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Abstract: The primary goal of thematic accuracy assessment is to measure the quality of land
cover products and it has become an essential component in global or regional land cover mapping.
However, there are many uncertainties introduced in the validation process which could propagate
into the derived accuracy measures and therefore impact the decisions made with these maps.
Choosing the appropriate reference data sample unit is one of the most important decisions in this
process. The majority of researchers have used a single pixel as the assessment unit for thematic
accuracy assessment, while others have claimed that a single pixel is not appropriate. The research
reported here shows the results of a simulation analysis from the perspective of positional errors.
Factors including landscape characteristics, the classification scheme, the spatial scale, and the
labeling threshold were also examined. The thematic errors caused by positional errors were analyzed
using the current level of geo-registration accuracy achieved by several global land cover mapping
projects. The primary results demonstrate that using a single-pixel as an assessment unit introduces a
significant amount of thematic error. In addition, the coarser the spatial scale, the greater the impact
on positional errors as most pixels in the image become mixed. A classification scheme with more
classes and a more heterogeneous landscape increased the positional effect. Using a higher labeling
threshold decreased the positional impact but greatly increased the number of abandoned units in
the sample. This research showed that remote sensing applications should not employ a single-pixel
as an assessment unit in the thematic accuracy assessment.
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1. Introduction

Land cover maps describe the natural and human-made materials that encompass the Earth’s
physical surface (e.g., water, forests, croplands, grasslands, and developed land) [1,2]. These maps
have become essential data for studying the complex interaction between human activities and climate
change [3,4]. The rapid development of satellite remote sensing has provided a variety of spatial,
spectral, and temporal images for regional or global land cover mapping [5,6]. Many successful land
cover products have been published, such as the National Land Cover Database (NLCD) [7] covering
the United States, the Global Land Cover 2000 (GLC 2000) [8] and the Global Food Security-Support
Analysis Data at 30 m (GFSAD) [9]. Before these data were released for decision making, a thematic
accuracy assessment should be performed to ensure their scientific validity [8,10,11].

The purpose of thematic accuracy assessment is to determine the quality of the information
about the land cover map [12–14]. Validation has evolved into a widely accepted framework that
generally consists of four components: reference data collection, sampling, generating an error matrix,
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and analysis of accuracy measures [12,15]. The reference data are often derived from either ground
surveys, higher resolution images, or higher quality maps [16,17]. Since a comparison of the entire
map with the reference data is arduous and nearly impossible, typically a sample is collected for
validation [18,19]. The results of the comparison are characterized in an error matrix where the
accuracy measures such as overall accuracy, Kappa, user accuracy, and producer accuracy can be
calculated [12,20]. Over the last four decades, the theories and methodologies of thematic accuracy
assessment have been well developed [14–16,20–23]. A comprehensive review of thematic accuracy
assessment was provided by Congalton and Green [12] and by Stehman and Foody [14]. However,
the practical application of these techniques can result in many unexpected uncertainties with the
data collection, including sampling issues and especially positional errors [24–27]. These uncertainties
introduce non-error differences into the error matrix, which then propagates into the research or
decision-making afterward [15,28,29]. As a result, analyzing and modeling these uncertainties and
then finding solutions become essential.

Choosing an assessment unit (i.e., sampling unit) is one such uncertainty in thematic accuracy
assessment [12,30]. The choice of an assessment unit highly depends on the classification methodology
applied to the analysis. For example, object-based classification favors the polygon as an assessment
unit [31–33], while subpixel-based classification tends to employ multiple classes within a pixel [34,35].
However, there have been various choices selected for the assessment unit of the per-pixel classification,
including a single pixel, a cluster of pixels (e.g., 3× 3 pixels), and a polygon [12]. The main argument lies
in whether the single-pixel is appropriate. Janssen and Vanderwel [36] and Richards [37] supported the
use of single-pixel as the assessment unit. Since then, others have continued to utilize the single-pixel
for thematic accuracy assessment (e.g., [10,38,39]). However, Congalton and Green [12] suggest that
a single-pixel is an inferior choice for the following reasons. First, a pixel is arbitrary and poorly
represents the actual landscape. Second, geographically aligning one pixel in a classification map
(image) to its reference data is problematic even with the best geometric registration. Third, locating
the exact position of the corners of the pixel on the ground to match with the image is not possible.
Finally, land cover mapping projects seldom assign a pixel as a minimum mapping unit, and therefore
the assessment is not evaluating the appropriate level of detail. Unfortunately, a recent review of trends
in remote sensing accuracy assessment showed that 55.5% of the studies still collected the reference
data by interpreting either GPS points at the pixel level from ground surveys or single pixels from
higher resolution images [13].

Many studies have reported that positional error is a leading factor impacting the error represented
in the error matrix [25,26,40,41]. The reason is that the positional errors cannot wholly be resolved in
the image, although a precision correction has been implemented using ground control points [42,43].
Half-pixel geo-registration accuracy is often reported by most moderate resolution (i.e., Landsat,
Sentinel, etc.) remote sensing applications [44,45]. GPS error would be another source of positional
errors if the reference data were collected from the ground surveys [12]. The GPS error varies from 5 to
20 m [46]. Previous research has shifted one pixel of an image to show an 8 to 24 percent deviation of
overall accuracy using the single-pixel as the assessment unit [30,47]. Despite these advances, several
insufficiencies still exist. First, most research employed a shift of only one pixel to illustrate the impact
of positional errors. Systematically investigating the positional effect at the subpixel level has not been
investigated. Second, a half-pixel seems to have become a requirement to avoid the positional effect.
However, the magnitude is still not clear for the per-pixel classification accuracy assessment. Third,
most research studied the positional effect while other errors such as classification or sampling errors
simultaneously exist or were left uncontrolled. Therefore, it was impossible to extract the impact of
positional error alone in these studies.

