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Abstract: The uniform application (UA) of agrochemicals results in the over-application of harmful
chemicals, increases crop input costs, and deteriorates the environment when compared with variable
rate application (VA). A smart variable rate sprayer (SVRS) was designed, developed, and tested using
deep learning (DL) for VA application of agrochemicals. Real-time testing of the SVRS took place for
detecting and spraying and/or skipping lambsquarters weed and early blight infected and healthy
potato plants. About 24,000 images were collected from potato fields in Prince Edward Island and
New Brunswick under varying sunny, cloudy, and partly cloudy conditions and processed/trained
using YOLOv3 and tiny-YOLOv3 models. Due to faster performance, the tiny-YOLOv3 was chosen
to deploy in SVRS. A laboratory experiment was designed under factorial arrangements, where the
two spraying techniques (UA and VA) and the three weather conditions (cloudy, partly cloudy,
and sunny) were the two independent variables with spray volume consumption as a response
variable. The experimental treatments had six repetitions in a 2 × 3 factorial design. Results of
the two-way ANOVA showed a significant effect of spraying application techniques on volume
consumption of spraying liquid (p-value < 0.05). There was no significant effect of weather conditions
and interactions between the two independent variables on volume consumption during weeds
and simulated diseased plant detection experiments (p-value > 0.05). The SVRS was able to save
42 and 43% spraying liquid during weeds and simulated diseased plant detection experiments,
respectively. Water sensitive papers’ analysis showed the applicability of SVRS for VA with >40%
savings of spraying liquid by SVRS when compared with UA. Field applications of this technique
would reduce the crop input costs and the environmental risks in conditions (weed and disease) like
experimental testing.

Keywords: agrochemicals; deep convolutional neural networks; environmental risks; percent area
coverage; smart variable rate sprayer; variable rate application

1. Introduction

Site-specific variable rate application (VA) of herbicides is preferred over uniform application (UA)
to kill weeds and/or disease infections present in patches in agricultural fields. Uniform application of
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agrochemicals causes over-application of harmful chemicals, increases crop input costs, deteriorates
the environment [1–3], risks human health [4], and results in low application efficiency of sprayers [5].
A smart variable rate sprayer (SVRS) uses available electronics and automation in agricultural
machinery [6] for optimization of agrochemical applications through a sensor-based control system
that helps apply agrochemicals as and when required [7].

There are different spaying methods for agrochemical field applications, including broadcasting
and band applications. The former is inefficient as it uniformly applies chemicals in agricultural fields
without considering the variable conditions of the field. By using this technique, around 60–70% of
spraying chemicals are wasted [8]. Variable-rate technology, on the other hand, saves the spraying
chemicals and reduces environmental degradation. Almost 40% of herbicides can be saved by
considering the patches of weeds and/or disease infections in the field during the spraying operation.
For bushes and tree crops, up to 75% of pesticides can be saved by variably applying the chemicals
according to the canopy structure of trees [9].

The use of artificial intelligence (AI) can significantly improve the efficiency of sprayers [10].
The AI uses data-driven modeling techniques by taking the processed and labeled images of the targets
as input for the development of a machine vision system. Target plants are detected on the basis of
morphology and texture of plants [11].

Real-time detections of targets depend upon several factors, including the quality and quantity of
images, design of deep convolutional neural networks (DCNN), available memory resources such as
graphical processing units (GPU), and the related hardware. Qiongyan et al. [12] used convolutional
neural networks (CNNs) to identify wheat spikes with 86.6% detection accuracy for the quantification
of phenotypic changes that arise genetically or due to environmental variations. Deep learning
(DL) models were used for counting wheat spikes and spikelet with 95.9 and 99.7% accuracies,
respectively [13]. Yang and Sun [14] reported that DCNNs are supportive of agricultural applications.
They used DCNN models to classify weeds with >95% accuracy. Milioto et al. [15] reported achieving
high classification accuracy (99%) using CNNs for sugar beets and weeds distinction.

The DCNN models can also be applied for disease recognition in the plants. Wheat disease
was identified by using DCNN models with 95% accuracy [16]. In addition, the trained models
were used as a smartphone application for real-time recognition of disease-infected plants in crops.
Liakos et al. [17] detected yellow-rust-infected plants of wheat with 99.4% accuracy in wheat crops
using CNNs. Object detection models may be used for detection, as well as real-time applications of
agrochemicals, with high accuracy [18].

