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Michał Krupiński 1,* , Anna Wawrzaszek 1 , Wojciech Drzewiecki 2 ,
Małgorzata Jenerowicz 1 and Sebastian Aleksandrowicz 1
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Abstract: Hyperspectral images provide complex information about the Earth’s surface due to
their very high spectral resolution (hundreds of spectral bands per pixel). Effective processing of
such a large amount of data requires dedicated analysis methods. Therefore, this research applies,
for the first time, the degree of multifractality to the global description of all spectral bands of
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. Subsets of four hyperspectral images,
presenting four landscape types, are analysed. In particular, we verify whether multifractality can be
detected in all spectral bands. Furthermore, we analyse variability in multifractality as a function of
wavelength, for data before and after atmospheric correction. We try to identify absorption bands
and discuss whether multifractal parameters provide additional value or can help in the problem of
dimensionality reduction in hyperspectral data or landscape type classification.
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1. Introduction

1.1. Fractals

Mandelbrot ([1,2]) first drew the attention of scientists to fractals, and they have since proven
to be helpful in developing a numerical description of irregularities occurring in nature. He argued
that fractals can be characterised by a quantitative parameter—the fractal dimension (DF). The latter
corresponds to measures used in Euclidean geometry (e.g., length or area), but in a scale of measurement
function. Over time, applications have expanded from a simple description of linear features to surface
feature analysis and research on information stored in the form of images [3]. Remote sensing
researchers have applied the concept to aerial and satellite imagery analysis, including radar data
processing for irrigation mapping [4], surface modelling [5], land cover mapping [6], estimation of
building density [7] and segmentation [8], among others.

The most popular DF calculation methods used in remote sensing applications include the blanket
method [9], the triangular prism [10], the isarithm method [11], Sevcik’s method [12], the power
spectrum method [13], the modified variogram method [14] and the adapted Hausdorff metric [15].
Besides the number of algorithms for DF calculation, there are a few applications where this parameter
is associated with remote sensing data. For example, in a single spectral band, it can be calculated
for each pixel (local description)—or for a square subset/patch of the image (global description) [16].
In some cases, the subset covers the whole image.
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In the context of hyperspectral data, DF has been used in two ways. The first approach
concerns an analysis of spectral signatures/profiles that refer to single pixels (e.g., [15,17,18]). Usually,
the purpose of these analyses is to reduce the dimensionality of hyperspectral data. For example,
Mukherjee et al. [19] showed that DF can be almost as accurate as conventional methods, but with
lower computational requirements.

In a second approach, DF is calculated for spectral bands in the whole image or a subset ([20–22]).
Qiu et al. [20] compared a few calculation methods for each spectral band in two aerial images acquired
by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. Krupiński et al. [22] analysed
the same images with the Differential Box Counting (DBC) method [23] and additionally analysed four
types of landscape. The latter work found significant variability in DF determined for radiance and
reflectance data as a function of wavelength. In addition, in noisy bands, disturbance in DF values was
observed as a result of strong radiation absorption by water molecules. The authors suggested that
this parameter could be used, inter alia, to determine the quality of spectral bands or separability of
landscape types.

1.2. Multifractals

A number of experiments have shown, however, that a fractal formalism may not be sufficient for
satellite imagery description, and that multifractals (an extension of fractal theory) should be used
instead (e.g., [24–26]). The multifractal approach is based on the assumption that it is necessary to
use a number of non-trivially connected fractals, each with a different dimension of self-similarity,
to describe data complexity. What is more, there are various functions (e.g., generalised dimensions,
multifractal spectra [27,28]) and a number of quantitative parameters associated with multifractal
description. Together, these open up a wide range of possible applications of multifractals in the Earth
Observation domain (see Table 1).

Table 1. Examples of local and global (multi)fractal descriptions applied to hyperspectral data analysis.

Paper Sensor/Dataset Number of Bands Image Size Parameters Used/Method

Global
description

Qiu et al.
(1999) [20]

AVIRIS 1/Malibu
AVIRIS/LA

224
224

614 × 512
614 × 512

Fractal Dimension/isarithm
method and triangular

prism method

Myint et al.
(2003) [21] ATLAS (5 classes) 15

17 × 17
33 × 32
65 × 65

Fractal dimension/isarithm,
triangular prism and
variogram method

Su et al.
(2008) [29] OMIS 2/Beijing 64 536 × 512 Fractal dimension/double

blanket method

Krupiński et al.
(2014) [22]

AVIRIS (4 classes)
AVIRIS/Malibu

AVIRIS/LA

224
224
224

512 × 512
512 × 512
512 × 512

Fractal dimension/differential
box counting method

Local
description

Combrexelle et al.
(2015) [30]

Hyspex/Madonna
AVIRIS/Moffit Field

160
224

256 × 256
64 × 64
16 × 16

Coefficients of the polynomial
describing multifractal

spectrum/wavelet leader
multifractal formalism

1 Airborne Visible/Infrared Imaging Spectrometer, 2 Operational Modular Imaging Spectrometer.

A review of existing implementations of a multifractal formalism in the analysis of remote sensing
images indicates that they are mostly related to the segmentation and classification of radar imagery.
Other applications include, for example, the detection of changes ([16,31]), the edge-preserving
smoothing of high-resolution satellite images [32], super-resolution image analysis [33], compression of
remote sensing imagery [34] and usage as textural features for content-based image retrieval [35].
There are also combinations with methods such as granulometric analysis [36] or principal component
analysis [37] (see Table 2).
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Table 2. Examples of (multi)fractal spectral curve descriptions applied to hyperspectral data analysis.

