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Abstract: Global warming-induced climate change evolved to be one of the most important research 
topics in Earth System Sciences, where remote sensing-based methods have shown great potential 
for detecting spatial temperature changes. This study utilized a time series of Landsat images to 
investigate the Land Surface Temperature (LST) of dry seasons between 1989 and 2019 in the Bac 
Binh district, Binh Thuan province, Vietnam. Our study aims to monitor LST change, and its 
relationship to land-cover change during the last 30 years. The results for the study area show that 
the share of Green Vegetation coverage has decreased rapidly for the dry season in recent years. The 
area covered by vegetation shrank between 1989 and 2019 by 29.44%. Our findings show that the 
LST increase and decrease trend is clearly related to the change of the main land-cover classes, 
namely Bare Land and Green Vegetation. For the same period, we find an average increase of 
absolute mean LST of 0.03 °C per year for over thirty years across all land-cover classes. For the dry 
season in 2005, the LST was extraordinarily high and the area with a LST exceeding 40 °C covered 
64.10% of the total area. We expect that methodological approach and the findings can be applied 
to study change in LST, land-cover, and can contribute to climate change monitoring and forecasting 
of impacts in comparable regions. 
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1. Introduction 

According to the Intergovernmental Panel on Climate Change (IPCC) 2018 “Special Report 
Global Warming of 1.5 °C”, climate change is occurring at a faster rate in recent years [1]. The Earth 
is warming and climate change causes negative impacts across the globe, including Vietnam. The Bac 
Binh district is a region in Vietnam, which is undergoing urbanization processes, accompanied by 
increasing tourism and socio-economic development. These trends come along with land-cover 
changes and land-use conflicts, resulting in a reduction of natural vegetation and the increase land 
used for infrastructure, settlement and industry, as well as agriculture and aquaculture. Climate 
change, along with urbanization, causes severe impacts in Vietnam, like the intensification and 
durations of floods and droughts. These heat-related changes put ecosystems under stress and affect 
the wellbeing of the local population with extreme heat events [2–6]. 
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Land Surface Temperature (LST) is one of the most important climate variables and is crucial for 
the determination of the radiative energy budget of the Earth’s surface [7]. It can describe processes 
such as the heat flux between land surface and the atmosphere and is therefore a valuable indicator 
for climate change [8]. LST also complements near surface air-temperature data and spatial in nature, 
thus contributing to the Sustainable Development Goal 13, Climate Action [9]. Many studies have 
proven the suitability of medium- to high-resolution satellite imagery to retrieve area-wide LST [10–
14]. Most of these studies use Landsat images for LST time series analysis to derive trends and 
understand climate change and urbanization effects [15–17]. Using only LST values from a single 
Landsat scene to represent one season or one whole year shows some limitation of the LST value 
representativeness due the local daily temperature fluctuation. To overcome this, we used all the 
available dry season Landsat images for each year to ensure that the derived average LST better 
represents the year in the trend of the 30-year study period. 

While many studies have been conducted on various LST trends, there are currently few LST 
studies done in Vietnam. Thanh Hoan et al. [18] compared land-use types and the LST derived from 
a single image acquisition to understand the urban heat island effect of Hanoi city. Another work has 
been undertaken for the city of Can Tho in the Mekong Delta [19] using Landsat image to monitor 
the temperature difference between urban and suburban areas from 1996 to 2016. Several other 
studies have used MODIS satellite imagery for LST value extraction [20–23]. MODIS product come 
with a large scene coverage and a relative low spatial resolution and is therefore suitable for large 
study areas. For the proposed study with a focus on the Bac Binh district, we utilize a Landsat time 
series dataset with higher spatial resolution compared to MODIS in order to achieve a higher level of 
detail for the LST information. We monitor the extent of four land-cover types (Bare Land, Green 
Vegetation, Water Bodies, Built-up Area), and the respective ranges of LST during the last 30 years. 
Using the Landsat archive, we can extend our study period to 30 years, back to 1989, which is 
important for monitoring temperature-related phenomena. 