Several additional factors, such as landscape characteristics, the classification scheme, the spatial
scale, and the reference labeling procedure, may enhance or undermine the positional effect [16,25,26,48].
Gu, Congalton and Pan [26] considered the first three factors when analyzing the influence of positional
errors on subpixel classification accuracy assessment. The results showed that a more heterogeneous
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landscape or a classification scheme composed of more classes could increase the positional impact;
however, this trend does not apply equally to all spatial scales. The reference labeling procedure
determines the label of the reference data [14]. This procedure is necessary because while a pixel in the
per-pixel classification map has a unique class label, the same spatial unit in the reference data may
consist of multiple classes. For example, suppose a pixel (e.g., spatial resolution is 250, 500, or 1000 m)
in the Moderate Resolution Imaging Spectroradiometer (MODIS) image was classified as an evergreen
needle-leaved forest. However, the same spatial extent in the reference data (e.g., Landsat image) may
include 55% of the needle-leaved forest, 30% of mixed forest, and 15% of grassland. The coarser the
classification map, the more significant the heterogeneity of the spatial units in the reference data.
Intuitively, a slight positional error could substantially change the proportions of classes and, therefore,
the answer. To match the unique label in the classification map and also reduce the positional effect,
per-pixel classification accuracy assessment usually hardens multiple labels within a reference unit to a
unique one and then compares it with that of the classification map [12,14]. The hardening process
usually applies a simple majority rule, but a labeling threshold could be further added to the rule
to reinforce the reference unit’s homogeneity [30]. The majority rule determines if a unique class
dominates; if not, this reference unit is abandoned. For example, any reference data sample unit must
contain at least 50% of a single map class or it is not used as a valid reference data sample. The labeling
threshold could also be set higher or lower than 50%. If the threshold is set higher, then the reference
sample units that are retained for the analysis will have greater homogeneity, but more samples will be
abandoned. The converse is also true.

A higher labeling threshold potentially reduces the positional effect. However, a higher labeling
threshold also leads to a larger number of abandoned assessment units, which may further affect the
sampling population. A trade-off between the homogeneity to minimize the positional effect and
abandoned units needs to be considered. However, how this threshold affects the balance has not been
well studied.

Therefore, the primary objective of this study was to determine whether using a single-pixel as
an assessment unit is appropriate for the thematic accuracy assessment. The positional error was
assumed to be a leading factor in this determination. Other factors, including landscape characteristics,
classification scheme, spatial scale, and labeling thresholds, were also considered.

2. Methodology

2.1. Simulation of Positional Errors between the Map and the Reference Data

Suppose a map is created using a classification scheme composed of C classes labeled as 1, 2, . . . , c,
from a remotely sensed image based on a hard classification algorithm (e.g., support vector machine or
random forest [49,50]). The resulting classification map consists of N pixels where the pixel at (x, y) has
a unique label c(x,y). A sample of n pixels was randomly collected for the thematic accuracy assessment,
and a higher spatial resolution image was obtained as the reference data. Due to the difference in
spatial resolution, a sampled pixel in the classification map corresponds to a cluster of pixels in the
reference data.

As a result of misregistration, the sampled pixel at (x, y) would use the cluster at (α0 + α1x +

α2y,α3 + α4y + α5x) as reference data where the parameters α0,α1,α2,α3,α4,α5 and α6 describe the
amount and forms of the misregistration, such as scaling, rotation, translation, and scan skewing [51].
Additionally, the positional errors vary non-uniformly through the map [40]. All these factors make
the simulation of positional errors complicated and impractical. Therefore, this research applied a
simplified model developed by Dai and Khorram [51] and Chen, et al. [52], assuming that positional
errors are distributed equally in a small neighborhood. In other words, a pixel (x, y) in the sample
would use the cluster at (x + ∆, y + ∆) as a reference location where ∆ is a relative distance denoting
the number of pixels off from its original position.
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2.2. Determination of the Reference Label

The pixel at (x, y) in the classification map has a unique label c(x,y). However, multiple classes
may exist within a reference cluster. A unique cluster label was determined by Equations (1) and (2).

r(x+∆, y+∆) =

{
r, r ∈ R , ∅

Null, R = ∅ (1)

R =
{
l | l ∈ C∧ ∀i ∈ C : P(i)

〈
P(l)∧ P(l)

〉
T

}
(2)

In Equation (1), r(x+∆, y+∆) represents the label of a cluster, which was assigned either a unique
label r belonging to a non-empty set R or a label Null if R is empty. The set R depends on Equation (2).
The P(i) in Equation (2) represents the proportion of a class type i within a cluster. The inequation
∀i ∈ C : P(i) < P(l) returns the single dominant class l if it has a higher proportion than any other
class i belonging to C. It is worth noting that if a cluster has two dominant classes with the same
percentage, then the inequation returns null, making R empty. The inequation P(l) > T denotes that
the labeling threshold should be greater than T. As T increases, the cluster collected in the reference
data would become more homogeneous, reducing the possibility of a wrong label assigned from a
more heterogeneous cluster caused by positional errors. However, a higher T could also make R more
likely to be empty. Therefore, this research also counted the number of abandoned assessment sample
units (AASU) if r(x+∆, y+∆) = Null and then calculated the abandoned proportion of assessment units
(APAU) by dividing the AASU by the total number of the sampling units (n). A higher APAU means a
larger percentage of abandoned assessment units in the sample.

2.3. Thematic Accuracy Assessment

An error matrix (Table 1) was constructed based on the qualified samples. From the error matrix,
the overall accuracy (OA) and Kappa could be estimated. A few researchers have questioned the value
of Kappa and proposed quantity disagreement (QD) and allocation disagreement (AD) [53,54]. The QD
reflects the difference between a classification map and its reference data due to the mismatch in
the proportions of the classes, while AD measures the amount of difference caused by the mismatch
in the spatial allocation of the classes [53]. It is worth noting that the addition of AD and QD is
equal to 1 minus OA [53,54]. Despite these doubts, Kappa is still widely used in validating land
cover mapping [55–57]. This research’s focus is not on which accuracy measure is better but instead
analyzing the impact of positional accuracy when using a single pixel for thematic accuracy assessment.
Therefore, this research also added AD and QD as accuracy measures. In order to calculate AD and QD,
the error matrix (Table 1) was transformed into a proportional error matrix (Table 2) using Equation (3).