Paper Sensor/Dataset No. of Bands No. of
Classes

Parameters
Used/Method

Spectral Curve
Description

Dong et al. (2008) [17] HYPERION 138 of 242 5 Fractal dimension/
blanket method

Ghosh et al. (2008) [15] AVIRIS/Moffit Field 224 4
Fractal

dimension/adapted
Hausdorff metric

Ghosh et al. (2008) [38] AVIRIS/Moffit Field 30
128 5

Fractal
dimension/adapted

Hausdorff metric

Junying et al. (2008) [39] MAIS 1

OMIS
176 of 220 4

4
Fractal dimension/step
measurement method

Ziyong et al. (2010) [40] HYPERION 191 of 210
12 -

Fractal
dimension/modified

blanked method

Hosseini et al. (2012) [41] HYDICE
2/Washington F210

191 of 210
12

6
9

Fractal dimension/
Hausdorff metric

Mukherjee et al. (2012) [14]
HYDICE

AVIRIS/Indian Pine
AVIRIS/Cuprite

188 of 210
200 of 224
197 of 224

5
9 of
16
14

Fractal
dimension/power
spectrum method

Mukherjee et al. (2013) [19]
HYDICE

AVIRIS/Indian Pine
AVIRIS/Cuprite

188 of 210
200 of 224
197 of 224

5
9 of
16
14

Fractal dimension/
variogram method

Mukherjee et al. (2014) [18] AVIRIS/Indian Pine
AVIRIS/Cuprite

200 of 224
197 of 224

9 of
16
14

Fractal
dimension/Sevcik’s

method, power
spectrum method,
variogram method

Li et al. (2015) [42] PHI 3/Fanglu
AVIRIS/Indian Pines

64
200 of 224

6
16

4 parameters related to
multifractal spectrum

Wan et al. (2017) [43] AVIRIS/Indian Pines
AVIRIS/KSC

200 of 224
176 of 224

9 of
16
13

Holder exponent,
multifractal spectrum

features

Krupiński et al. (2019) [44] CASI 4/University of
Houston

144 15

6 parameters related
to multifractal spectrum/
multifractal detrended

fluctuation analysis
1 Modular Airborne Imaging Spectrometer, 2 Hyperspectral Digital Imagery Collection Experiment, 3 Pushbroom
Hyperspectral Imager, 4 Compact Airborne Spectrographic Imager.

Our previous research comprehensively analysed the multifractal character of panchromatic very
high resolution (VHR) satellite images acquired by the following satellites: EROS [26], WorldView-2 [25],
GeoEye-1 and Pléiades 1A [45,46], using the box-counting based moment method. In particular,
we proposed a quantitative parameter, named the degree of multifractality (∆), and demonstrated its
usefulness in attempts to distinguish the basic forms of land cover (water, urban areas, forests and
agriculture). In general, the method was effective in automatically assigning image subsets to certain
classes. We also showed that the degree of multifractality can be a very effective descriptor of image
content, compared to other textural features [47]. However, it should be noted that our global analysis
was exclusively focused on a panchromatic band of satellite imagery. The exception was 30-m pixels
from Landsat satellites, where we initially considered six spectral bands [48].

In the context of hyperspectral data analyses, we found only four examples in the literature where
a multifractal formalism was applied. More precisely, Combrexelle et al. [30] calculated coefficients of
the polynomial describing the multifractal spectrum for each spectral band. Li et al. in [42] showed
that using multifractal parameters for spectral profiles’ description may improve the average accuracy
by 7–8%. Incorporation of multifractal parameters resulted in higher overall accuracy (almost 10%)
in the algorithm proposed by Wan et al. [43]. Krupiński et al. showed [44] that overall classification
accuracies of methods that use multifractal parameters to describe the spectral curve may differ
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by 7–9%, depending on the pre-processing method. A summary of the current state of knowledge
regarding the usefulness of (multi)fractal formalism in the analysis of hyperspectral data is presented
in Table 1 (global and local descriptions of spectral bands) and Table 2 (spectral curve description). It is
worth noting that in all of the reviewed papers, the analysed datasets were limited to a small number
of images or subsets (from 1 to 6), and mostly applied to airborne imagery. Our summary indicates that
the multifractal analysis of hyperspectral imagery remains very limited, and we aim to fill this gap.

Therefore, the aim of this research is to consider, for the first time, degree of multifractality as a
new global description of all spectral bands for AVIRIS data, for four landscape types. In particular,
we verify whether multifractal character is present in all spectral bands. Additionally, we analyse the
variability of multifractal features in the function of wavelength, both before and after atmospheric
correction. Following this analysis, we try to discuss the areas of potential applicability for the
presented methodology. We consider identification of absorption bands and whether multifractal
parameters can help to overcome the problem of dimensionality reduction in hyperspectral data or
with landscape type classification. Finally, a short comparison of determined multifractal features with
statistical and fractal descriptors is performed.

This paper is organised as follows. In Section 2, we present our dataset. The methodology related
to the concept of the multifractal is described in Section 3. The results of our analysis are presented and
discussed in Section 4, the discussion is in Section 5 and the main conclusions are outlined in Section 6.

2. Data

The Jet Propulsion Laboratory (JPL), managed by NASA, designed and developed the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS). It was the first imaging spectrometer able to measure
the solar spectrum from 400 to 2500 nm as 224 contiguous channels (spectral bands) [49].