There is only one meteorological station in the surroundings of the study area that provides air 
temperature measurements, therefore satellite images are a useful source of data for studying the LST 
patterns, land-cover change and effects of climate change in the area. The proposed approach 
exemplifies and discusses how to use Landsat image for LST monitoring in an area with a limited 
number of meteorological stations. The Landsat-derived LST is verified by MODIS-derived LST as 
well as the in-situ data from the nearby meteorological station. 

The monitoring of LST aids the understanding of the local climate settings and trends, which are 
important for the development of mitigation and adaptation measures for sustainability in the Bac 
Binh district. The focus of this study is monitoring change in four land-cover types (Bare Land, Green 
Vegetation, Water Bodies, Built-up Area), LST change, and the interrelation between LST and land-
cover during thirty years in Bac Binh. This approach can be used for climate change research, natural 
resource management, and it can be applied to comparable regions. 

2. Study Area and Data 

2.1. Study Area 

The Bac Binh district, Binh Thuan province is located in the south central coastal region of 
Vietnam (Figure 1), with an area of 1,825 km2 and a population of more than 129,374 in 2019 [24]. Cho 
Lau and Luong Son are two small towns of this rural district. Its topography is hilly with an average 
altitude of 200 m and slopes below 8° to the west and plain sandy coastal area to the east. Bac Binh’s 
climate is characterized by two seasons: the dry season (from November to April) and the rainy 
season (from May to October). The average total precipitation in the dry season in the south-central 
coastal region of Vietnam is very low (below 50 mm for 6 months of dry season). January and 
February are the driest months that may have 0 mm rainfall [25]. 

In recent years, the study area has undergone rapid socio-economic development [26,27]. 
Population growth, urban expansion, and the changes in land-cover and the increases in temperature 
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have been creating negative effects on the environment and affecting people’s health and quality of 
life. 

 
Figure 1. Study area—Bac Binh district, Binh Thuan province, Vietnam. 

2.2. Data 

This study uses Landsat imagery acquired from the United States Geological Survey (USGS) 
between 1989 and 2019 to derive the LST and land-cover for the Bac Binh area [28]. The dataset is 
comprised of three generations of Landsat sensors: Landsat TM, Landsat ETM+, and Landsat OLI 
TIRS. The Landsat Level 1T products are ortho-corrected [29–31] and have a spatial resolution of 30 
m for the multispectral bands. Thermal infrared bands used in the study are Band 6 for Landsat TM 
and Landsat ETM+ (spatial resolution of 120 m), and Band 10 for Landsat OLI TIRS (spatial resolution 
of 100 m). Multiple Landsat images are used for the derivation of land-cover and LST during dry 
season in the study area in each year of observation (Table 1). The selected images are cloud-free 
scenes, with the scanning time between around 10:30 am to 11:30 am local time. In addition, MODIS-
LST (Day-time MOD11A2) products from 2001 to 2019 were acquired and used for comparison and 
evaluation of the Landsat-derived LST results [32–34]. The MOD11A2 LST product has a temporal 
resolution of eight days and a spatial resolution of 1 km. 
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Table 1. List of processed Landsat images for the Bac Binh area. 

No 
Period 

Sensor 
No 

Period 
Sensor 

Year Month Date Year Month Date 

01 
1989 01 25 LandSat TM 

16 
2004 01 03 LandSat TM 

1989 02 01 LandSat TM 2004 04 24 LandSat TM 
1989 03 06 LandSat TM     

02 
1989 12 27 LandSat TM 

17 
2005 01 05 LandSat TM 

1990 02 13 LandSat TM 2005 02 22 LandSat TM 
1990 03 17 LandSat TM 2005 03 26 LandSat TM 

03 
1990 12 14 LandSat TM 

18 
2006 03 13 LandSat TM 

1991 01 31 LandSat TM 2006 04 14 LandSat TM 
1991 04 21 LandSat TM     

04 
1991 12 14 LandSat TM 

19 
2007 01 27 LandSat TM 

1992 02 03 LandSat TM 2007 02 28 LandSat TM 
1992 03 22 LandSat TM 2007 04 01 LandSat TM 