Pi j =

( ni j

ni+

)
∗

(Ni
N

)
(3)

Table 1. Error matrix for thematic accuracy assessment.

Reference

Class 1 Class 2 . . . Class C Sample
Total

Population
Total

Classification

Class 1 n11 n12 . . . n1C n1+ N1
Class 2 n21 n22 . . . n2C n2+ N2
. . . . . . . . . . . . . . . . . . . . .

Class C nC1 nC2 . . . nCC nC+ NC
n+1 n+2 . . . n+C n N

Accuracy
Measures Oa =

∑
n j j
n × 100%, Kappa =

n
∑C

j n j j−
∑C

j (n+ jn j+)
n2−

∑C
j (n+ jn j+)
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Table 2. Estimated proportion matrix.

Reference

Class 1 Class 2 . . . Class C Total

Classification

Class 1 P11 P12 . . . P1C P1+

Class 2 P21 P22 . . . P2C P2+

. . . . . . . . . . . . . . . . . .
Class k PC1 PC2 . . . PCC PC+

Total P+1 P+2 . . . P+C 1
Accuracy
measures QD = 1

2

C∑
i=1
|pi+ − p+i|, AD =

[
C∑

i=1
min(pi+, p+i)

]
−

C∑
i

pii

In Equation (3), ni j represents the number of samples that were classified as i in the classification
map but were class j in the reference data (Table 1). The term ni+ denotes the number of samples
classified into i. N is the total number of pixels in the classification map while Ni is the number of
pixels identified as i.

This research was interested in the component of the thematic error caused by positional errors and
the APAU due to threshold T. This part of the thematic error equals the absolute values of the accuracy
measures without positional errors minus the counterpart with positional errors (Equation (4)).

AM− error = |AM∆=0, T=t −AM∆,0,T=t| (4)

In Equation (4), AM∆=0, T=t represents an accuracy measure (AM) without positional errors while
AM∆=p,T=t is the accuracy measure when there are positional errors at the same threshold t. AM was
replaced by OA, Kappa, QD, and AD to derive OA− error, Kappa− error, QD− error, and AD− error. | |
indicates the absolute value operation. Whether to use a single pixel as the assessment unit depends
highly on the amount of the AM− error and the APAU.

3. Study Area and Experiment

3.1. Study Area

Landscape characteristics were assumed to impact the positional effect. Therefore, twelve study
sites representing varied landscape conditions were selected within the conterminous United States
through stratified random sampling (Figure 1). The sampling procedure was performed as follows.
First, a fishnet composed of 197 square grids was created completely within the conterminous United
States, and the extent of each grid was 180 × 180 km, nearly the same size as a Landsat scene [58].
Second, the landscape shape index (LSI), measuring overall geometric complexity of the entire
landscape, was calculated for each grid based on the NLCD 2016 product (level II classification scheme,
Table 3) [10,59] using Fragstats v4.2. Fragstats v4.2 is a software widely used for analyzing landscape
metrics for categorical maps [60]. Third, the 197 square grids were stratified into seven strata using
the LSI as an indicator: LSI < 200, 200 ≤ LSI < 300, 300 ≤ LSI < 400, 400 ≤ LSI < 500, 500 ≤ LSI < 600,
600 ≤ LSI < 700, LSI ≥ 700. Stratified random sampling was implemented with a sample size of 12.
The sample size within each stratum was proportional to the number of grids in that stratum. Twelve
study sites were sufficient to represent the landscape characteristics of the conterminous United States
because these study sites account for over 6% of the sampling population (197 grids) and each strata
had at least one sample. The twelve study sites were renamed from #1 to #12 according to the LSI
value from small to large (Table 4).
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Figure 1. Locations of the twelve study sites.

Table 3. Two levels of the classification scheme (The Level II is from the NLCD 2016 product legend
and the class names ending with the (#) symbol are not contained within any of the twelve study sites).

Level I Class Name Level II Class Name

1 Water
11 Open Water
12 Perennial Ice/Snow (#)

2 Developed

21 Developed, Open space
22 Developed, Low intensity
23 Developed, Medium intensity
24 Developed, High intensity

3 Barren 31 Barren Land

4 Forest
41 Deciduous Forest
42 Evergreen Forest
43 Mixed Forest

5 Shrubland
51 Dwarf Scrub (#)
52 Shrub/Scrub

7 Herbaceous

71 Grassland/Herbaceous
72 Sedge/Herbaceous (#)
73 Lichens (#)
74 Moss (#)

8 Planted/
Cultivated

81 Pasture/Hay
82 Cultivated Crops

9 Wetlands
90 Woody Wetlands
95 Emergent Herbaceous Wetlands
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Table 4. Landscape shape index (LSI) value of twelve study sites.

Level
Landscape Shape Index (LSI)

Site
#1

Site
#2

Site
#3

Site
#4

Site
#5

Site
#6

Site
#7

Site
#8

Site
#9

Site
#10

Site
#11

Site
#12

I 145.5 179.4 212.3 274.2 367.1 253.8 371.8 326.2 318.3 390.9 387.9 438.5

II 152.3 186.9 293.5 308.9 372.3 379.9 400.7 427.8 537.8 673.9 760.6 850.7

3.2. Classification Data

The classification map of each study site was extracted from the NLCD 2016 produced from
Landsat data at the spatial resolution of 30 m [61]. The classification scheme was assumed to influence
the positional effect. Therefore, two classification schemes were utilized in this study (Table 3). Level II
represents the NLCD 2016 classification scheme with 15 classes that are common to the twelve study
sites [10]. The percentage of the 15 classes at each study site is shown in Table 5. The level 1 classification
scheme was created by merging the thematic classes from level II into 8 classes (Table 3). The LSI value
and percentage of 8 classes of each study site as shown in Tables 4 and 6, respectively.