Data acquired by AVIRIS over California (USA) are used in our analyses. More precisely,
we considered four subsets of four images. Each subset measured 512 × 512 pixels. Each subset
represented a different type of landscape, i.e., agriculture, mountains, urban and water (see Figure 1).
Analyses were performed on two types of data—radiance (224 bands) and reflectance (197 bands).
The reflectance dataset did not include bands with strong radiation absorption caused by water
particles in the air, which are removed by the JPL during the atmospheric correction process. As noted
in [49], the Atmosphere Removal Algorithm (ARTEM), developed by Gao et al. [50] and updated by
Gao and Davis [51], is applied to generate Level-2 products. The spatial resolution of analysed images
is about 15–16 m. A list of images used for sample selection is presented in Table A1 (Appendix A).
The size of the subsets is given by the calculation and requires square images, where the number of
rows (and columns) is a power of 2. The same dataset, among others, was previously analysed with
the DF parameter by Krupiński et al. in [22]. According to the reviews presented in Tables 1 and 2,
AVIRIS is the most commonly used sensor for fractal-related research.
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Figure 1. Selected spectral bands of four Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
images used in the analyses: (a) agriculture, (b) mountains, (c) urban and (d) water.

To facilitate the results’ description, we divided the spectrum into six zones (VIS, NIR, A 1,
SWIR 1, A 2 and SWIR 2). The bands of zones A 1 and A 2 were removed from reflectance as
these bands were strongly affected by radiation absorption caused by water particles in the air
(noisy bands) [49]. Exact ranges (bands and wavelengths) of the six zones are summarised in Table 3.
More details about the analysed subsets may be found in Figure A1 (Appendix A), which presents four
statistical moments (mean, variance, skewness and kurtosis) for radiance (left column) and reflectance
(right column) samples.

Table 3. Division of the electromagnetic spectrum into six zones.

Zone Name VIS NIR A 1 SWIR 1 A 2 SWIR 2

Bands 1–40 41–103 104–114 115–152 153–168 169–224
Wavelength (nm) 366–724 734–1313 1323–1423 1433–1802 1811–1937 1947–2496

3. Methodology

The degree of multifractality (∆) is a quantitative multifractal parameter that describes the
non-homogeneity of considered data and several methods can be used in its estimation (e.g., [25,44]).
In this study, to calculate the degree of multifractality (∆) for each spectral band separately, for both
types of imagery (radiance and reflectance), we applied the box-counting based moment method [27]
as described in, for example, [25]. More precisely, we considered the variability of the spectrum of
the generalised dimension Dq as a non-increasing function of the real index q, −∞ < q < +∞ (see,
for example, [52]). In the first step, an image (in a given spectral band) of size m×m was divided into
N (δ) = (m/δ)2 square boxes of size δ× δ (starting with a single pixel of size δ = 1 and ending with
a box of size δ = m); see [25] and Figure 1. For a given box, the normalised measure was calculated
according to the formula:

µi(δ) =
pi(δ)∑N(δ)

i=1 pi(δ)
(1)

where i = 1, . . . , N (δ) are labels given to individual boxes sized δ, and pi(δ) =
∑

(k,l)∈Ωi
g(k, l),

where g(k, l) is the greyscale intensity at point (k, l), and Ωi is the set of all pixels in box δ. It is
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worth noting that in the context of multifractal analysis, different measures can be constructed that
emphasise various effects and describe different physical processes in the considered data ([47,53]).
In the next step, the partition function χ(q, δ) for various values of δ and q was computed according to
the formula:

χ(q, δ) =
∑N(δ)

i=1
(µi(δ))

q. (2)

As q varies in (2), different subsets associated with different densities dominate. For multifractal
measures, the partition function χ(q, δ) scales with the box size δ → 0 as:

χ(q, δ) ∝ δDq(q−1). (3)

Based on (2) and (3), we obtained the spectrum of generalised dimensions Dq defined, for the first
time, by [28]:

Dq =
1

1− q
lim
δ→0

log
∑N(δ)

i=1 (µi(δ))
q

− log δ
. (4)

Additionally, the uncertainties of determining the corresponding slopes log
∑N(δ)

i=1 (µi(δ))
q against

log δ (Equation (4)), obtained using unweighted least squares fitting, informed us about the accuracy
of the calculation of the Dq.

Next, the variability of the multifractal function Dq, given as the difference between the maximum
(D−∞) and minimum (D+∞) dimensions, defines the degree of multifractality ∆ [52,53] as follows:

∆ = D−∞ −D+∞ . (5)

Theoretically, this generalised dimension function Dq is defined for all real values of q [53].
In practice, the limited dataset means that we can only determine values of Dq for a narrow number
of moments q (see, for example, [45,47,52]). In this study, we performed an initial examination and
verified what kind of q range each sample yields. Then, an optimum range −3 ≤ q ≤ 8 that overlaps
the individual q ranges was chosen and applied in further steps. Finally, parameter ∆ was calculated as
the difference between D−3 and D+8, while the sum of errors of D−3 and D+8 gave the error obtained
for each value of ∆.

4. Results

The multifractal analysis described in Section 3 was performed for each spectral band for four
examples of different landscapes and, in each case, for radiance and reflectance data. In all considered
cases, the scaling given by Equation (3) was revealed and the multifractal nature of the analysed
data confirmed. As a consequence, the function (4) and final degree of multifractality (∆) could be
determined and used as a quantitative data descriptor.