05 
1992 12 01 LandSat TM 

20 
2008 03 18 LandSat TM 

1993 03 09 LandSat TM 2008 03 18 LandSat TM 
1993 03 22 LandSat TM 2008 04 03 LandSat TM 

06 
1994 01 23 LandSat TM 

21 
2009 01 16 LandSat TM 

1994 03 12 LandSat TM 2009 02 17 LandSat TM 
1994 04 13 LandSat TM 2009 03 21 LandSat TM 

07 
1994 12 25 LandSat TM 

22 
2009 12 18 LandSat TM 

1995 01 10 LandSat TM 2010 02 04 LandSat TM 
1995 02 11 LandSat TM 2010 02 10 LandSat ETM + 

08 
1996 01 13 LandSat TM 

23 
2011 01 06 LandSat TM 

1996 01 29 LandSat TM 2011 02 07 LandSat TM 
1996 03 01 LandSat TM     

09 
1997 01 31 LandSat TM 

24 
2013 04 17 LandSat OLI 

1997 03 04 LandSat TM 2013 01 19 LandSat ETM + 
1997 04 21 LandSat TM     

10 
1997 12 01 LandSat TM 

25 
2014 01 30 LandSat OLI 

1998 01 02 LandSat TM 2014 02 15 LandSat OLI 
1998 03 23 LandSat TM 2014 03 19 LandSat OLI 

11 
1999 02 06 LandSat TM 

26 
2015 02 18 LandSat OLI 

1999 03 10 LandSat TM 2015 03 22 LandSat OLI 
    2015 04 07 LandSat OLI 

12 
1999 12 23 LandSat TM 

27 
2016 01 20 LandSat OLI 

2000 03 28 LandSat TM 2016 02 21 LandSat OLI 
    2016 03 08 LandSat OLI 

13 
2001 01 10 LandSat TM 

28 
2017 02 07 LandSat OLI 

2001 02 27 LandSat TM 2017 02 23 LandSat OLI 
2001 03 31 LandSat TM 2017 03 11 LandSat OLI 

14 
2002 01 05 LandSat ETM + 

29 
2018 01 25 LandSat OLI 

2002 02 06 LandSat ETM + 2018 02 16 LandSat OLI 
2002 03 10 LandSat ETM + 2018 03 14 LandSat OLI 

15 
2003 01 08 LandSat ETM + 

30 
2019 01 28 LandSat OLI 

2003 02 25 LandSat ETM + 2019 02 13 LandSat OLI 
2003 03 29 LandSat ETM + 2019 03 17 LandSat OLI 

3. Methodology 

Prior to the extraction of LST from the thermal infrared spectral band of the Landsat imagery, 
we applied the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm 
for the atmospheric correction of all Landsat images [35–37]. In this study, the LST calculation using 
Landsat images is based on the radiative transfer equation method, with the emissivity value derived 
through the NDVI. The process of extracting LST is illustrated in Figure 2. 
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Figure 2. Workflow to extract LST from Landsat images. 

LST is calculated following Equation (1) [38–41]: 

LST =
𝑇𝑇𝐵𝐵

1 + �𝜆𝜆𝑇𝑇𝐵𝐵𝜌𝜌 � 𝑙𝑙𝑙𝑙𝑙𝑙
 (1) 

where LST is the land surface temperature in K. The LST value in K is converted in degrees Celsius 
(by subtracting 273.15) for the results and discussion sections of this study; 𝑇𝑇𝐵𝐵  is the brightness 
temperature in K; 𝜆𝜆 is wavelength of the emitted radiance (For Landsat TM, λ = 11.457 μm. For 
Landsat ETM+, λ = 11.269 μm. For Landsat OLI TIRS, λ = 10.904 μm); 𝜌𝜌 = (h*c)/σ = 1.438 *10–2 mK; σ 
is the Boltzmann constant (1.38 × 10–23 J/K); h is the Planck’s constant (6.26 × 10–34 JS); c is the velocity 
of light (2.998 × 108 m/s); ε is the land surface emissivity (LSE). To calculate the LST from Equation 
(1), it is necessary to derive 𝑇𝑇𝐵𝐵 and ε. 