A rapid surge can be observed in the literature about the applications of object detection models,
including autonomous vehicles, agriculture robots, and other machine vision tasks. Among several
object detection CNNs, YOLO, and single-shot detectors are comparatively faster and more accurate
models in object recognition [19]. The YOLOv3 was used in small aircraft detection, and it performed
well concerning accuracy as well as detection speed [20]. Thai traffic signs were detected and recognized
using CNNs with 93% average precision [21]. The Tiny-YOLOv3 was designed by simplifying the
YOLOv3 algorithm and reducing the depth of convolutional layers, which significantly improved the
inference speed and is also ideal for running on personal computers [22].

Many researchers have developed vision-based spot-applicators for weed detection that operate
in real-time using a variety of remote sensing devices [23]. Vision-based algorithms were applied to
develop variable rate systems for target detection using Raspberry Pi and OpenCV in drone systems
by Pathak et al. [24]. Machine-learning-based systems gave good accuracy [25] in real-time target
detection [26]. Partel et al. [27] developed and evaluated a low-cost smart sprayer for agrochemical
spraying on weeds at a lab scale, utilizing YOLO models, and reported 40 to 90% accuracy using
different Nvidia GPUs. The automated variable-rate sprayers were also developed for disease and pest
control [28,29] and for the detection of weeds [30] using machine learning (ML) techniques. Möller [31]
concluded that computer vision technologies for VA in agricultural fields could reduce the inputs and
lower the operator’s stress levels. It can locate weed spots in real-time and spray the chemical only on
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proper locations. They [31] obtained a significant reduction in the total amount of applied volume
(58%) using a VA prototype in comparison with a conventional UA during lab experimentation.

It has been reported in the literature that YOLO is suitable for real-time weed and disease
detection. Therefore, an object detection DCNN tiny-YOLOv3 was selected for detection of a potato
weed (lambsquarters) and simulated disease (early blight) infected plants at a laboratory scale.
Furthermore, a trained tiny-YOLOv3 model was deployed and tested on a newly designed and
developed SVRS for VA and site-specific agrochemical applications in potato crops.

2. Materials and Methods

2.1. Hardware Development

A motorized farm buggy was developed in the Faculty of Sustainable Design Engineering
Laboratory and equipped with SVRS accessories (Table 1). The buggy had 0.91 m of ground clearance
(based on maximum potato plant height) with 0.30 m adjustability to accommodate variations of potato
plant height at different growth stages. It was 0.89 m wide with tires spaced as per row spacing of
potato crop. The length of the buggy was kept at 1.8 m to allow adequate space for an operator, engine,
and necessary hardware. The buggy was equipped with the hardware listed in Table 1 and labeled in
Figure 1.

Table 1. The types of equipment used in a smart variable rate sprayer with their specifications.