4.1. Degree of Multifractality for Radiance

Figure 2 presents the change in values of degree of multifractality ∆ (Y-axis) with wavelength/

band number (X-axis) for the four landscape types: water (blue), mountains (black), agriculture (green)
and urban (red). The information about error estimation is also given in the form of vertical bars
(∆ ± error). A general overview of the results shows that the values of ∆ determined for radiance data
samples are within the range of 0 and 0.768. It is worth noting that both lower and upper extremes
relate to water landscape sample (bands 4 and 111, respectively).
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Figure 2. Degree of multifractality (∆) determined for radiance images of water (blue), mountain (black),
agriculture (green) and urban (red) landscapes. The whole spectrum is divided according to ranges
presented in Table 3.

In the case of agriculture, the minimum value of ∆ is 0.006 and the maximum is 0.498. For mountains,
∆ ranges from 0.001 to 0.581, and from 0.002 to 0.484 for urban areas. Water landscape has the lowest ∆
values in all spectral bands, except the A 1 and A 2 zones. Figure 2 shows that for all landscape types,
∆ is lowest within the VIS zone. With the exception of agriculture, the highest ∆ value is found in the
A 1 or A 2 zones. Besides the A 1 and A 2 zones, ∆ values are the highest and the most variable in the
SWIR 2 zone, for all four types of landscape. More detailed information about ∆ values (minimum,
mean and maximum) is presented in Table A2.

An analysis of the whole electromagnetic spectrum registered by AVIRIS shows that the highest
mean error in the ∆ estimation was estimated for urban landscape (0.0160), then agriculture (0.0124),
mountains (0.0059) and water (0.0039). Although error values increase with wavelength, in all zones,
it does not exceed 18% of the ∆ values. The highest mean error in the ∆ estimation is observed for
the A 2 zone (0.0217 | 18%), then A 1 (0.0159 | 14%), SWIR 2 (0.0145 | 12%), SWIR 1 (0.0075 | 12%),
VIS (0.0052 | 13%) and NIR (0.0050 | 14%). Table A3 contains precise values of error in the ∆ estimation.

4.2. Degree of Multifractality for Reflectance

In order to study the multifractal character of reflectance data, we prepared a comparison between
∆ values computed for radiance and reflectance. Figure 3 presents these values for each zone of the
electromagnetic spectrum listed in Table 3 (except A 1 and A 2). Moreover, we calculated the difference∣∣∣∆re f lectance − ∆radiance

∣∣∣ and it is presented in Table 4.
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Table 3.

Table 4. Modulus of the difference between ∆ values for reflectance and radiance data. Average
absolute and relative (%) values. Relative values refer to radiance data.

Landscape Type VIS NIR SWIR 1 SWIR 2

Agriculture 0.074 0.003 0.007 0.004
233% 4% 4% 1%

Mountains
0.062 0.005 0.004 0.009
524% 11% 8% 5%

Urban
0.063 0.007 0.000 0.002
383% 15% 5% 2%

Water
0.003 0.001 0.001 0.0003
446% 25% 11% 6%

All
0.049 0.005 0.004 0.004
394% 9% 7% 3%

The first thing we notice, analysing the difference, is the huge increment (exceeding 7000) in ∆
values calculated for the first few bands of the mountain landscape subset. A closer examination of
these bands revealed that they contain between 1.5% and 99.7% of pixels with a value of 0 (this issue is
not observed in radiance data). Moreover, checks of the original source image indicated that most
mountain areas are covered by 0-value pixels in the first few bands of reflectance data. As analogous
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situations were noted in other types of landscape, we decided to analyse only bands without this error.
Consequently, all bands where the increment in number of pixels with a value of 0 (between radiance
and reflectance) was higher than 1% (~2600 pixels) were excluded from further comparison. Bands 1–3
and 224 were removed from the agriculture reflectance sample; 1–7 from the mountain sample; 1–2 and
223–224 from the urban sample; and 223–224 from the water sample. Table 4 summarises the statistics
after the removal of bands with this error.

Detailed analysis of Figure 3 and Table 4 reveals that the first zone, VIS, is the part of the
electromagnetic spectrum where the biggest differences between radiance and reflectance results
appear. More precisely, in the whole VIS zone, ∆ reflectance values are higher than ∆ radiance values
for all four landscape types (almost four times in average). It means that the influence of atmospheric
corrections is reflected in ∆ values.

In the NIR zone, the average absolute change in ∆ values is 9% (the highest in water—25%—and the
lowest in the agriculture sample—4%). In the SWIR 1 zone, the average absolute change in ∆ is 7%
(the highest is for water (11%); the lowest is for agriculture (4%)). The biggest changes in ∆ occur
in bands 115–120 and 151–152 for mountains, observed as a smoothing of curve shape in Figure 3.
These bands represent regions of the spectrum that are adjacent to zones of water absorption (A 1 and
A 2).

In the SWIR 2 zone, there is the lowest average change in ∆ in the whole analysed spectrum (3%),
so influence of atmospheric correction on these bands is very small. Like SWIR 1, the highest relative
change is found for water (6%) and the lowest for agriculture (1%). The most significant changes are
also observed on the edges of the SWIR 2 zone for mountains (bands 169–170 and 221–224).

