
remote sensing  

Article

Integrating Backdating and Transfer Learning in an
Object-Based Framework for High Resolution Image
Classification and Change Analysis

Yuguo Qian 1, Weiqi Zhou 1,2,* , Wenjuan Yu 1, Lijian Han 1, Weifeng Li 1 and Wenhui Zhao 1,3

1 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, No. 18 Shuangqing Road, Beijing 100085, China; ygqian@rcees.ac.cn (Y.Q.);
wjyu@rcees.ac.cn (W.Y.); ljhan@rcees.ac.cn (L.H.); li.wf@rcees.ac.cn (W.L.); zhaowenhui@bjmemc.com (W.Z.)

2 College of Resources and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road,
Beijing 100049, China

3 Beijing Municipal Environmental Monitoring Center, No. 14 Chegongzhuang West Road, Beijing 100048, China
* Correspondence: wzhou@rcees.ac.cn

Received: 29 October 2020; Accepted: 9 December 2020; Published: 15 December 2020
����������
�������

Abstract: Classification and change analysis based on high spatial resolution imagery are highly
desirable for urban landscapes. However, methods with both high accuracy and efficiency are
lacking. Here, we present a novel approach that integrates backdating and transfer learning under an
object-based framework. Backdating is used to optimize the target area to be classified, and transfer
learning is used to select training samples for classification. We further compare the new approach
with that of using backdating or transfer learning alone. We found: (1) The integrated new approach
had higher overall accuracy for both classifications (85.33%) and change analysis (88.67%), which were
2.0% and 4.0% higher than that of backdating, and 9.3% and 9.0% higher than that of transfer learning,
respectively. (2) Compared to approaches using backdating alone, the use of transfer learning
in the new approach allows automatic sample selection for supervised classification, and thereby
greatly improves the efficiency of classification, and also reduces the subjectiveness of sample
selection. (3) Compared to approaches using transfer learning alone, the use of backdating in the new
approach allows the classification focusing on the changed areas, only 16.4% of the entire study area,
and therefore greatly improves the efficiency and largely avoid the false change. In addition, the use
of a reference map for classification can improve accuracy. This new approach would be particularly
useful for large area classification and change analysis.

Keywords: urban landscape; multi-temporal; change detection; land cover land use; remote sensing;
urban ecology

1. Introduction

Land use/land cover (LULC) change is one of the major drivers of biodiversity loss, air pollution,
urban heat island (UHI), water shortage and pollution, and ecosystem degradation from local to
regional, and even global scales [1,2]. Remotely sensed images provide an effective way to map and
quantify LULC change [3]. While most studies have used medium or coarser resolution data such
as Landsat, MODIS, AVHRR, and SPOT-VEGETATION for LULC change analysis [4–6], high spatial
resolution imagery has been increasingly used to quantify the fine-scale LULC change especially in
urban landscapes with a wide availability of such data [7,8].

The backdating/updating and the transfer learning are two promising approaches that use
the prior information of an existing land cover map for accurate and efficient classification.
The backdating/updating approach conducts the classification in the changing area instead of the
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whole study area, which brings high efficiency and reduces “false changes” [9]. The transfer learning
approach can automatically choose a large number of training samples based on the existing land
cover map, which promotes the efficiency of machine learning classification [10].

Recent advances in backdating/updating approaches and transfer learning methods for
multi-temporal classifications and/or change analysis show that the proper use of prior knowledge;
for example, LULC classes from an existing classification map with high accuracy (typically referred
to as “reference map”), can greatly increase the accuracy and efficiency in classification for other
time periods, and for change analysis [9,11–13]. However, such advances in land cover mapping and
change analysis have been largely developed from, and applied to, medium and coarser resolution
remote sensing data, but not the increasingly used high spatial resolution images. For example,
change analysis using high resolution images is still frequently based on traditional post-classification
comparisons [14,15], which is time-consuming and may contain lots of “false changes” due to the
propagation of errors from classification maps to the change analysis [16,17]. In the absence of
long-term images (such as the Landsat satellite images) and global land cover products (such as the
GlobeLand30), few studies have tested whether such advances in classification and change analysis
can be applied to high spatial resolution imagery [9,10,18]. In particular, can a combination of such
advances significantly improve accuracy and efficiency when using high spatial resolution imagery?

The strength of an updating/backdating approach lies in the application of prior knowledge
based on existing LULC classification maps (i.e., reference maps) to classify the areas with changes,
and update/backdate the areas with no change [12]. With classification focusing on a small proportion
of the study areas with the change, and the application of prior knowledge of existing LULC types,
an updating/backdating approach can greatly improve both efficiency and accuracy of multi-temporal
classifications and change analysis [9,12,13,19,20]. The generation of the National Land Cover Database
(NLCD) in the year 2006 and 2011 provides an excellent example of applying such an approach [12,19].
The product of NLCD in 2006 was updated from NLCD 2001 [12], and NLCD 2011 was updated
from NLCD 2006 [19]. In addition, when integrating backdating with object-based classification,
the accuracy and efficiency can be further improved because the object-based method can help reduce
errors caused by, for example, misregistration between multi-temporal images [9].

