather useful field test data from the offshore
system. Thus, the experimental results of this study are shown in a modular way, testing each of
the subsystems separately to validate the target detection algorithm using multi-sensor technology.
Figure 14a illustrates the location for the AUV and USV field tests at the Pyhäjärvi lake in Tampere,
Finland. The water-flow direction from a hydro-power plant is also defined to show the environmental
drift forces. Figure 14b shows the implementation for the AUV path-following, where the USV stays
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stationary at the harbor. Regarding the USV field test, it is demonstrated in a clear obstacle area at
the lake.
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Figure 14. Control scenario: (a) Location of the AUV (red arrow) and USV (green arrow) field tests at the
Pyhäjärvi lake in Tampere, Finland, being affected by the water-flow (blue arrow) from a hydro-power
plant. (b) AUV and USV platforms at the harbor during the AUV field tests.

The first step in the target detection algorithm is the AUV path-following. This module is tested
at the harbor with a set of three waypoints defined in the NED coordinate system. The surge motion
has a constant PWM value to the thrusters, and the yaw and heave motions are implemented using
separate PID controllers. The LOS-based guidance system calculates the necessary course angle to
reach every waypoint of the predefined path. Figure 15 shows the AUV trajectory using the USBL data
for navigation, where the AUV initial position and orientation are defined as random. The AUV moves
slightly to the left side of the path-following due to the environmental drift forces. As it is shown in
Figure 14a, the field tests have been done in an estuary area of a narrow and shallow lake, where the
flow from a hydro-power plant affects considerably. These flow conditions vary depending on the
river discharge rate. During the time of testing, the river discharge was 38 m3/s to the south direction,
and the wind speed was equal to 6 m/s with southwest wind direction.
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Figure 15. AUV Control scenario: AUV trajectory for the path-following algorithm.

Figure 16a shows the comparison between the input control values for the yaw angle and the field
test data, and Figure 16b displays the same comparison for heave motion. In this case, the multi-vehicle
system contributes to the GPS-Compass data at the USV, providing the ROS topics /gps and /heading
to the USBL acoustic system for positioning.

During the implementation of the GNC model, the target detection algorithm processes the
mechanical imaging sonar data to detect and locate any possible obstacle around the AUV. Figure 7
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illustrates the adequate performance of this module, where a static obstacle (buoy) is detected and
located in absolute NED coordinates.
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Figure 16. AUV Control scenario: (a) Comparison of heading angle from the LOS guidance system
with field-test data. (b) Comparison of the constant depth of 1.5 m with field-test data.

Once the AUV detects and locates the target, it sends the target’s position to the USV platform via
multimaster-fkie architecture. The last control scenario in the experimental results demonstrates the
co-operative autonomous offshore system with the path-following with obstacle avoidance capabilities
of the USV. The USV main computer receives the /target ROS topic from the AUV main computer.
Then, the GNC model provides the necessary surge and yaw motions to reach the target’s position
based on the LiDAR and path-following models. Figure 17 shows the USV trajectory once the path
has been defined according to the ROS topic /target. Additionally, Figure 18 shows the comparison
between the LOS guidance system and the field test data for yaw motion, and Figure 19 shows the
corresponding LOS cross-track error e(t), which demonstrates the correct performance of the guidance
control, even though environmental variables are not considered in this study. During the USV field
tests, the river discharge was 30 m3/s to the south direction, and the wind speed was equal to 3.7 m/s
with south-southwest wind direction.

The experimental results of this study indicate the correct performance of the target detection
algorithm using multi-sensor technology. These results are implemented in a modular way, and they
show the appropriate implementation of each model, including target detection, path-following,
and guidance control. The path-following algorithms in the AUV and USV platforms include some
error due to the environmental variables, such as wind and wave drift forces. These variables need
to be considered to increase the accuracy of the system, and they can be removed by improving the
GNC controllers. Furthermore, the AUV navigation includes only the USBL beacons for positioning,
which is not able to locate precisely the vehicle underwater. By improving the navigation system,
the path-following algorithm will enhance its performance.
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Figure 17. USV Control scenario: USV trajectory for the path-following algorithm, where the last
waypoint is equal to the ROS topic /target.
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Figure 18. USV Control scenario: Comparison of heading angle from the LOS guidance system with
field-test data. After reaching the /target position, the yaw angle is equal to the constant velocity-path
relative angle χr for DP mode.
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Figure 19. USV Control scenario: LOS cross-track error e(t) for the lookahead-based steering law
defined in (22). This error is produced by the environmental variables, as the drift angle β is not
included in the LOS-based guidance control.

5. Conclusions and Future Work

This article was concerned with the target detection using multi-sensor technology in a co-operative
autonomous offshore system. The offshore system had a USV and an AUV, and the fundamental purpose
of the algorithm was to detect an underwater target in a preplanned coverage area. The mathematical
model of the USV, including also the waterjet propulsion system model, was presented to verify
the designed GNC architecture. This model included parameter estimation methods to obtain the
dynamic coefficients using field test data for both surge and yaw motions. This study developed a basic
target detection algorithm for any offshore perception sensors, showing the results for a mechanical
imaging sonar at the AUV and a LiDAR at the USV. The guidance system included the LOS model for
path-following on both platforms. After designing the GNC architecture, both vehicles incorporated
a system implementation of the modular approach with high, intermediate, and low-level controls.
The experimental results showed a field test control scenario that presents the capabilities and adequate
performance of the target detection algorithm.

Future work will include an accurate mathematical model of the AUV for simulation, which requires
the complete navigation data (position, velocity, and acceleration feedback) from the vehicle. Additionally,
the coverage path planning can replace the straight-line trajectory of this study, having more coverage
area and increasing the capabilities of the system. The AUV scenario will include the capabilities of
making decisions in the presence of several obstacles, and further navigational sensors will be installed
for more precise localization of the AUV (e.g., DVL). Finally, future work will also include additional
platforms into the system, as it could be other USV or AUV, or even a UAV, which would increase the
capabilities of the system working in the air.
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Abbreviations

The following abbreviations are used in this manuscript:

USV unmanned surface vessel
AUV autonomous underwater vehicle
SAR search and rescue
UAV unmanned aerial vehicle
DOF degree of freedom
SI system identification
DR dead reckoning
INS inertial navigation systems
DVL doppler velocity log
AHRS attitude and heading reference system
USBL ultra-short baseline
LBL long baseline
EKF extended Kalman filter
IMU inertial measurement unit
GNC guidance, navigation, and control
LOS line of sight
ROS robot operating system
GCS ground control station
AV autonomous vehicle
STDB starboard
NED North-East-Down
FoV field of view
ENU East-North-Up
PID proportional-integral-derivative
DP dynamic positioning
ESC electronic speed controller
1D one-dimensional
2D two-dimensional
3D three-dimensional

References
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