Errors in ∆ estimation for reflectance data were analysed in comparison to errors for radiance data.
Absolute and relative differences for all landscape types and the four spectrum zones are combined
in Table A4. The biggest change in error values is observed in the VIS zone (0.005). This may be
because in this zone, the change in ∆ values is the highest. In the three other zones (NIR, SWIR 1
and SWIR 2), average error is the same—0.001. For all zones, the absolute average change in error
values is highest for urban landscape and lowest for water. In most cases, error values increase after
atmospheric correction, notably for all bands in urban and water landscapes.

5. Discussion

To the best of our knowledge, in this paper, for the first time, global multifractal parameters are
used for hyperspectral data analyses. For this reason, our results may be discussed only by reference
to the global multifractal analysis of multispectral and panchromatic images or by reference to the
global fractal analysis of hyperspectral data (listed in Table 1). In this section, we discuss the issues of
atmospheric absorption, landscape type separability, comparison to fractal dimension and statistical
moments and indicate potential directions for further analyses.

5.1. Interpretation of the Multifractal Results

5.1.1. Influence of Atmospheric Absorption

The influence of atmosphere components on data in this experiment is analysed in two ways.
Firstly, variability of ∆ curves may be compared to the transmittance spectrum of the atmosphere
(Figure 2 in [49]). Secondly, comparing ∆ for radiance and for reflectance, we may observe the
magnitude of changes and indirectly study how atmospheric correction modifies the data of specific
spectral bands.

The biggest influence of atmosphere components on acquired radiance and, in consequence,
on pixel values is visible in the A 1 and A 2 zones. An analysis of the shape of ∆ curves in Figure 2
highlights that the smoothness of the curves is disrupted in zones A 1 and A 2. For mountain and
water landscapes, ∆ values in A 1 and A 2 zones exceed the values of neighbouring zones. In the case
of urban landscape, we observe the opposite situation (∆ values are lower than in adjacent zones).
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Values seem to preserve their continuity mostly in agricultural areas. Visual interpretation of these
bands confirmed that images of other landscape types are noisier in these two zones. These differences
may be related to different levels of humidity in the atmosphere over specific types of landscape and
different image acquisition dates.

In the VIS zone, after band 35, ∆ decreases rapidly until band 40, which corresponds to O2

absorption. In the NIR zone, three subzones can be clearly observed (bands 41–63, 64–84 and 85–103).
This division may be caused by the absorbance of solar radiation by H2O vapour at the edges.
The values for mountains reveal two fragments where there is a sudden increment (bands 63–65
and 81–86). These parts of the electromagnetic spectrum are where absorption caused by H2O is
observed. Atmospheric correction causes smoothing of the ∆ curve for the mountain landscape in these
bands. It could suggest that the ∆ parameter may be used to evaluate atmospheric correction quality.
Moreover, in the bands adjacent to these zones (in SWIR 1 and SWIR 2), we observed increased values
only for agriculture and mountain landscapes. It may be related to the fact that these two landscape
samples include plants. After atmospheric correction, ∆ for these bands also seems to be smoothed.

It is worth noting that plots with mean and variance values of specific bands also reveal the
influence of atmosphere on the data acquired (compare Figure 2 with Figure 2 in [49]). However,
these two parameters describe only pixel values’ distribution, while ∆ describes spatial and spectral
complexity at the same time.

5.1.2. Landscape Types and Dimensionality Reduction

It is possible to identify parts of the electromagnetic spectrum where certain landscape samples
have different ∆ values and differences between them are higher than values of errors. In such cases,
we will note that ∆ values of certain bands could be used to clearly distinguish landscape types.
Distinct ∆ values with differences smaller than error values could possibly distinguish landscape types.
In the VIS zone, clear separation of all landscape types is observed in bands 23–38. In the NIR zone,
it is possible to clearly distinguish landscape types using bands from the second and third subzones,
although differences in ∆ are lower than in the VIS zone. Similar values of ∆ for neighbouring bands
can be explained by the fact that these bands represent adjacent wavelengths. Low variability in ∆
within specific landscape types (except agriculture) indicates that information capacity, from the point
of view of multifractal analysis, is similar. Therefore, ∆ could possibly be useful for data dimensionality
reduction (especially in NIR) if agricultural land is not of interest.

In SWIR 1, no overlap between ∆ values (±errors) indicates that all four types of landscape could
be separated using bands 115–117 or 121–125. In SWIR 2, all four types of landscape could be separated
using almost any band from this zone. The exception are bands 182–187, where ∆ values for mountains
are very close to those for urban landscape.

In this research, single samples of four landscape types have been used. To confirm if specific a
landscape type is characterised by the same or similar ∆ curves, more samples should be analysed.
To assess the usefulness of ∆ for dimensionality reduction, additional experiments should also
be performed.

5.1.3. Size of Images and Spatial Resolution

The size of the analysed images is related to the methodology used to estimate the degree of
multifractality and influences the range that is used for multifractal scaling (3). Our review of the
literature found that sizes ranging from 17 × 17 to 512 × 512 pixels have been analysed (Table 1).
However, only Myint et al. [21] investigated different sizes of hyperspectral subsets representing the
same land cover class, and those subsets did not represent exactly the same area. Moreover, the data
were analysed using a fractal, and not a multifractal, formalism.

In our previous work, we calculated the degree of multifractality for several subset sizes:
1024 × 1024 in [25], 512 × 512 in [22,26,47], 256 × 256 in [16,46] and 64 × 64 and 32 × 32 in [45].
These earlier studies indicated that the bigger the size, the more reliable the multifractal scaling and ∆
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estimations. To verify this hypothesis, image subsets were resampled from their original size to 256 ×
256, 128 × 128 and 64 × 64 pixels and analysed. In consequence, we obtained images with pixel sizes of
30, 60 and 120 m.