3.1. Extract the Brightness Temperature Value (𝑇𝑇𝐵𝐵) 

The brightness temperature, TB, can be calculating using Equations (2) and (3): 

𝑇𝑇𝐵𝐵 =
𝐾𝐾2

𝑙𝑙𝑙𝑙 �𝐾𝐾1𝐿𝐿𝜆𝜆
+ 1�

 (2) 

where 𝐿𝐿𝜆𝜆 is the spectral radiance and 𝐾𝐾1 and 𝐾𝐾2 are constants. For Landsat TM, 𝐾𝐾1 = 607.76, 𝐾𝐾2 = 
1260.56. For Landsat ETM+, 𝐾𝐾1 = 666.09, 𝐾𝐾2 = 1282.71. For Landsat OLI TIRS, 𝐾𝐾1 = 774.88, 𝐾𝐾2 = 
1321.07. 

To extract 𝑇𝑇𝐵𝐵 value, it is necessary to convert the digital number value (DN) of the image to  𝐿𝐿𝜆𝜆. 
To process multi-temporal Landsat image for the study area, the conversion for Landsat TM, Landsat 
ETM+, Landsat OLI TIRS images is carried out using Equations (3)–(5), respectively [42–44]: 

For Landsat TM the value is calculated using band 6 applying Equation [45]: 
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𝐿𝐿𝜆𝜆 = 𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 .𝐷𝐷𝐷𝐷 + 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (3) 

where Grescale = 0.0551584 (Wm2sr1 μm1)/𝐷𝐷𝐷𝐷, and Brescale = 1.2378 (Wm2sr1 μm1)/𝐷𝐷𝐷𝐷. 
For Landsat ETM+ the value is calculated using band 6 applying Equation [46]: 

𝐿𝐿𝜆𝜆 = �
𝐿𝐿𝜆𝜆𝜆𝜆𝑟𝑟𝜆𝜆 − 𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆𝑟𝑟𝜆𝜆 − 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆𝜆𝜆𝜆𝜆
� (𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆𝜆𝜆𝜆𝜆)  + 𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 (4) 

where 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟  is the quantized calibrated pixel value in (DN); 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆𝜆𝜆𝜆𝜆  is the minimum quantized 
calibrate pixel value corresponding to 𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 and 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆𝑟𝑟𝜆𝜆 is the maximum quantized calibrate pixel 
value corresponding to 𝐿𝐿𝜆𝜆𝜆𝜆𝑟𝑟𝜆𝜆; 𝐿𝐿𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 is the minimum spectral radiance scale to 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆𝜆𝜆𝜆𝜆  value in 
(Wm2sr1 μm1), and 𝐿𝐿𝜆𝜆𝜆𝜆𝑟𝑟𝜆𝜆 is the maximum spectral radiance scale to 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆𝑟𝑟𝜆𝜆 value in (Wm2sr1 μm1). 

For Landsat OLI TIRS the value is calculated using band 10 applying Equation [47]: 

𝐿𝐿𝜆𝜆 = 𝑀𝑀𝐿𝐿𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐴𝐴𝐿𝐿 (5) 

where 𝑀𝑀𝐿𝐿 and 𝐴𝐴𝐿𝐿 are provided conversion factors, and 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 is the quantized calibrated pixel value. 

3.2. Extract of LSE Value 

The LSE can be extracted from remote sensing image based on land-cover or vegetation index. 
The use of NDVI is more advantageous as it can calculate the emission at the pixel level. The emission 
and spectral reflectance can be measured to find the empirical relationship between LSE and NDVI 
using Equation (6) [48–50]: 

𝑙𝑙 = 1.0094 + 0.047𝑙𝑙𝑙𝑙 (𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁) (6) 

However, Equation (6) is only effective for a homogeneous land-cover area, for example, an area 
of healthy vegetation only or bare land-cover only. In this study, project area is classified into four 
land-cover types: (1) Water Bodies, (2) Bare Land, (3) Green Vegetation, and (4) Built-up Area. We 
used Equation (7) to calculate the respective LSE [51]: 