Transfer learning is a method that can be used to transfer the labels of existing data to
identify new ones and has been widely used for visual recognition, text processing, and emotional
classification [21–23]. It was introduced to LULC classification in recent years and has been increasingly
applied [11,20,24,25]. One of the advantages of the transfer learning method is the automatic
selection of a very large number of training samples based on land cover type in “reference map”,
which can greatly improve the classification accuracy and efficiency, and reduce the subjectiveness
of sample selection [26,27]. Transfer learning methods are usually classified into four categories,
which are instance transfer, parameter transfer, feature representation transfer, and relational knowledge
transfer [10]. Previous studies usually used a relational knowledge transfer framework for land cover
classification [10,11,28]. Specifically, they first applied a change detection-based approach to transfer
the labels of land cover types from the source domain to the target domain and then used the
labeled pixels/objects as training samples to classify the target image. However, this method has been
mostly applied in LULC classification using medium and coarser resolution data, not high spatial
resolution data.

Due to the much larger data volume of very high spatial resolution data, in comparison with
medium and coarser resolution ones when covering the same area, improving the efficiency is highly
desirable. Here, we develop a new approach that integrates backdating and transfer learning under
an object-based framework. We test this new approach using high spatial resolution GeoEye-1 and
Pleiades images in Beijing, China. We further compare the new approach with that of using backdating
or transfer learning alone. We used an object-based framework as it has been proved to be superior to
a pixel-based approach, especially when using high spatial resolution data [14,29].
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2. Study Area and Data Preprocessing

2.1. Study Area

We chose a study area within the 5th ring road of Beijing, China, a location where many changes
in LULC occurred between 2009 and 2015 (Figure 1). The study area contains all kinds of typical LULC
types in urban settings, such as greenspace (i.e., vegetated land), water, buildings, and paved surfaces.
From 2009 to 2015, both changes in large (e.g., a large patch of greenspace was replaced by buildings)
and small size occurred in the study area, making it ideal for testing the proposed approach.

Figure 1. Study area and datasets used in this study. Pane (A): a site example of GeoEye-1 image
with False-color acquired on 28 June 2009; panel (B): a site example of Pleiades image with False-color
acquired on 19 September 2015; panel (C): a LULC map in 2015 (the reference map). False-color
composite: near-infrared, red, green band as RGB.

2.2. Data Preprocessing

We used the GeoEye-1 image acquired on 28 June 2009, and Pleiades image on 19 September
2015 for our study (Table 1). These two types of images have a similar spatial and spectral resolution.
They both have one panchromatic band and four multispectral bands. The spatial resolution of
GeoEye-1 and Pleiades for the panchromatic band is similar, 0.41 m and 0.5 m, respectively, and that
for multi-spectral bands is 1.65 m and 2 m, respectively. The GeoEye-1 image was taken in summer,
resulting in a higher solar elevation angle than that of the Pleiades (Table 1), so the shaded area of the
GeoEye-1 is smaller than that of the Pleiades. It is difficult to identify the land cover in the shadow,
and it is not the focus of this study. So, we treat shadows as a type of LULC.

Table 1. The information about high resolution images.

GeoEye-1 Pleiades

Acquisition Data/Time 2009-06-28 03:04 GMT 2015-09-19 03:06 GMT
Solar azimuth 132.0320 degrees 155.5987 degrees
Solar elevation 67.3074 degrees 49.3733 degrees
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We first conducted a radiometric correction for two images using the FLAASH model embedded
in ENVI software. Then, we used a linear regression method for relative radiation normalization.
That is, each band of the Pleiades image was linearly normalized to the corresponding band of the
GeoEye-1 image. After that, we geometrically registered the GeoEye-1 image to the Pleiades image,
and resampled the GeoEye-1 image to match the resolution of Pleiades. We chose 15 tie points and used
the second-order polynomial model and the nearest neighborhood resampling approach for spatial
rectification. The root mean square error was less than 0.5 pixels. For both images, we resampled the
multi-spectral bands to the spatial resolution of the panchromatic band, using the nearest neighborhood
resampling approach. For all experiments, we used a quad-core processor with a core frequency of
3.70 GHz, and a RAM of 32 GB to run the program. The operating system is window 10 of 64 bit.

Inew =
I −Min

Max−Min
(Maxnew −Minnew) + Minnew (1)

For each band of the Pleiades image, I is the original pixel value, Inew is the normalized pixel
value; Max and Min are the maximum and minimum pixel value of Pleiades image, respectively,
Maxnew and Minnew are the maximum and minimum pixel values of the corresponding band of
GeoEye-1, respectively.

We first classified the Pleiades image in 2015 using an object-based supervised classification,
which was then used as the reference map in the latter backdating analysis. Specifically, we used the
multiresolution segmentation algorithm embedded in the commercial software Trimble eCognition for
image segmentation [30]. We first resampled the four multispectral bands to match the resolution of the
panchromatic band, and then used all five bands for segmentation. We set the segmentation parameters
of scale, color weight, and compactness weight to 30, 0.9, and 0.5, respectively, based on the “trial and
error” approach. Then, we randomly chose 200 segmented objects as training samples for each typical
type of urban land cover, namely greenspace, shadow, water, building, and pavement. Based on these
samples, we used the spectrum and shape features, including five image bands, NDVI (Normalized
Difference Vegetation Index), NDWI (Normalized Difference Water Index), and length for supervised
classification. We used the support vector machine (SVM) as the classifier to classify segmented objects.
We used the radial basis function (RBF) kernel of the SVM. According to a previous study [31], we tested
the 10 values of C—10−1, 100, 101, 102, 103, 104, 105, 106, 107, and 108—and 10 values of gamma—10−5,
10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, and 104. Finally, we set parameters C and gamma for the
SVM as 106 and 10−5, respectively. After supervised classification, we did extensive manual editing
to refine the classification, and then selected 300 test samples, at least 30 samples in each category
for accuracy assessment. We used a stratified random sampling method in Erdas Imagine (version
9.1) to generate testing samples, and then visually interpreted the “true” land cover type based on
the Pleiades image. Specifically, we generated 72 samples for greenspace, 77 samples for building,
67 samples for pavement, 30 samples for water, and 54 samples for shadow. The final classification
accuracy of the reference map was 92.58%.