No Equipment Specification No Equipment Specification

1 ZOTAC Mini
PC GeForce GTX 1050 11 Bypass valve 12.7 mm Bypass Relief

Valve; 0–1724 kPa

2 Relay module 8 channels 12 Pressure gauge Liquid Filled Pressure
Gauge 1103 kPa

3 Arduino mega Elegoo MEGA 2560 R3 13 Pressure
control valve

Water Pressure
Regulator Valve

4 LCD screen 10 Inch IPS LCD 14 Three nozzles TeeJet XR Extended
Range Spray Nozzle

5 Speedometer Analog 15 Filter Hypro 3350–0079
Nylon Line Strainer

6 Three solenoid
valves

Brass Solenoid Valve
DC 12 V 16 Pump 12 V Diaphragm Pump

– 15 lpm

7 Three cameras Logitech C920 Webcam
HD Pro 17 Shut off valve On/Off

8 Power supply-1 42,000 mAh 155 Wh
Power Station 18 Flow meter

Water Flow Control
Meter LCD Display

Controller

9 Power supply-2 230 Wh 62,400 mAh
Power Station 19 Supply tank 15 l

10 Power supply-3 12 V 18 Ah SLA Battery 20 Gasoline
engine 7.5 l

A gasoline engine was used to power the SVRS. Power supply-1 was used to turn the electric
solenoid valves on or off, and to charge the water flow meter. Power supply-2 was spared for the control
unit and the computer screen. Power supply-3 was used for running the water pump. These power
supplies were powered by rechargeable batteries of 110 V input voltage and 12, 5, and 110 V output
voltages, respectively. Distance between the two adjacent spraying nozzles and two cameras was kept
0.91 m to cover one row of potato crop with one nozzle and camera (Figure 2). The total width of the
sprayer boom was 2.74 m that allowed the mounting of three cameras and three nozzles.
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A diaphragm pump with a maximum discharge flow of 15 lpm (liters per minute) and a maximum
pressure of 414 kPa was used to supply the water for spraying nozzles. A pressure relief bypass valve
was used to avoid backflow of water towards the supply tank and to maintain the flow toward nozzles
in case of one or more nozzles closes when the sprayer does not detect any target. Three electric
solenoid valves were used to actuate the nozzles following the signals sent by the control system.
Three webcams were mounted at the heights and positions of spray nozzles to capture the images in
real-time for further processing. Height from the ground level and distance between two adjacent
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cameras were adjusted to obtain the zero overlap between the views of cameras. Two emergency
(on/off) switches, one for the sprayer engine and the second for the pump were installed on the front
side of the sprayer. Relays, Arduino mega and ZOTAC Mini PC, were mounted in a control box. All the
cameras were attached with a ZOTAC Mini PC by USB cables. An LCD panel was mounted at the
right front side of the sprayer and attached to the ZOTAC Mini PC by HDMI cable (Figure 1).

2.2. Calibration of SVRS Components

A calibration bed was developed to calibrate components of the sprayer (Figure 3). Nozzles,
flow meter and pressure control valves were calibrated using the calibration bed. A speedometer was
calibrated after installing all the components on the buggy.
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2.3. Image Acquisition

Two types of cameras (Canon PowerShot SX540 HS camera and Logitech C270 HD Webcam) were
used to capture the images of lambsquarters (Chenopodium album) weed and potato (Solanum tuberosum
L.) plants. The images were captured from three fields on Prince Edward Island at Winsloe North
(46◦21′24.47′′ N, 63◦12′4.99′′ W), Agriculture and Agri-Food Canada, Harrington Research Station
(46◦20′59.2′′ N, 63◦09′08.2′′ W), and 225 Highway (46◦14′57.64′′ N, 63◦11′46.46′′ W) and two fields
in New Brunswick at Florenceville (46◦19′5.38′′ N, 67◦37′1.7′′ W), and Lavasque (47◦6′5.53′′ N,
67◦46′44.55′′ W). Ten thousand images of lambsquarters and the Russet Burbank variety of potato
plants were taken from the potato fields.

Weather conditions of the three fields on Prince Edward Island were the same. The climate of
Prince Edward Island is humid. Its winter season is long with a relatively shorter summer season.
During the winter, the island receives storms and blizzards originating from the North Atlantic or
the Gulf of Mexico. Springtime temperatures are cool, when the ice generally melts in late April.
The summers are moderately warm as the daytime temperature occasionally reaches as high as 30 ◦C as
the island receives the heaviest rainfall spells of the year during late autumn and during early winter.

Potato seeds were sown during late May and harvested during early October. Both fields
were under conventional management practices and received traditionally recommended agronomic
practices and amounts of agrochemicals for enhancing tuber yield, and for protecting the crop from
weeds and diseases over the past decade. The cultivation in both the fields was rainfed and no
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supplemental irrigation was provided to the crop. Fertilization was the same in both fields as per local
recommendations. The soils of the potato fields are sandy loams (Orthic Humo-Ferric Podzol) with
large gravel and stones content, and with more than 2% of soil organic matter (SOM). The sandy soils
have good drainage, aeration and thus can result in drought stress in the absence of supplemental
irrigation. The weather, soil, growing season, and agronomic practices of New Brunswick fields were
not different from the fields of Prince Edward Island.

About 200 plants of lambsquarters and 200 for potato plants of the same genotype as those of fields
plants were planted in a 50:50 mix of Harrington (Prince Edward Island) field soil (Orthic Humo-Ferric
Podzol; SOM 3%, and pH 6.6) and play sand. Soil and sand were heat-sterilized at 120 ◦C prior to use.
Two sizes of pots were used to randomly grow lambsquarters weed and potato plants under general
agronomic practices. The large pots had 16.5 cm upper diameter, 12.5 cm lower diameter, and 14 cm
height. The small pots had a 12.8 cm upper diameter, 10.2 cm lower diameter, and 11.5 cm height.
The pots were placed in the greenhouse of Agriculture and Agri-Food Canada.

Out of 400 plants of weed and potato, 310 plants were used for the model’s training purpose,
and the remaining 90 plants (potato = 30, disease = 30, and weed = 30) were used for lab testing of
SVRS. Two thousand images of weed and potato plants were captured using 310 plants grown in
the greenhouse. All the images were taken at different growth stages of weed and potato plants to
cover variations in the structure, color, and other physical features of lambsquarters and potato plants
during their life cycle/growing season. The monthly temperature ranges for the growing season’s
months; i.e., May, June, July, August, September, and October, were 5.00–18.0, 11.0–22.0, 15.0–24.0,
17.0–22.0, 9.00–22.0, and 4.00–16.0 ◦C, respectively. The first set of images were taken at the end of
sprout development between days 7–29 after seedlings emergence (Growth Stage I). The second set of
images was taken during the vegetative growth (Growth Stage II) on days 30–49 of the growing season.
The third and fourth sets of images were taken during tuber initiation (Growth Stage III) and tuber
bulking (Growth Stage IV) on days 50–70 and 70–125, respectively.