𝑙𝑙 = 𝑙𝑙𝑣𝑣𝑝𝑝𝑣𝑣 + 𝑙𝑙𝑟𝑟(1 − 𝑝𝑝𝑣𝑣) (7) 

where ε𝑣𝑣 is the LSE for the land-cover class Green Vegetation area, ε𝑟𝑟 is the LSE for Bare Land, and 
𝑝𝑝𝑣𝑣 is the share of Green Vegetation per pixel with values from 0 to 1. 𝑝𝑝𝑣𝑣 is calculated by relating the 
NDVI values of Bare Land and Green Vegetation with the ratio shown in Equation (8) [34,52–54]: 

𝑝𝑝𝑣𝑣 = �
𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁 − 𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁𝑏𝑏
𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁𝑣𝑣 − 𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁𝑏𝑏

�
2

 (8) 

where 𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁𝑏𝑏 and 𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁𝑣𝑣 are 𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁 for Bare Land and Green Vegetation, respectively. The 𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁 
is derived applying Equation (9): 

𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁 =
𝐷𝐷𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝐷𝐷
𝐷𝐷𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝐷𝐷

 (9) 

where 𝐷𝐷𝑁𝑁𝑁𝑁 and 𝑁𝑁𝑅𝑅𝐷𝐷 are pixel values in near infrared and red bands on the image, respectively. For 
Landsat TM: band 3 is red, and band 4 is near infrared. For Landsat ETM+: band 3 is red, and band 4 
is near infrared. For Landsat OLI TIRS: band 4 is red, and band 5 is near infrared. For 𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁 values 
< 𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁𝑏𝑏, 𝑝𝑝𝑣𝑣 is set to 0. For 𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁 values > 𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁𝑣𝑣 𝑝𝑝𝑣𝑣 is set to 1 [13,55]. 

3.3. Extract of LST from MODIS Images and Comparison with Landsat-Derived LST 

Google Earth Engine (GEE) was used to access LST from the MOD11A2 products during the dry 
seasons between the years 2001 and 2019. For the conversion from a DN value to degrees Celsius 
value, the following equation was applied: 

𝐿𝐿𝐿𝐿𝑇𝑇 = 𝐷𝐷𝐷𝐷 ∗ 0.02 − 273.15 (10) 

where LST is the Land Surface Temperature in degrees Celsius and 0.02 is the scale factor of the 
MODIS LST product [56]. We calculated the mean LST value of all pixels in the study area of each 
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selected MODIS scene. Again, the mean LST values of all the scenes of each dry season is combined 
into dry season mean LST value that represents each year in the chain of thirty years in our study. 
This MODIS-derived LST results are used to evaluate the Landsat LST results. 

4. Results 

4.1. Land-Cover Change 

Four land-cover types were derived for the Bac Binh study area, (1) Bare Land (including dry 
vegetation on cropland, shrubland or grassland), (2) Green Vegetation (photosynthetic active 
vegetation), (3) Water Bodies and (4) Built-up Area. In this study, we applied a supervised 
classification with the maximum likelihood algorithm to classify Landsat image into the four land-
cover types for each year from 1989 to 2019 [57–59]. The training areas were selected by visual 
interpretation of the land-cover classes, selected individually on each scene. For the land-cover 
classification, accuracy assessment was done by a visual check at three time periods using high 
resolution SPOT-5 (for 2000, 2010) and SPOT-6 (for 2019) satellite images. The classification accuracy 
at the randomly distributed check points for the three time-spots is shown in Table 2 with the user’s 
accuracy (UA), producer’s accuracy (PA), and the overall accuracy (OA), kappa coefficient [60]. 

Table 2. Land-cover classification accuracy for selected years. 