Table 5. Percentage of each thematic class for the twelve study sites using the level II classification
scheme (15 classes).

Level
II

Percentage of Area (%)

Site
1

Site
2

Site
3

Site
4

Site
5

Site
6

Site
7

Site
8

Site
9

Site
10

Site
11

Site
12

11 0.04 0.07 9.37 1.04 0.20 42.04 3.51 1.32 3.34 1.22 2.02 1.79
21 2.65 0.20 1.56 3.40 0.81 3.23 2.10 3.43 3.59 6.48 5.85 9.34
22 0.17 0.05 1.61 1.41 0.16 2.34 0.42 1.41 2.64 3.54 2.78 4.60
23 0.04 0.00 1.18 0.47 0.05 0.86 0.10 0.33 0.71 1.72 1.07 1.56
24 0.01 0.00 0.51 0.19 0.01 0.38 0.02 0.13 0.27 0.79 0.38 0.66
31 0.09 0.67 20.57 0.06 0.43 0.24 0.12 0.20 0.33 0.17 0.29 0.16
41 0.03 0.19 6.49 3.12 0.01 16.90 2.36 14.94 5.50 30.69 28.09 22.23
42 0.00 2.43 4.02 0.02 7.09 3.14 0.15 0.05 14.89 1.68 14.37 18.62
43 0.00 0.07 0.17 0.06 0.00 3.00 0.21 0.76 7.56 9.26 11.81 13.55
52 0.77 67.36 34.91 0.02 61.55 0.81 17.04 0.39 3.13 0.20 4.93 2.64
71 29.21 26.44 8.44 18.61 28.03 2.38 30.47 11.05 1.89 0.58 3.58 4.10
81 1.61 0.45 1.44 1.10 0.00 0.73 3.00 42.43 10.32 30.03 14.75 15.57
82 65.08 0.71 6.88 68.92 1.33 15.16 39.01 21.54 17.92 13.24 3.67 2.99
90 0.13 0.55 0.27 0.93 0.19 8.33 0.47 1.70 26.00 0.37 5.96 2.07
95 0.17 0.82 2.58 0.66 0.14 0.46 1.01 0.32 1.92 0.04 0.47 0.11

Table 6. Percentage of each thematic class for twelve study sites using level I classification scheme
(8 classes).

Level
I

Percentage of Area (%)

Site
1

Site
2

Site
3

Site
4

Site
5

Site
6

Site
7

Site
8

Site
9

Site
10

Site
11

Site
12

1 0.04 0.07 9.37 1.04 0.20 42.04 3.51 1.32 3.34 1.22 2.02 1.79
2 2.87 0.26 4.86 5.47 1.03 6.81 2.64 5.30 7.21 12.52 10.08 16.16
3 0.09 0.67 20.57 0.06 0.43 0.24 0.12 0.20 0.33 0.17 0.29 0.16
4 0.03 2.69 10.68 3.20 7.09 23.04 2.72 15.75 27.95 41.62 54.26 54.40
5 0.77 67.36 34.91 0.02 61.55 0.81 17.04 0.39 3.13 0.20 4.93 2.64
7 29.21 26.44 8.44 18.61 28.03 2.38 30.47 11.05 1.89 0.58 3.58 4.10
8 66.69 1.16 8.32 70.02 1.33 15.90 42.01 63.97 28.23 43.27 18.42 18.56
9 0.30 1.36 2.85 1.59 0.33 8.78 1.49 2.03 27.92 0.41 6.43 2.18
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The spatial resolution was also assumed to impact the positional effect. As a result, a series of
classification maps at different spatial resolutions for each study site were generated by upscaling the
NCLD 2016. Different window sizes, varying from 5 × 5, 10 × 10, 20 × 20 and 30 × 30 pixels, were used
to create the classification maps at spatial scales of 150, 300, 600 and 900 m, respectively. Figure 2
shows an example of creating a classification map at a scale of 150 m. The label of a coarser pixel in the
upscaled classification map was aggregated based on the majority rule. In other words, the dominant
class in the window determined the label of the upscaled pixel. If there was more than one dominant
class within the window, the upscaled pixel would be labeled as “unclassified”. This upscaling method
was applied to each study site for both levels of the classification scheme.
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Figure 2. An example of the classification and the reference data process. In this case, a classification map
at the spatial resolution of 150 m was created by aggregation using the majority rule. The classification
map has three classes: non-vegetation, vegetation, and water. The upper-left pixel in the classification
map was used to compare with a cluster in the reference data where the positional error is 0, 0.1,
or 0.2 pixels, respectively. The unique label for the cluster was determined under five distinct labeling
thresholds (T).

3.3. Reference Data

The NLCD 2016 product [10] at the spatial resolution of 30 m for the two classification scheme
levels, without the introduction of any positional error, was used as the reference data for each study
site. Since the same data were used as the map and the reference data in this study, the accuracy
between the two data sets is 100% before the simulation of positional error. In this way, thematic errors
not caused by positional shifts were completely controlled.
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3.4. Accuracy Assessment