Altogether, 12,000 images were taken of potato plants and lambsquarters. Additionally, 12,000 more
images of simulated diseased plants were captured. A dark brown color liquid was spread over the
potato plants to mimic early blight disease symptoms due to the unavailability of diseased plants.
Mixed images (images taken from different fields and from green house plants) were used for training
of models on weeds and diseased mimicked plants. These images were taken at different times of
the day, under varying light intensities (Table 2), at different heights from the ground level and from
different angles to capture every possible setting for DL models.

Table 2. Light intensity values at different weather conditions under which the sprayer was tested.

Experiment Test Replication Target Weather
Condition

Temperature
Range
◦C

Light
Intensity

(Lux) × 100

Weed
Detection

1 6

Weed plant

Cloudy 9.50–13.0 100–360

2 6 Partly
cloudy 13.5–19.0 400–545

3 6 Sunny 16.8–25.0 550–1000

Simulated
Diseased Plant

Detection

4 6 Simulated
diseased

plant

Cloudy 10.0–12.5 100–350

5 6 Partly
cloudy 14.0–17.5 430–468

6 6 Sunny 16.0–24.5 500–1000

2.4. Training of Models

All the images were resized to 1280 × 720 pixels, using Irfanview (Version 5.54) software,
and labeled using Yolo Mark (https://github.com/AlexeyAB/Yolo_mark) tool. YOLO (you only look
once) is a real-time object detection algorithm. It is a smart CNN that applies a single neural network to
the full image, followed by dividing the image into regions to predict bounding boxes and probabilities

https://github.com/AlexeyAB/Yolo_mark
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for each region. These bounding boxes are weighted by the predicted probabilities. The advanced
version of YOLO is YOLO (version 3), generally denoted as YOLOv3. The YOLOv3, which runs
significantly faster than other detection methods with comparable performance. Tiny-YOLOv3 is a
simplified model of YOLOv3, which reduces the depth of the convolutional layer. Its running speed
has been greatly improved, although the detection accuracy has decreased, but to an acceptable limit.

The annotations saved by using Yolo Mark tool are in the format acceptable by YOLO (Figure 4).
The ratio of training and testing validation images was 70:30 for both weed and simulated diseased
image datasets. The images used for training were not used during testing. All the training experiments
were performed using GPU (Nvidia GTX 1080 Ti) on Ubuntu 16.04. YOLO and tiny-YOLO algorithms
developed by Redmon and Farhadi [32] were used to train the model using the Darknet framework.
Tiny-YOLO is the simplified version of YOLO, which is faster but less accurate in comparison with
YOLO [33]. The YOLO models were trained using a learning rate of 0.001, batch size of 32, image size
of (416 × 416), the momentum of 0.95, weight decay of 0.0005, and iterations ranging from 6000 to
9000. Tiny-YOLOv3 and YOLOv3 were used to train the weed and simulated diseased plant detection
datasets using the Darknet framework.

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 18 

 

Figure 4. Processed images of lambsquarters, simulated diseased, and healthy potato plants. 

2.6. Development of Models 

The functions of SVRS were automated with a relay and microcontroller using a serial 

connection with python script. As per development, the trained models infer the results in the form 

of bounding boxes around the targets after image acquisition by cameras. Detected targets create the 

signal for the microcontroller, which activates the relays and solenoid valves. As the solenoid valve 

opens the spraying nozzle is actuated and the spraying liquid is applied to the target. The 

computational unit and the microcontroller unit communicate using a USB connection. An Arduino 

script (that controls the valves) has been developed to read the serial data coming from the 

computational unit containing the “target to be sprayed” (weed or disease-infected plant) position. 

For example, when the target is detected, the 5 V signal goes to the relay through Arduino and 

actuates the nozzle for opening the 12 V solenoid valve. Conversely, if no target is captured by the 

cameras, no signal is received by the control unit, and in this consequence, the solenoid valves and 

spraying nozzles remain off and spraying liquid goes back to the tank through a pressure release 

valve (Figure 5). 

Figure 4. Processed images of lambsquarters, simulated diseased, and healthy potato plants.