3. Methods

We used three methods to classify LULC in 2009, as well as the changes from 2009 to 2015:
(1) Method 1: a method of using a backdating approach alone; (2) Method 2: a method of using a
transfer learning approach alone; and (3) Method 3: the new approach developed in this study that
integrates backdating and transfer learning. All three methods were applied with an object-based
procedure, which first segments the image into objects, and then classifies the objects. In addition,
all three methods used the same reference map, the land cover map of 2015, for classification and
change analysis. However, the way of how to use the reference map (Land cover map of 2015) was
different for the three methods (Figure 2). After classification, we combined the land cover map of
2009 and 2015 to map the land cover change.
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Figure 2. Flowchart of classification and change analysis. Method 1: backdating; Method 2: transfer
learning; Method 3: integration of backdating and transfer learning.

3.1. Method 1: Classification and Change Analysis using Backdating

3.1.1. Image Segmentation

We first segmented the 2009 GeoEye-1 image into objects. To ensure the boundaries of the
segmented objects match the land cover patches in 2015, we used the 2015 LULC map as a thematic
layer [14]. We segmented the image using multi-resolution segmentation algorithm that was embedded
in the commercial software of eCognitionTM. The multi-resolution segmentation algorithm is a
bottom-up region merging approach, which consecutively merges pixels or existing image objects
into larger ones, according to the criteria of relative homogeneity which is determined by the input
image layers [32]. In this study, we set equal weights for the five original bands when calculating
the homogeneity.

For multi-resolution segmentation, the parameter “scale” determines the degree of homogeneity
for the segmented objects, and thereby determines the average size of segmented objects. In general,
the greater the value of the scale, the larger the size of the objects. In addition, two pairs of
parameters: color and shape, and compactness and smoothness, affect the shape of segmented objects.
Corresponding to the size of different land cover types, we created two object levels. At level one,
the lower level, the scale value was set as 50 to separate the objects of fragmented greenspace, buildings,
and shadows. At level two, the scale value was set as 200 to segment the relatively large patches of
water and pavement. According to previous studies, we set the weights of color and shape as 0.9 and
0.1, respectively, and that of compactness and smoothness as 0.5 for both levels [33,34]. Consequently,
we created 14,943 segments in level 1, with the size ranging from 2 pixels to 11,898 pixels. For level 2,
we create 1231 segments, ranging in size from 32 pixels to 56,468 pixels. Finally, we merged the tiny
segments by setting the minimum mapping units to 100 pixels.

3.1.2. Backdating

Following the image segmentation, we conducted the object-based classification using the backdating
approach [9]. The backdating approach first applied change detection to separate changed (classified as
“No change”) and unchanged objects (classified as “Possible change”) based on the GeoEye-1 image in
2009 and the Pleiades image in 2015. Then, it classified the changed objects using rule-based classification
and assigned the unchanged objects as the same LULC classes as that of the reference map in 2015 (the
land cover map of 2015). All changed and unchanged objects were finally classified into one of the five
land cover types: greenspace, building, pavement, water, and shadow (Figure 3).
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Figure 3. Flowchart of land cover classification using backdating. The key steps were highlighted
in grey.

(1) Change detection

We applied the change vector analysis (CVA) approach to identify objects with change [12,35–37].
The change vector (CV) was calculated for each object based on the two normalized images. For each
object, we used the vectors R and S to represent the bands of GeoEye-1 image and Pleiades image,
respectively (Equation (1)).

R =


r1

r2
...

rn

, S =


s1

s2
...

sn

 (2)

n is the total number of image bands. Here, n equals five. For each object, r1 represents the mean value
of the first band of the GeoEye-1 image, and s1 represents the mean value of the same band of the
Pleiades image.

For each object, the change magnitude of CV is calculated as Equation (2):

||∆V|| =
[
(r1 − s1)

2 + (r2 − s2)
2 + · · ·+ (rn − sn)

2
]1/2

(3)

||∆V|| represents the total spectral differences between image 2009 and 2015 for a given object.
In general, the greater the value of the ||∆V||, the higher the possibility of change in land cover type.

With the CVA algorithm, a specific threshold of change magnitude of CV is set to determine whether
change occurs to an object (Equation (3)). As the threshold may vary by land cover types, the use of
one single threshold for the whole scene may be inappropriate, generally resulting in over-extraction or
under extraction [35]. In this study, we used a multi-threshold method, which identified the threshold
values of change based on different land cover types [12]. Specifically, we first classified all objects to
class j (greenspace, building, pavement, water, and shadow) according to the land cover map of 2015,
and then calculated the change magnitude of CV for all objects ( ||∆V j(x) ||). Using all the objects in
class j, we calculated the mean CVj ( ||V̄ j ||) and the standard deviation of the CVj (σ j). For each object
in class j, we finally classified it to change or unchanged based on Equation (3).