In the simulation analysis, the positional error ∆ was varied from 0 to 2 pixels in increments of
0.1 pixels. The positional error model was applied to every pixel in the classification map and its
corresponding cluster in the reference data. Different labeling thresholds (T) were selected to determine
the label of a cluster in the reference data: 0%, 25%, 50%, 75%, and 100%. This research included the
threshold of 0% to simulate the scenario in which the simple majority rule was applied to determine
the label of a reference cluster [62]. Figure 2 takes the upper-left classified pixel as an example to
show how to determine its reference label based on the multiple classes within the cluster due to the
positional errors and various labeling thresholds. The spatial resolution of the classification map is
150 m, while that of the reference map is 30 m. The upper-left pixel in the classification map was
classified as non-vegetation, but its reference cluster contained multiple classes. The figure presents
the steps to determine the label of this reference cluster. If the positional error (∆) was set to 0 pixels,
then the proportions of vegetation, non-vegetation, and water within the reference cluster would be
4%, 68%, and 28%, respectively. Therefore, non-vegetation is the dominant class. The reference label
was determined as non-vegetation because its proportion in the reference cluster is greater than the
labeling threshold (T). If the dominant map class is less than the labeling threshold (T), the reference
label is specified as null. In the example in the figure, the reference cluster’s label was specified as
non-vegetation when the threshold was set to 0%, 25% or 50%, and null when the threshold was 75%
or 100%. This sampling unit (reference cluster) would be abandoned if it was labeled as null. The same
calculation was applied to the reference cluster when the positional error was 0.1 pixels and 0.2 pixels,
respectively. The labeling result was the same when the positional error was 0.1 pixels, although
this amount of positional error slightly changed the class’ proportions. The result was completely
different when the positional error reached 0.2 pixels because the dominant class became water with
a percentage of 44%. Consequently, if a labeling threshold of 0% or 25% was applied, the reference
cluster was labeled as water, otherwise, it was labeled as null and would be abandoned.

To avoid sampling errors, all pixels in the classification map except those labeled as “unclassified”
were included in the thematic accuracy assessment. Because the map and the reference data are both
generated from the NLCD 2016, the thematic errors shown in the error matrix were only the result
of positional errors. The OA − error, Kappa − error, QD − error,AD − error, and APAU were recorded
between each pair of classification map and reference data for each of the 12 study sites.

4. Results

Figure 3 shows the mean and standard deviation of OA− error, Kappa− error, AD− error, and APAU
(abandoned percentage of assessment units) of the 12 study sites at the four spatial scales and using
the eight class classification scheme. The QD − error was not presented because its values are zero
regardless of the positional errors, spatial scales, and thresholds because simulating positional errors
between classification maps and its reference data did not alter the proportions among classes.
Figure 3 consists of twenty sub-figures, divided into five groups by rows or four groups by columns.
Each row represents a specific labeling threshold (T). The first three columns denote the OA− error,
Kappa− error, and AD− error, respectively, while the last column signifies the APAU. There are four
curves representing different scales in each sub-figure. The results found in Figure 3 are detailed below.

(1) The mean value and standard deviation of OA− error, Kappa− error, and AD− error increase as
the positional error grows. OA− error and AD− error exhibit the same values. Kappa− error at a
particular scale (e.g., 150 m) is more significant than OA− error and AD− error at the same amount
of positional error. For example, at the positional error of 1.0 pixels, average Kappa− errors are all
above 20% as compared to average OA− errors which are all below 20%. Most values of APAU
are relatively stable except for the wavy shape of APAU at the spatial scale of 150 m, with T
being 100%.
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Figure 3. Mean and standard deviation of OA− error, Kappa− error, AD− error, and APAU of the twelve
study sites at different scales when the classification consists of 8 classes.

(2) The average lines of OA− error are very close, regardless of thresholds. The same patterns were
also found among the lines of Kappa− error and AD− error, respectively.

(3) The OA− errors of the same spatial scale decrease as T rises. The same results are also reflected
in either Kappa − error or AD − error. For example, when T grows to 100%, the errors in the
three accuracy measures approximate 0% if positional errors are under 0.5 pixels. However,
the increment in T results in a higher APAU. For example, when the threshold is 0% or 25%,
the values of the APAU approach 0. The average APAU lies between 3.46% and 9.84% and
between 22.58% and 43.02% when the threshold reaches 50% and 75%, respectively. If T attains
100%, all values of APAU are above 45.29%, with a maximum of 87.93% at a scale of 900 m.
The lines of APAU separate from each other if T exceeds 50%.
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(4) When the positional error is 0.5 pixels, and T is no more than 50%, Kappa − errors, AD − errors,
and OA− errors are higher than 10%. When the threshold is 75%, AD− errors and OA− errors lie
between 3.69% and 4.72% while the Kappa− errors lie between 8.65% and 9.60%. Nevertheless,
over 23.73% of assessment units were abandoned, and the maximum percentage approximates
42.98%. If T is 100%, the Kappa − errors, AD − errors, and OA − errors drop to 0%, but APAU
reaches over 50.72%, and the highest reaches 87.90%.

The results of Figure 3 also hold in Figure 4, where the classification scheme consists of 15 classes.
A classification scheme with 15 classes presents higher Kappa− error, AD− error, OA− error, and APAU
compared to 8 classes.Remote Sens. 2020, 12, x 12 of 23 
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Figure 4. Mean and standard deviation of OA− error, Kappa− error, AD− error, and APAU of the twelve
study sites at different scales when the classification consists of 15 classes.
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Figure 5 shows the mean and standard deviation of OA− error, Kappa− error, AD− error, and APAU
for the four scales at each study site when the classification scheme has eight classes. QD-errors are 0%,
and therefore, they are not displayed. The twenty sub-figures were arranged in the same way as for
Figures 3 and 4. Twelve curves representing the various study sites exist in each sub-figure. Each curve
is an average of four scales. The results found in Figure 5 are listed below.Remote Sens. 2020, 12, x 14 of 23 
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Figure 5. Mean and standard deviation of OA − error, Kappa − error, AD − error, and APAU of four
spatial scales at different study sites where the classification scheme consists of 8 classes.

(1) The upper-left sub-figure shows that the OA− errors resulted from positional errors ranging from
0 to 2.0 pixels when T is 0%. Generally, the curve of a study site with a smaller LSI is lower than
that of a study site with a larger LSI. For example, the line of study site #5 with an LSI of 367.1 is
below that of study site #12 that has an LSI of 438.5. However, this is not true for all study sites.



Remote Sens. 2020, 12, 4093 13 of 21

For example, study site #1 holds the minimum LSI (Table 3), yet its line is above that of study site
#5.

(2) OA− errors drop as T grows from 0% to 100%. For example, most OA− errors of the twelve study
sites at the positional error of 0.5 pixels are higher than 10% if T is no more than 50%. When T
reaches 75%, OA− errors are reduced to under 10%. If T exceeds 75%, the OA− error drops to 0%.