Remote Sens. 2020, 12, 4091 8 of 17

2.5. Evaluation Indicators

The parameters were used to evaluate the performance of neural networks [20] included precision,
recall, F1Score, intersection over union (IOU), and mean average precision (mAP). Precision shows
the effectiveness of neural networks in the identification of positive labels (the correct identification
of targets). The best precision is considered at 1.0; whereas the poor precision is at 0.0. It was
calculated as Precision = (TP/(TP + FP). Recall measures how the neural network identifies the
targets. Its values reflect correctness of identification of weeds, simulated diseased, and healthy
plants in this study. Its value varies from 0 to 1 and can be calculated as Recall = TP/(TP + FN).
F1Score measures the harmonic mean of precision and recall, and gives the accuracy of detecting
positive labels by neural network. The best F1Score is 1.0, the worst is 0. It can be calculated as
F1Score = (2 × Precision × Recall)/(Precision + Recall). Intersection over Union measures the accuracy
of detecting corresponding objects in a specific data set. Its value ranges from −1 to +1, and it can be
calculated as IOU = TP/(FP + TP + FN). The mean average precision is the product of precision and
recall of the detected bounding boxes. Its value varies from 0 to 100. The higher the number, the better
it is. The mAP is measured by using the equation:

mAP =
∑n

k=1
P(k)∆r(k)

where P(k) is the precision at threshold k and ∆r(k) is the change in recall.

2.6. Development of Models

The functions of SVRS were automated with a relay and microcontroller using a serial connection
with python script. As per development, the trained models infer the results in the form of bounding
boxes around the targets after image acquisition by cameras. Detected targets create the signal for
the microcontroller, which activates the relays and solenoid valves. As the solenoid valve opens the
spraying nozzle is actuated and the spraying liquid is applied to the target. The computational unit
and the microcontroller unit communicate using a USB connection. An Arduino script (that controls
the valves) has been developed to read the serial data coming from the computational unit containing
the “target to be sprayed” (weed or disease-infected plant) position. For example, when the target is
detected, the 5 V signal goes to the relay through Arduino and actuates the nozzle for opening the 12 V
solenoid valve. Conversely, if no target is captured by the cameras, no signal is received by the control
unit, and in this consequence, the solenoid valves and spraying nozzles remain off and spraying liquid
goes back to the tank through a pressure release valve (Figure 5).

2.7. Design of the Laboratory Experiment

All the experiments were performed in the industrial parking lot of the Faculty of Sustainable
Design Engineering of the University of Prince Edward Island, Canada. Lambsquarters and potato
plants were grown in the greenhouse and brought to the lab to evaluate the performance of SVRS. Dark
brown colors (multi-surface paint) were spread over the potato plants to mimic early blight disease
symptoms. Plant pots were randomly arranged as three 60 m long and 2.74 m wide strips (Figure 6).
Thirty targets (both weed and colored potato plants) and thirty non-targets (healthy potato plants) were
randomly placed in the three rows. Laboratory testing was performed at different weather conditions
using two spraying application techniques; i.e., VA and UA. Thus, for the weed detection experiment,
the experiment design consisted of two treatments (VA and UA) and three levels of weather conditions
(cloudy, partly cloudy, and sunny).
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Figure 6. Design of the laboratory experiment for testing of smart variable rate sprayer. The experimental
setup consisted of 60 m long and 2.74 m wide strips of randomly arranged healthy, simulated diseased,
and weed plants.

Rain-free days were chosen to test the SVRS for VA and UA performances. The values of temperature
and light intensity recorded during the testing conditions of cloudy, partly cloudy, and sunny are
given in Table 2. The same experimental design was revised for the simulated diseased plant detection
experiments. The response variable evaluated in this study was the quantity of spraying liquid (liters)
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by VA and UA. Water was used as the spraying liquid during all trials to ensure the experimental
approach to be environmentally friendly. All the experiments were conducted at 310 kPa pressure of
spraying liquid. All the experiments were repeated six times with the ground speed of the sprayer’s
buggy moving at 5 km h−1. The speed of the sprayer was constantly observed on the speedometer.

2.8. Measurement of Spraying Patterns and Percent Area Coverage

Water sensitive papers were stapled on the target and non-target plants to measure the spraying
pattern and percent area coverage for SVRS during UA and VA of the spraying liquids. Custom software
written in C++ language was used to process the water-sensitive papers. Images of the water-sensitive
papers were used in bmp format to calculate the percent blue ratio by dividing number of blue pixels
in the image by the number of total pixels in the image multiplied by 100. The percent blue ratio was
used to represent the percentage area coverage of a chemical application technology.