CV j(x) =
{

change i f ||∆V j(x)|| ≥ ||V̄ j||+ a jσ j
unchange i f ||∆V j(x)|| < ||V̄ j||+ a jσ j

(4)

For any land cover type j, ||V̄ j || is the mean of all change vector CV j, σ j is the standard deviation
of the CV j, and a j is an adjustable parameter. The large value of a j will lead to less changed objects,
vice versa.

To find the optimal threshold, we tested a series of values of a j, from 0.1 to 3. We finally set
the value of a j as 1.5, which achieved the highest classification accuracy, to identify all the objects
that potentially had change. In other words, all land cover classes used a threshold of the mean plus
and minus 1.5 times the standard deviation of the CV j to separate changed and unchanged objects.
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The threshold value was chosen based on a previous study [38]. We classified the objects as “Possible
Change” if the value of CV j is larger than the threshold and classified the rest of objects as “No Change”.
To calculate the values of ||V̄ j || and σ j for each land cover class, we used the classification result in the
reference map to determine the land cover type for each object [12,19].

(2) Rule-based classification

We used a rule-based approach for this classification, following the method detailed in previous
studies [39]. Figure 4 shows the features and thresholds that were used for classification (Figure 4),
all threshold values were determined by the “trial and error” approach. Specifically, we first separated
shaded objects from non-shaded objects based on the brightness and NDWI of the object. If the value
of brightness (the mean value of five original bands) is smaller than 260 and NDWI was smaller
than 0.42, we classified them into the class of shadow. For non-shaded objects, we first separated
greenspace (i.e., vegetated land) from non-vegetated land. We classified the objects with the value
of NDVI greater than 0.55 as greenspace. For non-greenspace objects, we further separated objects
of water from non-water. We classified the objects as water if the value of NDWI was greater than
0.40. Non-water objects were further classified as buildings and pavements. Objects with a brightness
greater than 500, or with brightness smaller than 415 but NDVI smaller than 0.43 were classified as
buildings, and the rest were then classified as pavement.

Figure 4. The rule-based classification procedure in Method 1, showing the classification tree and
features and thresholds used for classification.

3.2. Method 2: Classification and Change Analysis using Transfer Learning

3.2.1. Image Segmentation

The process of image segmentation was the same as that in Method 1.

3.2.2. Transfer Learning

We deem the images over two periods as t1 (2009) and t2 (2015). X1 (GeoEye-1) and X2 (Pleiades)
are original images acquired at time t1 and t2, respectively. We have classified the land cover at time t2,
labeled P2 (the land cover map of 2015) in advance. The goal of the transfer learning is to produce a
land cover map based on image X1 with the transferred knowledge from image X2 and land cover
labels of P2.

Following the image segmentation, we conducted the object-based classification using the transfer
learning approach [10]. The transfer learning approach first applied change detection to select a training
sample set and labeled all samples to land cover types based on the land cover map of 2015. With the
training sample set, we conducted a supervised classification for the whole study area (Figure 5).
All objects were finally classified into one of the five land cover types: greenspace, building, pavement,
water, and shadow.
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Figure 5. Flowchart of land cover classification using transfer learning.

(1) Change detection

The algorithm of change detection was the same as that in Method 1. The difference is, we tested
a series of values of a j, from 0.1 to 1.5, to find the optimal threshold. We finally set the value of a j
as 0.4, which achieved the highest classification accuracy. That is, we used a threshold of the mean
plus and minus 0.4 times the standard deviation of the CV j for all land cover classes to select training
samples. We classified the objects as “training sample” if the value of CV j is smaller than the threshold.
To calculate the values of ||V̄ j || and σ j for each land cover class, we used the classification result in
the reference map to determine the land cover type for each object [12,19]. Finally, we transferred
360 samples for building, 395 samples for pavement, 89 samples for shadow, 350 samples for greenspace,
and 16 samples for water.

(2) Supervised classification

We used a supervised classification approach based on the transferred training sample set.
We selected NDVI, NDWI, brightness, and the DN value of the five original bands as features for
supervised classification (Table 2). For the classifier, we compare the classification performance of the
support vector machine and random forest. Because the classification accuracy of the random forest
was generally 3–5% higher than that of the support vector machine, we finally chose random forest
as the classifier. Specifically, we set the maximum number of resulting decision trees as 50, and set
the active variables as 3, which is used to determine the best splits for each tree. The maximum tree
number was set empirically, and the value of the active variable was set based on the square root of the
total number of features [40].

Table 2. Object features used for supervised classification.

Object Features Description

Mean value of blue Mean value of the blue band of an image object
Mean value of green Mean value of the green band of an image object

Mean value of red Mean value of the red band of an image object
Mean value of near-infrared Mean value of the near-infrared band of an image object
Mean value of panchromatic Mean value of the panchromatic band of an image object

Brightness Mean value of the 5 original bands
NDVI (near infrared − red)/(near infrared + red)
NDWI (green − near infrared)/(green + near infrared)

3.3. Method 3: Classification and Change Analysis Integrating Backdating and Transfer Learning

3.3.1. Image Segmentation

The process of image segmentation was the same as that in Method 1.