(3) The same patterns above were found among the study sites using Kappa− errors and AD− errors.
However, Kappa − errors are more sensitive to positional errors than is the OA − error. For
instance, with the amount of 2 pixels’ positional errors, all OA− errors are below 40%. In contrast,
Kappa− errors approximate 70%.

(4) The values of APAU remain steady compared to OA− error, Kappa− error, and AD− error. APAU
approaches 0% at the thresholds of 0% and 25%. However, APAU lies between 1.12% and 14.55%
and between 16.73% and 53.69% when T reaches 50% and 75%, respectively. When T is 100%,
the APAU varies between 49.31% and 87.17%.

The patterns found in Figure 6 are similar to those of Figure 5. The only difference is that each line
in Figure 6 is higher than the corresponding one in Figure 5 because the classification scheme consists
of more classes (15 instead of 8).Remote Sens. 2020, 12, x 15 of 23 
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5. Discussion

Thematic accuracy assessment aims to measure the classification accuracy of land cover products.
However, many uncertainties that exist in the validation procedure could propagate into the error
matrix and therefore make the accuracy measures misleading [24,26]. This research examined whether
the single-pixel as an assessment unit is appropriate for validating land cover mapping from the
perspective of the impacts of positional errors. Twelve study sites, each of which covers a spatial extent
of 180 km × 180 km, of different landscape characteristics, were investigated by comparing the NLCD
2016 as the reference data with several coarser classification maps generated from the NLCD 2016 at
two classification scheme levels. The results presented the errors in the thematic accuracy measures
(overall accuracy, Kappa, allocation disagreement, and quantity disagreement) impacted only by the
positional error.

The results showed that overall accuracy, Kappa, and allocation disagreement are very sensitive
to positional errors. However, no errors existed in quantity disagreement because either generating
coarser classification maps from NLCD 2016 at 30 m or simulating positional errors did not alter the
proportions among classes. As a result, the OA− errors are equal to AD− errors. Therefore, the following
analysis focused on OA − errors and Kappa − errors. There are larger Kappa − errors than OA − errors
given the same amount of positional error. The underlying reason is that Kappa adds off-diagonal
elements in the error matrix (Table 1) into the calculation as compared to overall accuracy.

Previous studies have not taken the labeling threshold (T) into account, and therefore our research
compares directly with these previous studies when T = 0% (the simple majority rule). Using only
the majority rule, Powell et al. [27] indicated that over 30% of thematic error was attributed to one
pixel’s misregistration using Landsat TM as classification data. Stehman and Wickham [30] proved a
conservative bias from 8% to 24% in overall accuracy due to one pixel’s positional error. With the same
amount of positional error, this research found that OA − errors would vary from 20.05% to 23.21%
and 27.72% to 32.00% (Figures 3 and 4) using a classification scheme of 8 and 15 classes, respectively.
The difference in results between these previous studies and this research results from two factors. First,
previous studies performed the experiments at the spatial scale of 30 m, while the scales in this study
include 4 spatial scales. Second, they analyzed the effect on accuracy measures when classification and
positional errors simultaneously existed. In contrast, the thematic errors in this research only resulted
from positional errors, which is more explicit.

This research also demonstrated that a classification map exhibiting more heterogeneous landscape
characteristics (Figures 5 and 6) or more classes in a classification scheme (Figure 4 vs. Figure 3)
increases the positional effect. These findings are consistent with results in Gu et al. [26]. A coarser
spatial scale results in a higher positional effect (Figure 3 or Figure 4) because of a higher proportion
of mixed pixels, as shown in Figure 7. The average error lines and associated error bars tend to
overlap each other, especially at scales of 600 and 900 m. The underlying reason is that over 50%
of the pixels in half of the study sites at the spatial scale of 150 m are mixed and that the mixed
proportion increases with higher heterogeneity and coarser scale (Figure 7). In other words, the effect
of spatial scale increases as it becomes coarser because most pixels in the classification map are
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mixed. Increasing the labeling threshold, T, reduces the errors in the accuracy measures; however,
it increases the number of sample units that are abandoned (APAU) (Figures 3–6). Because half-pixel
geo-registration accuracy has been achieved and reported in most moderate resolution remote sensing
applications [44,45], this research emphasized the thematic errors at the positional error of 0.5 pixels.
The OA− errors and Kappa− errors are above 10% at the positional error of 0.5 pixels if T is no more
than 50%. The OA− errors and Kappa− errors decrease to below 10% and even down to 0% if T exceeds
50%; however, over 30% of assessment units were abandoned at the three coarser scales (Figure 3),
or nine study sites (Figure 5) when the 8 class map was used. The abandoned proportion exceeds
60% when T is 100%. This phenomenon is more severe in the 15 class map (Figures 4 and 6). These
results demonstrate that the labeling threshold does not work for thematic accuracy assessment using
single-pixel as an assessment unit.Remote Sens. 2020, 12, x 17 of 23 
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Global land cover mapping has favored pixel-based classification and the use of a single-pixel
as an assessment unit [63–65]. Table 7 shows several common global land cover products that were
created at a variety of spatial resolutions ranging from 300 to 1000 m. The achieved positional accuracy
highly depended on the remote sensing sensor [63,66,67]. The global land cover datasets of IGBP,
UMD, and GLC 2000 were created at the spatial resolution of 1000 m and validated using the Landsat
TM and SPOT images as reference data [24,64]. The positional accuracy achieved 1 pixel, 1 pixel,
and 0.3–0.47 pixels, respectively, relative to their spatial resolutions. The average OA− error was 31.92%,
31.92%, and 15.06–18.92%, according to the data (16 classes, 900 m) shown in Figure 4. The average
Kappa− error was 49.56%, 49.56%, and 23.08%–29.07%. The advent of medium-resolution sensors such
as MODIS and MEdium Resolution Imaging Spectrometer (MERIS) has allowed researchers to map
the Earth’s surface at a spatial scale of 500 or 300 m [68,69]. Meanwhile, these sensors have achieved
sub-pixel geolocation accuracy [70]. This research analyzed potential errors in accuracy measure
using the positional accuracy of MCD12 because of its highest positional accuracy (0.1–0.2 pixel) at
the spatial scale of 500 m. Even so, the OA − errors and Kappa − error would averagely vary from
5.5% to 10.4% and from 8.21% to 15.57%, respectively, according to the data (16 classes, 600 m) in
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Figure 4. The potential average OA − errors and Kappa − error in GlobCover would be 13.56% and
19.71%, respectively, in terms of Figure 4 (16 classes, 300 m). It is worth noting that there were more
classes in these global land cover products, which means the actual thematic errors would be more
severe. Therefore, from the perspective of the positional effect, using a single-pixel as an assessment
unit is not appropriate for thematic accuracy assessment. The errors in accuracy measures in this
research were only induced by positional errors. However, in reality, there are other sources of errors
such as sampling and interpretation errors that would add to the uncertainties evident in the error
matrix [12,18,24,27]. The combined effect would further strengthen our conclusion.