Stable results were found for the degree of multifractality determined for different image sizes,
for all analysed landscape types (see Figure 4). However, estimation errors increased as image size
decreased. A detailed analysis was performed with absolute and relative mean values of change in ∆
(and errors), and the results are presented in Table 5.
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Figure 4. Degree of multifractality calculated for radiance images of different sizes: 512 × 512,
256 × 256, 128 × 128 and 64 × 64 pixels, and four landscape types: agriculture (green), mountains
(black), urban (red) and water (blue).

Table 5. Modulus of the difference between values of ∆ calculated for radiance data for original and
resampled data. Average values.

Mean ∆ Differences Mean Error Differences

Landscape Type 256 × 256 128 × 128 64 × 64 256 × 256 128 × 128 64 × 64

Agriculture 0.007 0.007 0.012 0.003 0.008 0.014
4% 4% 10% 2% 5% 11%

Mountains
0.006 0.012 0.015 0.001 0.002 0.002
6% 14% 18% 1% 2% 2%

Urban
0.023 0.033 0.037 0.008 0.012 0.014
29% 44% 52% 4% 7% 8%

Water
0.005 0.008 0.011 0.002 0.004 0.004
21% 44% 76% 2% 2% 5%

All
0.010 0.015 0.019 0.003 0.005 0.009
15% 26% 39% 2% 3% 6%

A smaller subset size changes ∆ values in all landscapes. Generally, the smaller the subset
(and lower spatial resolution), the bigger the changes compared to the original image (512 × 512 pixels).
Average absolute change increases evenly by 0.005, starting at 0.010 (15%) for 256 × 256, and rising to
0.019 (39%) for the smallest subsets (64 × 64). The biggest absolute differences are noted for urban
landscape, 0.023 (256 × 256), 0.033 (128 × 128), 0.037 (64 × 64), and the smallest for water (0.005,
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0.008 and 0.011, respectively). In most cases, resampling the agriculture subset to 256 × 256 or 128
× 128 caused an increment in ∆ values. The exception was 64 × 64, where ∆ tended to fall. In the
analysis of mountain and urban landscapes, it was found that ∆ fell almost in all bands. In the case of
the water subset, each resampling increased ∆ values.

To analyse how errors in the ∆ estimation change when images are resampled, we compared
absolute relative values. In general, we observe that the smaller the image size, the bigger the change
in error. The smallest average absolute change in errors was 0.003 (for water), and the highest was
0.009 (for urban landscape).

5.2. Comparison with Other Characteristics

5.2.1. Correlation with Statistical Moments

Following Combrexelle et al. [30], we calculated the coefficient of determination (r2) to evaluate the
complementarity between ∆ and statistical moments. In the first assessment, values of ∆ for all bands
for the four landscape types in reflectance images were combined. Low values of r2 were obtained with
four moments: mean (0.003), standard deviation (0.225), skewness (0.114) and kurtosis (0.034). In the
next step, each landscape type was analysed separately (Table 6). In this case, we observed the highest
coefficient values for urban landscape, notably for the mean (0.834) and skewness (0.858). This may be
because the urban sample has the most complex structure and contains a dense mixture of dark and
bright objects (see Figure 1c). Coefficient values were much lower for the three other landscape types.

Table 6. Correlation coefficients (r2) between the degree of multifractality and four moments calculated
for reflectance for the four landscape types after removal of outliers.

Landscape Type Mean Standard Deviation Skewness Kurtosis

Agriculture 0.452 0.003 0.012 0.508
Mountains 0.664 0.075 0.038 0.012

Urban 0.834 0.500 0.858 0.762
Water 0.255 0.180 0.039 0.008

In general, the comparison performed here of statistical and multifractal description of
hyperspectral data states the confirmation our previous analysis with panchromatic bands ([26,35,47])
and indicates that ∆ provides complementary information to moments and may be used as an additional
classification feature. This is in agreement with the fact that multifractal analysis considers both
positive and negative higher-order moments (see Section 3), while in the case of statistical description,
only positive or particular moments are used.

5.2.2. Comparison with Fractal Dimension

The data used in this experiment were previously analysed with a fractal parameter—fractal dimension
(DF)—in [21], where the differential box-counting method was applied [3]. Values of DF (±error of
estimation) from that paper are combined in Figure A2 (for radiance) and Figure A3 (for reflectance).
Similarly to ∆ values’ shape, DF values also increase with wavelength in VIS. There, however, water reached
the highest values, then urban, agriculture and mountains. It may be confirmation of the fractal character
of water, observed previously on panchromatic VHR images inter alia in [47]. When DF was calculated
with other methods (isarithm and triangular prism) in [20], urban landscapes had also higher values than
rural ones. Moreover, the few first bands had very high DF values. It is worth noting that the image
samples used in [20] present more heterogeneous landscape samples than those in [22] and in this paper.

Unlike ∆, DF values in [22] did not allow for clear separation of landscape types in any band
because of overlapping error bars; in [20], errors were not presented. It reveals an advantage of using
the multifractal over the fractal parameter.
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Both ∆ and DF show the increment in values caused by atmospheric correction in the VIS zone.
In NIR, three subzones indicated by ∆ values were also visible when DF was used in [22]. Moreover,
both parameters change at the edges of these subzones (compare our results to Figure 2 in [49])
when atmospheric correction is applied, especially in the case of mountain landscape. In the SWIR 1
zone, the shape of the ∆ curve for agriculture is very similar to the shape of the DF curve presented
by [22]. However, in the latter, agriculture has the lowest values from all landscape types. The other
three landscapes present almost flat shapes, with the highest values for water, then mountains,
urban and agriculture.