3.3.2. Backdating & Transfer Learning

Following the image segmentation, we conducted the object-based classification combining the
backdating and transfer learning approach. First, we applied change detection to separate changed
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and unchanged objects based on the GeoEye-1 image in 2009 and the Pleiades image in 2015. Then,
we select a training sample set, and labeled all samples to land cover types based on the land cover
map of 2015. For the changed objects, we conducted a supervised classification based on the training
sample set and Method 2. For example, the changed and unchanged objects were the same as those for
the rest unchanged objects, we assigned the same LULC classes as that of the reference map in 2015
(Figure 6). Here, the methods and parameters of backdating and transfer learning were consistent with
Method 1. The training sample set was the same as that in Method 2.

Figure 6. Flowchart of land cover classification integrating of backdating and transfer learning.

For the purpose of applying this method to other images, we need to reset two important
parameters. One is the CV threshold that is used to classify change and unchanged objects, the other
one is the threshold of CV that is used to select a training sample set. Those two thresholds are
calculated based on the parameter aj, the adjustable parameter in change detection. The optimal value
of aj can be determined by a “trial and error” approach. In addition, as an object-based classification,
the parameters of segmentation also need to be reset according to the classification target.

(1) Change detection

The algorithm of change detection was the same as that in Method 1. The difference is, Method 3
not only used it to separate changed and unchanged objects, but also used it to select training samples.
Specifically, we set the a j as 1.5 to classify change and unchanged objects and set the a j as 0.4 to select
training samples.

(2) Supervised classification

We used the same training samples, classifier, and parameter setting as that of Method 2 for
supervised classification. However, different from Method 2, we only conducted the classification for
the objects of changed objects (classified as “Possible change”) instead of all objects in the study area.
After classification, we combined the land cover map of 2009 and 2015 to map the land cover change.

3.4. Accuracy Assessment

We conducted accuracy assessment for (1) the change detection layer from 2009 to 2015 which
were used in Method 1 and Method 3; (2) the sample selection layer from 2009 to 2015 which were used
in Method 2 and Method 3; (3) the classification maps resulted from the three methods; and (4) the
three change analysis maps from the three methods. We used a pixel-based stratified random sampling
scheme in Erdas Imagine (version 9.1) to select testing samples. For the change detection layer and
sample selection layer, we selected a total number of 300 samples, with 150 samples for change,
150 samples for no change. For classification maps and change analysis maps, we selected a total
number of 300 samples, with at least 30 samples for each category. We used the GeoEye-1 image in
2009 to verify the classification results and used both images in 2009 and 2015 to verify the results
of changes. Error matrices were generated to calculate the overall accuracies, user’s and producer’s
accuracy, and the Kappa statistics.



Remote Sens. 2020, 12, 4094 10 of 19

4. Results

4.1. Comparison of the Classification Accuracy

Method 3 had the best classification accuracies among the three methods (Figure 7; Tables 3–6).
The overall accuracy and Kappa statistic of Method 3 were 85.33% and 0.82, respectively, slightly higher
than that of Method 1 (83.33% and 0.79), and much higher than that of Method 2 (76.00% and 0.70).
While the overall accuracies of Method 3 and Method 1 were similar, Method 3 had better classification
results on distinguishing buildings and pavements (Figure 8; Tables 3 and 5). For example, the user’s
accuracy of the building of Method 3 was 8.50% greater than that of Method 1, and the producer’s
accuracy of the pavement of Method 3 was 6.67% greater than that of Method 1.

Figure 7. The classification results of the three methods.

Table 3. The classification accuracies in Method 1–3. Bold values refer to the highest accuracies.

Method 1 Method 2 Method 3

Overall Acc. (%) 83.33 76 85.33
Kappa Coefficient 0.79 0.70 0.82

Producer’s Acc. (%)

Greenspace 90.48 93.65 92.06
Water 76.79 80.36 80.36

Building 95.08 75.41 93.44
Pavement 63.33 33.33 70.00
Shadow 90.00 96.67 90.00

User’s Acc. (%)

Greenspace 77.03 95.16 76.32
Water 100.00 93.75 97.83

Building 75.32 59.74 83.82
Pavement 74.50 58.82 76.36
Shadow 98.18 73.42 98.18
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Table 4. The classification accuracies in Method 1.

Reference Data

Classes Greenspace Water Building Pavement Shadow Sum

Greenspace 57 5 0 10 2 74

Water 0 43 0 0 0 43

Building 1 2 58 12 4 77

Pavement 5 5 3 38 0 51

Shadow 0 1 0 0 54 55

Sum 63 56 61 60 60
Producer’s Acc. (%) 90.48 76.79 95.08 63.33 90

User’s Acc. (%) 77.03 100 75.32 74.5 98.18
Overall Acc. (%) 83.33

Kappa Coefficient 0.79

Table 5. The classification accuracies in Method 2.

Reference Data

Classes Greenspace Water Building Pavement Shadow Sum

Greenspace 59 1 1 1 0 62
Water 0 45 0 2 1 48

Building 0 0 46 31 0 77
Pavement 4 0 9 20 1 34
Shadow 0 10 5 6 58 79

Sum 63 56 61 60 60

Producer’s Acc. (%) 93.65 80.36 75.4 33.33 96.67
User’s Acc. (%) 95.16 93.75 59.74 58.82 73.42
Overall Acc. (%) 76

Kappa Coefficient 0.7

Table 6. The classification accuracies in Method 3.