The choice of an assessment unit for the per-pixel classification accuracy assessment used by
remote sensing analysts includes a single pixel, a cluster of pixels (e.g., 3 × 3 pixels), and a polygon [12].
This research complemented the research of [27,30] using twelve study sites of various landscape
characteristics under multiple cofactors. This research further confirmed that even if the image achieved
half-pixel registration accuracy, choosing a single-pixel as the assessment unit is an inferior choice.
However, using a cluster or polygon may generate new questions such as how to sample, compare,
and then present the error matrix [30], which needs further research.

This research also has several limitations. First, we assumed a uniform spatial distribution for
positional errors. Future work should consider the different forms of geometric distortions and evaluate
the worst effect [40]. Second, the twelve study sites using the level I classification scheme were created
by collapsing the classes in the stratified random level II study sites. Therefore, while the level II sites
were selected to be representative of the landscape characteristics, there was no guarantee that the
sites would remain so when collapsed to leve1 I. However, a preliminary analysis shows that the LSI
of twelve study sites at level I (Table 3) still covers the dynamic range according to the histogram of
LSI (Figure 8). Third, this research only took into account the spatial scales ranging from 150 to 900
m of the classification map, which is limited by the spatial resolution of the NLCD 2016 as reference
data. However, if considering the relative size of pixels between the simulated classification map and
the reference data, the conclusions could be extended to other spatial scales. Unfortunately, as the
spatial resolution increases, it is more challenging to geo-register a pixel to sub-pixel level due to a
lack of a high precision digital elevation model [12,71]. Therefore, this research speculates that using a
single-pixel as an assessment unit is also not appropriate for thematic accuracy assessment at higher
spatial scales. Finally, this research only included twelve study sites within the United States, and all
accuracy measures were at the map level. However, this research took 1488 h of processing time using
a laptop workstation with an E-2176M 6 core processor and 32 GB of memory. Future work could test
the conclusion at a categorical level.

Table 7. Thematic accuracy and positional accuracy of the selected global land cover database.

LC
Datasets Time Sensor Classification

Scheme
Spatial
Resolution

Overall
Accuracy Positional Accuracy Reference

IGBP 1992–1993 AVHRR IGBP
(17 classes) 1000 m 66.9% ~1km (1 pixel) [72,73]

UMD 1992–1993 AVHRR Simplified IGBP
(14 classes) 1000 m 65.0% ~1km (1 pixel) [74,75]

GLC 2000 1999–2000 SPOT-VGT LCCS
(22 classes) 1000 m 68.6% 300m–465m

(0.3–0.47 pixels) [8,76]

MCD12 2001–2018 MODIS 6 classification
schemes 500 m 73.6% 50–100m

(0.1–0.2 pixels) [68,70]

GLCNMO 2003/2008
/2013 MODIS Modified LCCS

(20 classes)
1000
/500m 74.8%

96–200m
Oceania:264–344 m
(0.19–0.69 pixels)

[69,77]

GlobCover 2005/2009 MERIS LCCS
(22 classes) 300 m 67.5% 77m

(0.26 pixels) [66,78]
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6. Conclusions

Choosing an assessment unit is a crucial component of the framework of thematic accuracy
assessment. There are various choices for the assessment unit, including a single pixel, a cluster of pixels,
and a polygon. The main argument lies in whether the single-pixel as an assessment unit is appropriate
for thematic accuracy assessment. This research conducted a simulation analysis from the perspective
of positional errors. Other factors, including landscape characteristics, classification schemes, spatial
scale, and labeling thresholds, were also analyzed. The results showed that the single-pixel as an
assessment unit is not appropriate for use in a thematic accuracy assessment. A classification map with
a more heterogeneous landscape or more classes in a classification scheme increases the positional
effect. The spatial scale has greater impact when most pixels in the classification map are mixed.
Increasing the labeling threshold reduces the positional impact; however, it increases the number of
assessment units that must be abandoned. Careful consideration of the issues and analysis described
in this paper will result in improved thematic accuracy assessment in the future.
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and Uncertainty Analysis. Remote Sens. 2014, 6, 12070–12093. [CrossRef]

25. Gu, J.; Congalton, R.G. The Positional Effect in Soft Classification Accuracy Assessment. Am. J. Remote Sens.
2019, 7, 50. [CrossRef]