Previous research on DF ([20,22]) revealed disturbances in the A 1 and A 2 zones, similarly to ∆.
Using ∆ or DF (estimated with the DBC method), the continuity of curve was disturbed. Values were
mostly elevated, but with few exceptions. Using isarithm and triangular prism methods, DF values
were clearly elevated for rural and urban samples. It may suggest that both parameters (∆ and DF)
may be used for absorption bands’ evaluation.

6. Conclusions

The research presented here is one of the first attempts to describe hyperspectral aerial images
using multifractal parameters. Our results confirmed the multifractal nature of hyperspectral data
acquired by AVIRIS. In particular, we calculated, for the first time, the degree of multifractality (∆)
for each spectral band of four image samples that present different landscape types. For each image,
two levels of data processing were used (radiance and reflectance). The analysis of variability in ∆
highlighted a clear division of the spectrum into the following four ranges: VIS, NIR, SWIR 1 and
SWIR 2. Our results are presented in detail for each range. Two zones of absorption were visible in
radiance subsets (A 1 and A 2). Here, radiation absorption caused by water particles in the atmosphere
leads to significant disturbances in the shape of the ∆ curve. This observation suggests that ∆ could be
used as an indicator to discriminate noisy bands.

In the selected bands, our proposed ∆ values seem to be able to distinguish different landscape
types, inter alia, at bands 23–38, 62–103, 115–117, 121–125 and 169–224. Water differs from the three
other types in most bands, but especially in SWIR 2. Very low ∆ values and a flat curve suggest that
water represents monofractal scaling; this is in line with our previous studies on VHR panchromatic
satellite images (e.g., [47]). Agriculture differs significantly in the SWIR 2 and VIS (bands 23–38),
NIR (bands 41–64) and SWIR 1 zones (bands 115–123). Urban landscape differs most in the VIS zone
(bands 23–38) and mountains in all zones, except SWIR 2. Regions where ∆ values form flat horizontal
lines indicate bands with similar information content.

Based on our results, we can assume that variability in ∆ could possibly be used as a parameter for
feature selection and identification of optimal bands to distinguish between different landscape types
in the context of context-based image retrieval or image information mining. A comparison with results
obtained from fractal analysis [22] indicates that our method identifies more bands where the degree
of multifractality can distinguish landscape types. Moreover, the smaller ∆ error estimation confirms
that the formalism is better-suited to aerial hyperspectral images analysis. In general, a comparison
of the usability of ∆ to distinguish landscape types highlights that better performance is achieved
using radiance data. The exception is the NIR zone, where reflectance data provide more bands
with clear interclass separability than radiance. Moreover, in most cases, ∆ estimates increase after
atmospheric correction.

In some bands, large differences in ∆ were found for data before and after atmospheric correction.
The increase in ∆ after atmospheric correction shows that the parameter could be used to assess
atmospheric correction quality, especially given that one value of ∆ may be calculated for the whole
image. Both ∆ and its error can be used to accurately detect noisy bands. Like DF used in [22],
both approaches (fractal and multifractal) indicate that atmospheric correction causes the biggest increase
in parameter values in the visible part of the electromagnetic spectrum. Additionally, data acquired
in absorption zones (A 1 and A 2) cause disturbances in both fractal and multifractal parameters,
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and smoothing effects are found in bands 62–64 and 81–85 for mountain landscape. However, unlike DF,
the degree of multifractality can detect bands dominated by 0-value pixels, which should be excluded
from the study.

Variability in ∆ does not change significantly with decreasing subset size. Experiments with
images of four different sizes (512 × 512, 256 × 256, 128 × 128 and 64 × 64) revealed that variability in
∆ is stable, regardless of landscape type and size. Moreover, an analysis of change in ∆ (and errors)
found that the smaller subset size, the bigger the differences in ∆ and its error. The biggest absolute
differences in ∆ (and its error) were noted for urban landscape, and the lowest for water.

Another interesting observation is the generally low correlation coefficient values found between
∆ and statistical moments (mean, standard deviation, skewness and kurtosis). This finding suggests
that ∆ may be used to complement the description of hyperspectral data.

Finally, it should be noted that our research introduces a new parameter for the global description
of hyperspectral data. To sum up, we may conclude that the performed multifractal analysis resulted in
several interesting findings and seems to be useful for a number of possible applications. Further studies
on larger and more varied datasets are required to confirm our conclusions. These studies will be
performed in the next stage of our work, during which we will analyse different land cover/use classes
and images from other hyperspectral sensors. Another interesting avenue will be to apply a different
method to estimate ∆ and different feature extraction methods. We believe that these studies may
make a significant contribution to the problem of dimensionality reduction in hyperspectral data.
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Appendix A

Images used for the analyses were downloaded from the AVIRIS Data Portal (https://aviris.jpl.
nasa.gov/alt_locator/).

Table A1. Files used in the analyses.