2.9. Statistical Analysis

Both weed and disease infected plant detection experiments were designed under two-factor
factorial arrangements for two treatments (UA and VA) and three levels of weather conditions
(cloudy, partly cloudy, and sunny) with six replications using a 2 × 3 factorial design. The spraying
techniques and weather conditions were the two independent variables with volume consumption of
spraying liquid as a response variable (Table 2). Two-way (ANOVA) was run to examine the effects of
treatments and weather conditions on the quantity of spraying liquid consumed. By using ANOVA,
the differences in mean values were evaluated.

The group means were compared with the Fisher LSD comparisons test. Minitab 19 (Pennsylvania State
University, State College, PA, USA: Minitab, Inc.) was used in the calculation of ANOVA and multiple
means comparisons tests. The t-test was applied to analyze the water-sensitive paper results to observe
the percent area coverage using VA and UA techniques. The same software was used to run the
Student t-test for the water-sensitive papers. The Student t-test is widely used to compare the mean
of two groups of samples (chemical volume consumption by VA and UA techniques in this case).
Therefore, it was used to evaluate if the means of the two sets of data (VA and UA) were statistically
significantly different from each other.

t =
m1−m2√

x2

n1 + x2

n2

where m1 and m2 are means of chemical volume consumption by VA and UA techniques, n1 and
n2 represent size of VA and UA data, respectively. An estimator of the common variance of the
two samples is represented by x2, which was calculated as:

x2 =

∑
(x−m1)2 +

∑
(x−m2)2

d f

where x is the individual observation. Once the t-test statistic value was determined, it was compared
with values in t-test table, the critical value of the Student’s t distribution corresponding to the
significance level alpha of the choice (i.e., 5%). The degrees of freedom (df ) used in this test were
calculated as:

d f = n1 + n2− 2

3. Results

3.1. Training and Detection of Deep Learning Models

For both datasets (weed and simulated diseased potato plants) YOLOv3 performed comparatively
better than tiny-YOLOv3 with respect to accuracy for both weed and simulated diseased plants datasets.
Since the inference speed of tiny-YOLOv3 was considerably higher than the speed of YOLOv3, due to
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the high value of FPS, the tiny-YOLOv3 model was finalized to deploy in the SVRS. Redmon and
Farhadi [32] also recommended the tiny-YOLOv3 for real-time performance over YOLOv3 due to
inference speed. The mAP values were recorded as 78.2 and 93.2% for tiny-YOLOv3 and YOLOv3
models, respectively, for the weed dataset. Similarly, the mAP values were 76.4 and 91.4% for
tiny-YOLOv3 and YOLOv3, respectively, for the simulated diseased plants dataset (Table 3). A similar
trend was observed for other statistical significance indicators, i.e., precision, recall and F1Score values
for simulated diseased plants dataset using these models (Table 3).

Table 3. Results of tiny-YOLOv3 and YOLOv3 models for both weed and simulated diseased
plants datasets.

Datasets Model Precision Recall F1Score mAP% FPS

Weed plants Tiny-YOLOv3 0.86 0.79 0.78 78.2 30.0
Simulated

diseased plants Tiny-YOLOv3 0.78 0.8 0.75 76.4 30.5

Weed plants YOLOv3 0.92 0.87 0.85 93.2 14.6
Simulated

diseased plants YOLOv3 0.84 0.82 0.83 91.4 15.6

mAP = mean average precision and FPS = frames per second.

3.2. Pervormance Evaluation of SVRS

During the weed detection experiment, a significant difference (p < 0.05) in volume consumption
of spraying liquid was recorded between VA and UA spraying techniques (Table 4). However,
a non-significant difference (p > 0.05) in volume consumption of spraying liquid was observed under
different weather conditions for the VA or UA spraying techniques. Similarly, there was a non-significant
interaction (spraying application techniques × weather conditions) on volume consumption (p > 0.05),
indicating all the interactions between spraying application techniques and weather conditions were
statistically the same. By using the Fisher LSD comparison, it was found that the volume consumption
for UA was significantly higher than the VA during the weed detection experiment. A similar trend
was observed in simulated diseased plant detection experiments.

Table 4. The two-way ANOVA results showing the effects of spraying techniques (the treatments) and
weather conditions (cloudy, partly cloudy, and sunny) and their interaction (treatment × condition) on
volume consumptions for spraying during weed and simulated disease experiments.