Year  
Bare 
Land 
(%) 

Green 
Vegetation 

(%) 

Water 
Bodies  

(%) 

Built-Up 
Area 
(%) 

Overall 
Accuracy 

(%) 

Kappa 
Coefficient 

2000 
User’s accuracy 61.01 65.47 79.56 77.97 

73.36 0.63 
Producer’s accuracy 62.07 65.47 80.74 76.03 

2010 
User’s accuracy 63.01 64.36 80.15 78.89 

73.25 0.63 
Producer’s accuracy 67.64 62.92 81.39 75.43 

2019 
User’s accuracy 68.42 66.26 89.31 86.82 

80.75 0.73 
Producer’s accuracy 67.24 67.90 87.97 87.50 

The same classification approach has been applied to all Landsat images listed in Table 1. 
Therefore, we assume that the accuracies of Table 2 are representative for land-cover classification 
from 1989 to 2019. 

The land-cover classes Green Vegetation and Bare Land dominate the study area with 47% and 
52% in 1989 respectively. In Figure 3a, the change in share of Green Vegetation and Bare land over 
the 30 year time period is shown. A steady decline of the share of Green Vegetation can be observed 
from 2004 to 2019, while the share of Bare Land increases (Figures 3a and 4). The average Green 
Vegetation area of the first decade (1989 to 1998) covered 45% of the total project area and declined 
to cover only 28% on average in the period of 2010 to 2019. The class Bare Land accounted for 55% 
coverage in the first ten years (1989 to 1998) of the total area, whereas the in the last ten years (2010 
to 2019) the class represents the dominating land-cover with a share of 71.38% of the total study area. 

The areas categorized as Water Bodies and Built-up Area cover less than 1% of the project area 
in total, however these classes have increased 4 to 5 times over the thirty years of the observed period. 
The area covered by Water Bodies increased from 1.25 km2 (corresponding 0.07% of total area) to 6.54 
km2 (0.36%) and the Built-up Area from 1.80 km2 (0.09%) to 7.66 km2 (0.42%). 

This change in land-cover has occurred at a faster rate over the last ten years than it has 
previously and suggests that the natural forest area and other vegetated areas have been significantly 
reduced. At the same time, along with processes associated with socio-economic developments, the 
Water Bodies and Built-up Areas has increased. 
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(a) 

 
(b) 

Figure 3. Share of land-cover classes in dry season from Landsat images from 1989 and 2019. (a) Bare 
Land and Green Vegetation, (b) Water Bodies and Built-up Area. 

 
Figure 4. Land-cover classes for 1989, 1994, 1999, 2000, 2004, 2009, 2014, and 2019. 
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4.2. LST Results and Trends 

The LST was derived from the Landsat images for the entire thirty-year period from 1989 to 
2019. Figure 5 illustrates the spatial distribution of the LST mean of all scenes of each dry season for 
selected years. 

 
Figure 5. LST (°C) maps for selected years between 1989 and 2019. 

The differences in mean LST between the four land-cover types are relatively large, with the 
difference in LST between Bare Land and Green Vegetation cover being greatest (Figure 6). By taking 
the average LST value for each land-cover class for each observed dry season, the LST for Bare Land 
and Built-up Area show a similar behavior and have higher value than Green Vegetation and Water 
Bodies area by about 2 to 4 °C (Figure 6). The years 2005 and 2006 show relatively high LST values. 
Over the thirty years, the average LST mean value of the (1) Entire study area is 33.91 °C, (2) Bare 
Land is 37.07 °C, (3) Green Vegetation is 28.70 °C, (4) Water Bodies is 31.69 °C and (5) Built-up Area 
is 36.27 °C. 
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Figure 6. The mean LST (°C) by land-cover type from 1989 to 2019. 

For further analysis, we classified the project area by LST mean value into five ranges: (1) <25 
°C, (2) 25–30 °C, (3) 30–35 °C, (4) 35–40 °C, and (5) >40 °C. Figure 7 shows the percentage of the total 
area in each range. In 1995, 2004, 2010, and 2011 the coverage of < 25 °C area were 18.59%, 21.65%, 
18.99%, and 27.76% respectively, which indicate years with particularly low LST. In contrast, in the 
hot years, 2002, 2005, 2016, and 2019, the areas affected by LST < 25 °C were very small, with the 
coverage below 1% of the total area, especially in 2016 where the coverage accounted for only 0.03%. 
In the years 2005 and 2006, the coverage of LST range higher than 40 °C are 64.10% and 51.68%, 
respectively. 