Landscape Type Original Image (Radiance) Original Image (Reflectance)

Agriculture f130522t01p00r11rdn_e f130522t01p00r11_refl
Mountains f130522t01p00r12rdn_e f130522t01p00r12_refl

Urban f130612t01p00r11rdn_e f130612t01p00r11_refl
Water f130606t01p00r10rdn_e f130606t01p00r10_refl

https://aviris.jpl.nasa.gov/alt_locator/
https://aviris.jpl.nasa.gov/alt_locator/


Remote Sens. 2020, 12, 4077 15 of 21

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 21 

 

 

Figure A1. Values of first four statistical moments (from top: mean, variance, skewness and kurtosis) 

determined for radiance (left column) and reflectance (right column) data for four landscape types: 

water (blue), mountains (black), agriculture (green) and urban (red). 

Figure A1. Values of first four statistical moments (from top: mean, variance, skewness and kurtosis)
determined for radiance (left column) and reflectance (right column) data for four landscape types:
water (blue), mountains (black), agriculture (green) and urban (red).
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Appendix B

Table A2. Values of the ∆ estimation for radiance and reflectance data. Bold font indicates the lowest and the highest ∆ values for specific landscape types.

Radiance Reflectance
VIS NIR A 1 SWIR 1 A 2 SWIR 2 All VIS NIR SWIR 1 SWIR 2 All

Agriculture
Min 0.006 0.039 0.047 0.068 0.075 0.157 0.006 0.032 0.039 0.068 0.157 0.032

Mean 0.088 0.070 0.073 0.106 0.197 0.264 0.137 0.151 0.072 0.101 0.262 0.151
Max 0.210 0.109 0.159 0.188 0.423 0.498 0.498 0.497 0.110 0.171 0.497 0.497

Mountains
Min 0.001 0.024 0.033 0.052 0.164 0.095 0.001 0.031 0.025 0.053 0.096 0.025

Mean 0.031 0.037 0.116 0.070 0.349 0.135 0.092 0.100 0.034 0.064 0.129 0.079
Max 0.084 0.076 0.222 0.138 0.581 0.278 0.581 0.206 0.047 0.083 0.208 0.208

Urban
Min 0.002 0.034 0.024 0.071 0.032 0.082 0.002 0.045 0.041 0.058 0.061 0.041

Mean 0.060 0.048 0.083 0.087 0.048 0.134 0.080 0.126 0.056 0.089 0.134 0.098
Max 0.104 0.055 0.484 0.103 0.062 0.172 0.484 0.198 0.064 0.108 0.176 0.198

Water
Min 0.0003 0.004 0.004 0.004 0.011 0.001 0.0003 0.003 0.005 0.005 0.002 0.002

Mean 0.002 0.005 0.081 0.005 0.079 0.007 0.014 0.005 0.006 0.006 0.006 0.006
Max 0.004 0.005 0.768 0.006 0.234 0.030 0.768 0.025 0.006 0.006 0.022 0.025
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Table A3. Errors in the ∆ estimation for radiance data. Bold font indicates the highest mean value
within a zone; green represents the lowest mean error for a specific landscape type; and red, the highest.

VIS NIR A 1 SWIR 1 A 2 SWIR 2 All

Agriculture
Min 0.0004

4%
0.0031

8%
0.0036

7%
0.0051

7%
0.0060

7%
0.0125

8%
0.0004

4%

Mean 0.0070
7%

0.0056
8%

0.0061
8%

0.0083
8%

0.0240
13%

0.0245
9%

0.0124
8%

Max 0.0192
9%

0.0086
8%

0.0132
13%

0.0161
9%

0.0464
29%

0.0581
12%

0.0581
29%

Mountains
Min 0.0001

5%
0.0008

2%
0.0009

2%
0.0034

4%
0.0065

4%
0.0047

3%
0.0001

2%

Mean 0.0026
9%

0.0027
7%

0.0061
5%

0.0044
6%

0.0244
7%

0.0075
6%

0.0059
7%

Max 0.0068
15%

0.0087
11%

0.0150
8%

0.0071
8%

0.0458
9%

0.0156
7%

0.0458
15%

Urban
Min 0.0001

8%
0.0080
18%

0.0030
8%

0.0062
9%

0.0012
4%

0.0031
4%

0.0001
4%

Mean 0.0104
17%

0.0108
22%

0.0292
19%

0.0163
19%

0.0096
20%

0.0247
18%

0.0160
19%

Max 0.0158
24%

0.0131
24%

0.2524
52%

0.0185
23%

0.0167
28%

0.0347
22%

0.2524
52%

Water
Min 0.0000

17%
0.0006
16%

0.0006
14%

0.0005
13%

0.0021
19%

0.0001
10%

0.0000
10%

Mean 0.0003
17%

0.0008
17%

0.0224
24%

0.0009
16%

0.0288
33%

0.0012
17%

0.0039
18%

Max 0.0006
23%

0.0008
17%

0.2124
34%

0.0009
17%

0.0846
46%

0.0083
28%

0.2124
46%

All Mean 0.0052
13%

0.0050
14%

0.0159
14%

0.0075
12%

0.0217
18%

0.0145
12%

Table A4. Modulus of the difference between error values of ∆ calculated for reflectance and radiance
data. Average values.

Landscape Type VIS NIR SWIR 1 SWIR 2

Agriculture 0.007 0.0003 0.001 0.001
304% 5% 5% 2%

Mountains
0.004 0.001 0.001 0.001
542% 32% 12% 7%

Urban
0.009 0.003 0.003 0.002
494% 32% 21% 6%

Water
0.001 0.0002 0.0001 0.00005
440% 25% 11% 6%

All
0.005 0.001 0.001 0.001
442% 21% 12% 5%
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