Reference Data

Classes Greenspace Water Building Pavement Shadow Sum

Greenspace 58 5 1 10 2 76
Water 0 45 0 0 1 46

Building 0 0 57 8 3 68
Pavement 5 5 3 42 0 55
Shadow 0 1 0 0 54 55

Sum 63 56 61 60 60
Producer’s Acc. (%) 92.06 80.36 93.44 70 90

User’s Acc. (%) 76.32 97.83 83.82 76.36 98.18
Overall Acc. (%) 85.33

Kappa Coefficient 0.82

For all the three methods, the user’s and producer’s accuracy for pavement were relatively low,
especially for Method 2 (Table 5). There are a large proportion of the objects of pavement were
misclassified as buildings (Figure 7; Table 5). In addition, some of the objects of pavement were also
misclassified as greenspace. The user’s and producer’s accuracy for the pavement of Method 3 were
76.36% and 70.00%, respectively, which were 1.86% and 6.67% higher than that of Method 1, and 17.54%
and 36.67% higher than that of Method 2.



Remote Sens. 2020, 12, 4094 12 of 19

Figure 8. The zoom-in of classification results of the three methods. We highlighted the classification
results in 2009 in gray.

4.2. Comparison of the Change Detection Accuracy

For the change detection of “Possible change” and “No change” that used for backdating of
Method 1 and Method 3, the overall accuracy and Kappa coefficients were 87.67% and 0.75, respectively
(Table 7). The user’s accuracy and producer’s accuracy of “Possible change” were 91.85% and 82.67%.
That indicated 91.85% of the detected changes were correct, and 17.33% of the real changes were
missing. After the change detection, we classified 16.49% of the study area as “Possible change” and
classified the rest 83.51% area as “No change”.

Table 7. The accuracies of change detection in Method 1 and Method 3.

Reference Data

Classes Possible Change No Change Sum

Possible change 124 11 135
No change 26 139 165

Sum 150 150
Producer’s Acc. (%) 82.67 92.67

User’s Acc. (%) 91.85 84.24
Overall Acc. (%) 87.67

Kappa Coefficient 0.75

For training samples that were automatically chosen based on transfer learning used in Method
2 and Method 3, the overall accuracy and Kappa coefficient were 86.33% and 0.73, respectively,
which were 1.37% and 0.02 lower than that of change detection (Table 8). Although the overall accuracy
was lower, the classification accuracy of “no change” which used as transferred samples for supervised
classification was higher than that of change detection. The user’s accuracy of no change was 88.11%,
3.87% higher than that of change detection. That means 88.11% of samples used for supervised
classification were correctly selected. In addition, the area of those samples accounts for 70.12% of the
entire study area.
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Table 8. The accuracies of transfer learning for sample selection used in Method 2 and Method 3.

Reference Data

Classified Data Possible Change No Change Sum

Possible Change 133 24 157
No change 17 126 143

Sum 150 150
Producer’s Acc. (%) 88.67 84.00

User’s Acc. (%) 84.71 88.11
Overall Acc. (%) 86.30

Kappa Coefficient 0.73

The accuracy assessment on the change analysis also showed that Method 3 had greater overall
accuracy than Method 1 and Method 2. The overall accuracy of Method 3 was 88.67%, and the Kappa
statistic was 0.87. The overall accuracy of Method 3 was 4.00% greater than that of Method 1 and
9.00% greater than that of Method 2 (Tables 9–12). Overall, Method 3 and Method 1 had similar
change analysis results for many of the change classes (Tables 10 and 12). However, Method 3 greatly
improved the producer’s accuracy for the classes “09GS to 15SD” (i.e., greenspace in 2009 convert to
shadow in 2015) and “09PA to 15SD” (i.e., the pavement in 2009 convert to shadow in 2015). For both
methods, the user’s and producer’s accuracy, for the classes “09BLD to 15SD” (i.e., building in 2009
convert to shadow in 2015) and “09PA to 15SD” (i.e., the pavement in 2009 convert to shadow in 2015),
was relatively low.

The change analysis maps showed that Method 2 identified more changes than Method 1 and
Method 3, which were in fact not real changes (Figure 9). Method 2 identified 827 objects as changed,
accounting for 38.82% of the total area, but Method 1 and Method 3 only identified 356 and 340
objects as changed, accounting for 11.98% and 11.87% of the total area, respectively. Consequently,
the producer’s accuracy for “NoChange” with Method 2 was 20.41% lower than that of Method 1 and
Method 3, resulting in a much lower overall accuracy of Method 2 (Tables 10–12). In addition, Method
2 identified 17 types of land cover change, some of which did not exist in the study area, such as the
type of change from pavement to water (Figure 9).

Table 9. The classification accuracies of changes in Method 1–3. Bold values refer to the
highest accuracies.

Method 1 Method 2 Method 3

Overall Acc. (%) 84.67 79.67 88.67
Kappa Coefficient 0.83 0.77 0.87

Producer’s Acc. (%)

NoChange 91.84 71.43 91.84
09GS to 15SD 66.67 81.25 93.75

09GS to 15BLD 100 96.67 96.67
09GS to 15PA 100 86.67 96.67

09BLD to 15SD 100 63.33 63.33
09PA to 15BLD 100 96.67 100
09PA to 15GS 100 85.3 100
09PA to 15SD 46.94 67.35 71.43

User’s Acc. (%)

NoChange 100 100 100
09GS to 15SD 100 100 100

09GS to 15BLD 100 90.63 96.67
09GS to 15PA 100 92.86 100

09BLD to 15SD 46.15 57.58 57.58
09PA to 15BLD 96.77 87.88 93.75
09PA to 15GS 100 85.3 94.44
09PA to 15SD 82.14 66 71.43
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Table 10. The classification accuracies of changes in Method 1.