26. Gu, J.; Congalton, R.G.; Pan, Y. The Impact of Positional Errors on Soft Classification Accuracy Assessment:
A Simulation Analysis. Remote Sens. 2015, 7, 579–599. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2015.02.003
http://dx.doi.org/10.3390/rs10020157
http://dx.doi.org/10.1080/15481603.2019.1650447
http://dx.doi.org/10.1016/j.isprsjprs.2020.02.019
http://dx.doi.org/10.1080/01431160412331291297
http://dx.doi.org/10.1016/j.rse.2016.12.026
http://dx.doi.org/10.1016/j.jag.2010.11.005
http://dx.doi.org/10.3390/rs11192305
http://dx.doi.org/10.1016/j.rse.2019.05.018
http://dx.doi.org/10.1016/0034-4257(91)90048-B
http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://dx.doi.org/10.1016/j.rse.2010.05.003
http://dx.doi.org/10.14358/PERS.69.3.289
http://dx.doi.org/10.1016/S0034-4257(99)00090-5
http://dx.doi.org/10.1016/S0034-4257(98)00010-8
http://dx.doi.org/10.1080/01431160903131000
http://dx.doi.org/10.1016/j.rse.2014.02.015
http://dx.doi.org/10.3390/rs61212070
http://dx.doi.org/10.11648/j.ajrs.20190702.13
http://dx.doi.org/10.3390/rs70100579


Remote Sens. 2020, 12, 4093 19 of 21

27. Powell, R.; Matzke, N.; De Souza, C.; Clark, M.; Numata, I.; Hess, L.; Roberts, D. Sources of error in accuracy
assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sens. Environ. 2004, 90, 221–234.
[CrossRef]

28. Nakaegawa, T. Uncertainty in land cover datasets for global land-surface models derived from 1-km global
land cover datasets. Hydrol. Process. 2011, 25, 2703–2714. [CrossRef]

29. Selkowitz, D.J.; Stehman, S.V. Thematic accuracy of the National Land Cover Database (NLCD) 2001 land
cover for Alaska. Remote Sens. Environ. 2011, 115, 1401–1407. [CrossRef]

30. Stehman, S.V.; Wickham, J.D. Pixels, blocks of pixels, and polygons: Choosing a spatial unit for thematic
accuracy assessment. Remote Sens. Environ. 2011, 115, 3044–3055. [CrossRef]

31. Ye, S.; Rakshit, R.G.P., Jr. A review of accuracy assessment for object-based image analysis: From per-pixel to
per-polygon approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [CrossRef]

32. Radoux, J.; Bogaert, P.; Fasbender, D.; Defourny, P. Thematic accuracy assessment of geographic object-based
image classification. Int. J. Geogr. Inf. Sci. 2010, 25, 895–911. [CrossRef]

33. Chen, G.; Weng, Q.; Hay, G.J.; He, Y. Geographic object-based image analysis (GEOBIA): Emerging trends
and future opportunities. GISci. Remote Sens. 2018, 55, 159–182. [CrossRef]

34. Rakshit, R.G.P., Jr.; Cheuk, M.L. A generalized cross-tabulation matrix to compare soft-classified maps at
multiple resolutions. Int. J. Geogr. Inf. Sci. 2006, 20, 1–30. [CrossRef]

35. Silván-Cárdenas, J.L.; Wang, L. Sub-pixel confusion–uncertainty matrix for assessing soft classifications.
Remote Sens. Environ. 2008, 112, 1081–1095. [CrossRef]

36. Janssen, L.L.F.; Vanderwel, F.J.M. Accuracy assessment of satellite-derived land-cover data—A review.
Photogrammetr. Eng. Remote Sens. 1994, 60, 419–426.

37. Richards, J.A. Classifier performance and map accuracy. Remote Sens. Environ. 1996, 57, 161–166. [CrossRef]
38. Wickham, J.D.; Stehman, S.; Fry, J.; Smith, J.; Homer, C. Thematic accuracy of the NLCD 2001 land cover for

the conterminous United States. Remote Sens. Environ. 2010, 114, 1286–1296. [CrossRef]
39. Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution

and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ.
2018, 204, 648–658. [CrossRef]

40. Brown, K.M.; Foody, G.M.; Atkinson, P.M. Modelling geometric and misregistration error in airborne sensor
data to enhance change detection. Int. J. Remote Sens. 2007, 28, 2857–2879. [CrossRef]

41. Eastman, R.D.; Le Moigne, J.; Netanyahu, N.S. Research issues in image registration for remote sensing.
In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN,
USA, 17–22 June 2007; Volume 1–8, pp. 1–8.

42. Congalton, R.G. Thematic and Positional Accuracy Assessment of Digital Remotely Sensed Data.
In Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium, Portland, ME, USA,
3–6 October 2005; McRoberts, R.E., Reams, G.A., Van Deusen, P.C., McWilliams, W.H., Eds.; US Department
of Agriculture, Forest Service: Washington, DC, USA, 2005; pp. 149–154.

43. Aguilar, M.A.; Agüera, F.; Aguilar, F.J.; Carvajal, F.; Carvajal-Ramírez, F. Geometric accuracy assessment of
the orthorectification process from very high resolution satellite imagery for Common Agricultural Policy
purposes. Int. J. Remote Sens. 2008, 29, 7181–7197. [CrossRef]

44. Benediktsson, J.A.; Tan, B.; Woodcock, C.E.; Stone, H.S.; Chen, Q.-S.; Cole-Rhodes, A.A.; Varshney, P.K.;
Goshtasby, A.A.; Mount, D.M.; Ratanasanya, S.; et al. Image Registration for Remote Sensing; Cambridge
University Press (CUP): Cambridge, UK, 2009.

45. Keshtkar, H.; Voigt, W.; Alizadeh, E. Land-cover classification and analysis of change using machine-learning
classifiers and multi-temporal remote sensing imagery. Arab. J. Geosci. 2017, 10, 154. [CrossRef]

46. McRoberts, R.E. The effects of rectification and Global Positioning System errors on satellite image-based
estimates of forest area. Remote Sens. Environ. 2010, 114, 1710–1717. [CrossRef]

47. Verbyla, D.L.; Hammond, T.O. Conservative bias in classification accuracy assessment due to pixel-by-pixel
comparison of classified images with reference grids. Int. J. Remote Sens. 1995, 16, 581–587. [CrossRef]

48. Smith, J.H.; Stehman, S.V.; Wickham, J.D.; Yang, L. Effects of landscape characteristics on land-cover class
accuracy. Remote Sens. Environ. 2003, 84, 342–349. [CrossRef]
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