Experiment Response
Variable Source DF Mean

Square F-Value p-Value

Weed detection
Volume

consumption (l)

Treatment 1 7.5826 2108.4 <0.05

Condition 2 0.0041 1.15 0.329

Treatment ×
condition 2 0.0009 0.26 0.773

Error 30 0.0036

Total 35

Simulated
diseased plant

detection

Volume
consumption (l)

Treatment 1 9.7906 2517.4 <0.05

Condition 2 0.0076 1.97 0.156

Treatment ×
condition 2 0.00222 0.57 0.571

Error 30 0.0038

Total 35

DF = degree of freedom.
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In the simulated diseased plant detection experiment, the percent savings of the applied liquids
were 47.79, 48.67, and 48.48% for cloudy, partly cloudy, and sunny conditions, respectively. There was
a non-significant difference (p > 0.05) in volume consumption of spraying liquid under different light
conditions for both spraying techniques. During the weed detection experiment, relatively less percent
saving of spraying liquid was recorded (Table 5).

Table 5. Descriptive statistics for volume consumption of spraying liquid using two spraying techniques
(treatment VA and UA) under three weather conditions (cloudy, partly cloudy, and sunny) for weed
and simulated diseased plant detection experiments.

Weed Detection Experiment

Response
Variable Treatment Condition N Mean SD Minimum Maximum % Saving

Volume
consumption (l)

VA
Cloudy 6 1.2180 0.08 1.085 1.324 41.76
Partly

Cloudy 6 1.2112 0.06 1.11 1.324 42.71

Sunny 6 1.1887 0.03 1.122 1.2 43.29

UA
Cloudy 6 2.0917 0.01 2.076 2.108

NAPartly
Cloudy 6 2.1145 0.07 2 2.2

Sunny 6 2.0962 0.06 2.004 2.17

Simulated Diseased Plant Detection Experiment

Volume
consumption (l)

VA
Cloudy 6 1.1118 0.07 1.007 1.2 47.79
Partly

Cloudy 6 1.1303 0.05 1.06 1.21 48.67

Sunny 6 1.1047 0.05 1.026 1.18 48.47

UA
Cloudy 6 2.1297 0.02 2.1 2.153

NAPartly
Cloudy 6 2.2022 0.10 2.07 2.32

Sunny 6 2.144 0.03 2.1 2.19

VA = variable rate application; UA = uniform application; N = number of replications; SD = standard deviation.

A two-way ANOVA (Table 6) was run to examine the effects of treatments and weather conditions
on volume consumption of spraying liquid. It was recorded that there was not a significant effect of
volume consumption of spraying liquid under different weather conditions (cloudy, partly cloudy,
and sunny) on spraying application techniques (p-value = 0.329).

Table 6. Two-way ANOVA comparison to observe the effect of different weather conditions
(cloudy, partly cloudy and sunny) on spraying application techniques and their interactions for
weed and simulated disease experiments using a smart variable rate sprayer at lab scale.

Experiment Response
Variable Source DF Mean

Square F-Value p-Value

Weed
detection

Volume
Consumption (l)

Treatment 1 7.5826 2108.4 <0.05
Condition 2 0.0041 1.15 0.329

Condition*Treatment 2 0.0009 0.26 0.773
Error 30 0.0036
Total 35

Simulated
diseased

plant
detection

Volume
Consumption (l)

Treatment 1 9.7906 2517.4 <0.05
Condition 2 0.0076 1.97 0.156

Condition*Treatment 2 0.00222 0.57 0.571
Error 30 0.0038
Total 35

DF = degree of freedom.
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The simple main effects analysis showed that there was a significant effect of spraying application
techniques on volume consumption (p-value < 0.05) (Table 5). By using the Fisher LSD comparison,
it suggested that the volume consumption for UA was significantly higher than the VA during the weed
detection experiment. A similar trend was observed in simulated diseased plant detection experiments
(Table 6). Statistical analysis showed that SVRS could significantly reduce the volume consumption of
spraying liquid during weed and simulated diseased plant detection experiments.

3.3. Spraying Patterns and Percent Area Coverage

Processing of the water-sensitive papers stapled with targets or non-targets reflected that the
percent area coverage of the sprayed water-sensitive papers ranged from 32.3 to 71.4% and 35.5 to 66.7%
for VA and UA techniques, respectively (Figures 7 and 8, respectively). The percent area coverage of
water-sensitive paper with the VA technique ranged from 0 to 2.89% in missing target areas.
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Figure 7. Processed images of water-sensitive papers for variable rate application treatment showing
the percent areas coverage of targets (purple) and non-target (yellow) missed during variable rate
application of the spraying liquid. The numbers below each image of the water-sensitive paper
represent blue ratio; i.e., ratio (to be considered as percent area coverage of variable rate application
treatment) of image pixels turned into blue after receiving the spraying liquid (target detected) to the
total image pixels.