Method 1 Reference Data

Classes No
Change

09GS to
15SD

09GS to
15BLD

09GS to
15PA

09BLD
to 15SD

09PA to
15BLD

09PA to
15GS

09PA to
15SD Sum

No change 43 0 0 0 0 0 0 0 43
09GS to 15SD 0 32 0 0 0 0 0 0 32

09GS to 15BLD 2 0 30 0 0 0 0 0 32
09GS to 15PA 0 0 0 30 0 0 0 0 30

09BLD to 15SD 0 9 0 0 30 0 0 26 65
09PA to 15BLD 1 0 0 0 0 30 0 0 31
09PA to 15GS 1 0 0 0 0 0 34 0 35
09PA to 15SD 0 5 0 0 0 0 0 22 27
False Change 3 2 0 0 0 0 0 0 5

Sum 50 48 30 30 30 30 34 48
Producer’s Acc. (%) 91.84 66.67 100.00 100.00 100.00 100.00 100.00 46.94

User’s Acc. (%) 100.00 100.00 100.00 100.00 46.15 96.77 100.00 82.14
Overall Acc. (%) 84.67

Kappa Coefficient 0.83

Note: 09SD: shadow in 2009; 09GS: greenspace in 2009; 09BLD: building in 2009; 09PA: pavement in 2009; 15SD:
shadow in 2015; 15GS: greenspace in 2015; 15BLD: building in 2015; 15PA: pavement in 2015. False change: the false
types of change that did not occur.

Table 11. The classification accuracies of changes in Method 2.

Method 2 Reference Data

Classes No
Change

09GS to
15SD

09GS to
15BLD

09GS to
15PA

09BLD
to 15SD

09PA to
15BLD

09PA to
15GS

09PA to
15SD Sum

No change 33 0 0 0 0 0 0 0 33
09GS to 15SD 0 39 0 0 0 0 0 0 39

09GS to 15BLD 0 1 29 2 0 0 0 0 32
09GS to 15PA 1 1 0 26 0 0 0 0 28

09BLD to 15SD 0 0 0 0 33 0 0 0 33
09PA to 15BLD 5 0 1 0 0 29 0 0 35
09PA to 15GS 3 1 0 0 0 0 29 2 35
09PA to 15SD 0 6 0 0 11 0 0 32 49
False Change 8 0 0 2 0 1 5 0 16

Sum 50 48 30 30 44 30 34 34
Producer’s Acc. (%) 71.43 81.25 96.67 86.67 63.33 96.67 85.30 67.35

User’s Acc. (%) 100.00 100.00 90.63 92.86 57.58 87.88 85.30 66.00
Overall Acc. (%) 79.67

Kappa Coefficient 0.77

Note: 09SD: shadow in 2009; 09GS: greenspace in 2009; 09BLD: building in 2009; 09PA: pavement in 2009; 15SD:
shadow in 2015; 15GS: greenspace in 2015; 15BLD: building in 2015; 15PA: pavement in 2015. False change: the false
types of change that did not occur.

Table 12. The classification accuracies of changes in Method 3.

Reference Data

Classes No
Change

09GS to
15SD

09GS to
15BLD

09GS to
15PA

09BLD
to 15SD

09PA to
15BLD

09PA to
15GS

09PA to
15SD Sum

NoChange 45 0 0 0 0 0 0 0 45
09GS to 15SD 0 45 0 0 0 0 0 0 45

09GS to 15BLD 0 0 29 1 0 0 0 0 30
09GS to 15PA 0 0 0 29 0 0 0 0 29

09BLD to 15SD 0 0 0 0 33 0 0 0 33
09PA to 15BLD 1 0 1 0 0 30 0 0 32
09PA to 15GS 3 0 0 0 0 0 34 0 37
09PA to 15SD 0 3 0 0 11 0 0 34 48
False Change 1 0 0 0 0 0 0 0 1

Sum 50 48 30 30 44 30 34 34
Producer’s Acc. (%) 91.84 93.75 96.67 96.67 63.33 100.00 100.00 71.43

User’s Acc. (%) 100.00 100.00 96.67 100.00 57.58 93.75 94.44 71.43
Overall Acc. (%) 88.67

Kappa Coefficient 0.87

Note: 09SD: shadow in 2009; 09GS: greenspace in 2009; 09BLD: building in 2009; 09PA: pavement in 2009; 15SD:
shadow in 2015; 15GS: greenspace in 2015; 15BLD: building in 2015; 15PA: pavement in 2015. False change: the false
types of change that did not occur.
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Figure 9. The change analysis results from three methods. The false types of change that did not occur
were marked in gray.

For all three methods, misclassifications were mostly related to changes associated with shaded
objects. In particular, the user’s and producer’s accuracy for “09BLD to 15SD” and “09PA to 15SD”
were very low. Many of these changes were not real changes but were caused by the classification of
shaded buildings and pavements into shadow. A close examination of the map showed that objects
classified as the shadow in 2015 were frequently a mixture of buildings and pavements. It’s very
difficult to separate shaded buildings from shaded pavements without the aid of ancillary data [39].