By using a t-test, the probability value was calculated to be 0.83 for the weed detection experiment
and 0.85 for the simulated diseased plant detection experiment during percent area coverage of UA
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and VA trials (Table 7). Similar results were reported by Esau et al. [6] for VR sprayers evaluated in
wild blueberry fields. The p-value shows that there is a non-significant difference between VA and
UA techniques with respect to spraying pattern and percent area coverage for targeted areas by using
the SVRS, which means SVRS is applicable for the targeted application of spraying chemicals in the
agricultural fields.
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Figure 8. Processed images of water-sensitive papers for uniform application treatment showing the
percent areas coverage of targets (purple) and non-target (yellow) missed during uniform application
of the spraying liquid. The numbers below each image of the water-sensitive paper represent blue
ratio; i.e., ratio (to be considered as percent area coverage of uniform application treatment) of image
pixels turned into blue after receiving the spraying liquid (target detected) to the total image pixels.

Table 7. Results of the t-test to compare the performance of the newly developed smart variable rate
sprayer in comparison to uniform application.

Experiment Treatment N Mean SD SE Mean p-Value

Weed plants
detection

UA 15 46.6 12.3 3.2
0.83VA 15 47.42 9.87 2.5

Simulated diseased
plants detection

UA 15 45.98 10.91 2.7
0.85VA 15 48.62 10.01 2.2

UA = uniform application; N = number of observations; VA = variable rate application; SD = standard deviation;
and SE = standard error.
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4. Discussion

The study results showed that the mAP value for the weed dataset was comparatively higher
than for the simulated disease plants dataset. It means that it was easier to distinguish the weeds
from potato plants as compared to simulated diseased plants from healthy potato plants. This may
be because of the morphology of the plant leaves or because the disease was simulated and not real.
Geometry and orientation of weed leaves are different from potato leaves, making their detection
possible as compared to detection of disease symptoms on the same orientation of potato leaves.
Partel et al. [27] also recorded precision = 71 and recall = 78 for weed detection using YOLOv3 models.
Schumann et al. [34] found and reported similar results for the YOLOv3-spp network, which performed
best with 91% recall, and 28.3 milliseconds inference time and could successfully identify the maturity
stages of blueberries in the field.

The weather condition, especially those affecting light, affected the performance of the SVRS.
For example, under cloudy conditions, the amount of volume consumption was relatively high during
both weed and simulated diseased plant detection experiments, which might be due to some missing
of targets (3–5%) during low-intensity light conditions. The possible reason for this may be a decrease
in the quality of images under low light conditions, as also reported by Dobashi et al. [35].

Higher non-target detections (0–6.7%) were recorded in diseased plant detection experiments.
It was probably due to similarity in shape of the targets and non-targets for weed and simulated
diseased plant experiments. The reason for variation in percent area coverage might also be due to
spray drift caused by high winds experienced during the performance evaluation tests. Very small
percent area coverage could have resulted from spray drifting from adjacent nozzles or from the spray
drifting from the front or back edge of the missing targets.

During the reported experiments, the product spraying flow/pressure was set as a standard
pressure. The saving of chemicals may change if the product is sprayed on other pressures, but it
has not been tested and confirmed in these experiments. In addition to the varying pressure and
the light intensity, the results may vary with the prevailing temperature, the ground speed of the
sprayer, and the type of weeds and diseased plant. Therefore, under the tested experimental conditions,
the SVRS could be viable for site-specific applications of herbicides and fungicides in potato crops.

5. Conclusions

A variable-rate smart sprayer was designed, developed, and evaluated at a laboratory scale for
site-specific application of spraying liquids. Nozzles, valves, and a speedometer were calibrated
for better performance of the sprayer. Both DCNN models tiny-YOLOv3 and YOLOv3 performed
adequately with respect to the accuracy, but the inference speed of tiny-YOLOv3 was considerably higher
than the YOLOv3 model. It suggested deploying the tiny-YOLOv3 in SVRS. The SVRS successfully
detected the weeds, simulated diseased plants, and green potato plants using tiny-YOLOv3 with
Darknet framework. The VA technique of spraying liquid was significantly better than the UA.
The SVRS was able to save 42 and 43% spraying liquids for weed and simulated diseased detection
experiments, respectively. With the developed SVRS, the farmers would be applying the agrochemical
using DL based sprayers under every weather condition. Water sensitive paper analysis showed
that SVRS could be used to get good percent area coverage as in UA. More than 40% savings of
spraying liquid showed that the SVRS has the potential to save input costs of spraying chemicals while
helping to protect the environment. The work is in progress for some potential advances regarding
field evaluation of the developed SVRS for spot-application of agrochemicals on weeds and diseased
potato plants.
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