5. Discussion

Due to the availability of long-term Landsat images and the global land cover products,
most previous studies have explored the performance of the backdating or transfer learning approach
based on medium resolution images [9,10]. However, with the increasing availability of high resolution
data and the cloud platform, such as Google Earth Engine, those methods have a large potential to be
widely applied to high resolution images. Here, we examined whether the backdating and transfer
learning approaches are also applicable to high resolution images. Compared with the classification
accuracy of the medium resolution images, which are usually higher than 85% [9,10,12,19], backdating
(83.3%) and transfer learning (76%) achieved relatively lower accuracy when applied to high resolution
images. That is mainly because the urban landscapes are highly fragmented, and some urban land
cover types have large spectral variety, such as buildings and pavement. In addition, the backdating
approach achieved higher classification accuracy and generated less false change than transfer learning.
That indicates that compared with direct land cover classification, delivery of the correct classification
results from the reference map tends to achieve higher accuracy and largely reduce the errors caused
by spatial misregistration.

The new approach that integrates backdating and transfer learning was superior to Method 1
using backdating alone and Method 2 using transfer learning alone, in terms of both classification
accuracy and efficiency. Comparing to the backdating method, the new approach integrates transfer
learning, and thereby can automatically select the training samples. By doing this, it not only reduces
the subjectiveness in training sample selection, but also minimizes the manual work of sample selection
that can be labor-intensive, and thus makes the selection of a large number of training samples feasible
and effective [11,20,24]. The use of a large number of training samples is necessary and useful for
improving the classification accuracy of certain classes such as buildings that have large within-class
spectral variations [41,42]. Comparing to the transfer learning method, the new approach was more
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accurate and efficient in classification and change analysis. This is because the integration of backdating
allows the use of classification from the reference map for the unchanged areas, which account for
83.51% of the study area [17].

In the classification procedure, two parameters need to be properly set, especially when we transfer
this approach to other regions or images. One is the parameter a j that controls the change detection,
which decided where to conduct the classification. The other is the parameter a j that controls the
sample selection, which decided what information will be used for classification. The first parameter
decides the trade-offs of Method 3 with respect to Methods 1 and Method 2. In the extreme case that if
we set a very large a j in change detection, we will identify no changed objects in our study area and
resulting in the same classification results as Method 1. On the contrary, if we set a very small a j in
change detection, the whole study area will be classified as change, and lead to the same classification
results as Method 2. The proper thresholds will identify the real changes and select the correct training
samples, which will finally determine the classification accuracy. In this study, the thresholds of
these two parameters were determined by the “trial and error” approach, which required manual
intervention. In the future, if we can develop algorithms to automatically choose the optimal thresholds
of the two parameters, this new approach will be more efficient and transferrable.

The image misregistration between two images which presented as the boundary inconsistent is a
bottleneck for improving the accuracy of in change analysis [43,44]. Regardless of using medium or
high resolution imagery, previous studies have shown that compared with pixel-based classification,
the object-based framework can greatly reduce the error in change detection caused by spatial
misregistration [9,45,46]. In our method, we used the reference map as the thematic layer in the
segmentation procedure. Specifically, we used the borders of land cover patches in the reference map to
restrict the segmentation of new objects, which resulting in consistent borders, reduced the error caused
by spatial misregistration, especially for images from different sensors. In addition, the object-based
approach can incorporate the spatial, textural, and neighboring features in classification, which have
great potential to increase the classification accuracy [39].

With the substantial improvement in classification and change analysis accuracy and efficiency,
the new approach provides an effective means for large area classification and change analysis
using high spatial resolution imagery. Compared with medium and coarser resolution image data,
high spatial resolution images have a larger data size, greater within-class spectral variations, and are
more affected by spatial misregistration [39,47]. Such a new approach is highly desirable for high
spatial resolution data. At present, the lack of a high-resolution land cover product, the “reference
map” of the new method, has limited the use of this new approach. The long-term monitoring of urban
LULC dynamics is commonly based on medium resolution data such as the 30 m Landsat images [48].
In the future, however, with the development of global high-resolution land cover products [49],
this approach is expected to realize the long-term and high-frequency monitoring of fine-scale LULC
changes in urban areas based on high-resolution images.

6. Conclusions

For the accurate and efficient classification and change analysis of high spatial resolution imagery,
we present a novel approach that integrates backdating and transfer learning under an object-based
framework. The new approach first uses backdating to identify the target area for classification and then
uses transfer learning to automatically select training samples for supervised classification. Compare to
the backdating or transfer learning approaches which were usually separately used for classification,
the new approach that combines these two approaches can improve the accuracy. The overall accuracy
of classifications and change analysis were 85.33% and 88.67%, respectively, which were 2.0% and 4.0%
higher than that of backdating, and 9.3% and 9.0% higher than that of transfer learning. In addition,
the new method can promote efficiency in sample selection and classification, and largely reduce
false change. In the classification procedure, two parameters need to be properly set especially when
we transfer this approach to other regions or images. One is the parameter that controls the change
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detection, which decided where to conduct the classification. The other is the parameter that controls
the sample selection, which decided what information will be used for classification. In the future,
with the development of global high-resolution land cover products, this approach is expected to
realize the high-resolution land cover classification of long-time series in urban areas.
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