 
Figure 7. Coverage percentage by LST ranges from 1989 to 2019. 

Figure 8 shows the changes and steady increases in minimum, maximum, and mean LST values 
over thirty years in the project area. 
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Figure 8. Minimum, mean and maximum value of LST from 1989 to 2019. 

Average LST values of minimum, maximum, and mean LST over the thirty years were 20.34 °C, 
45.76 and 33.91 °C, respectively. The differences in minimum and maximum yearly average LST 
value was 25.42 °C. The smallest difference was in 2017 (20.76 °C), and the largest was in 2008 (28.44 
°C). The absolute average value increase in LST is calculated by the following equation: 

∆=
∑ (𝑌𝑌𝜆𝜆 − 𝑌𝑌𝜆𝜆−1)𝜆𝜆
𝜆𝜆=2

𝑙𝑙 − 1
 (11) 

where ∆ is an absolute average increase, decrease the value of the mean LST, 𝑌𝑌𝜆𝜆 is mean LST value, 
and 𝑙𝑙 is the total number of observation periods equivalent to 30. 

We determine ∆ according to Equation (11) for the Landsat image scenes over thirty years from 
1989 to 2019. The calculation of ∆ corresponds to the three LST trends: a) the absolute average of the 
minimum LST values increased by 0.1 °C per year; b) the absolute average maximum LST values 
increased by 0.03 °C per year; and c) the absolute average LST increased by 0.03 °C per year over the 
thirty years. The result shows that minimum LST tends to have higher increase than the maximum 
LST and average LST. This can be explained by the close correlation of LST with the decreasing area 
of Green Vegetation class in the study area. During the past thirty years, the Green Vegetation area 
has been reduced significantly, from 1989 accounting for nearly half of the project area, to it only 
accounting for 18.37% in 2019. In addition, Green Vegetation is also the class with the lowest LST 
among four land-cover types calculated in the area. 

4.3. Comparison of Landsat LST, MODIS LST and Air Temperature (AT) In-Situ Measurements 

To verify the Landsat-derived LST values, MODIS LST products (MOD11A2) were derived and 
averaged for each the dry season of each observation [32,61,62]. The MOD11A2 product is available 
from 2001 to 2019. The average Landsat LST data and the respective average MODIS products are 
shown in Table 3: 

Table 3. The comparison of mean LST from Landsat and MODIS11A2 from 2001 to 2019. 

Year Landsat-LST 
(°C) 

MODIS11A2-LST 
(°C) 

Difference 
(°C) Year 

Landsat
-LST 
(°C) 

MODIS1
1A2-LST 

(°C) 

Difference
(°C) 

2001 35.98 35.13 0.85 2010 32.36 33.32 −0.96 
2002 36.76 36.12 0.63 2011 31.65 33.01 −1.36 
2003 35.06 36.15 −1.10 2013 32.63 32.84 −0.21 
2004 31.53 32.90 −1.37 2014 35.05 34.44 0.62 
2005 39.63 38.71 0.92 2015 35.92 35.29 0.63 
2006 38.80 38.35 0.45 2016 35.47 35.68 −0.21 
2007 36.25 36.30 −0.05 2017 33.59 33.35 0.24 
2008 33.81 35.10 −1.28 2018 32.77 32.22 0.55 
2009 35.48 34.93 0.54 2019 33.87 33.47 0.40 
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From the data, we find that the difference in LST between the two types of images is relatively 
small. The difference in LST average values from 2001 to 2009 is −0.04 °C (the average LST values of 
the Landsat image is smaller than MODIS’s LST average values). The largest difference in 2004 is 
−1.37 °C, the smallest difference in 2007 is −0.005 °C. 

Table 4 shows the range of LST values between minimum and maximum of the MODIS images 
(from 32.22 °C to 38.75 °C) is smaller than the Landsat images (from 31.53 °C to 39.63 °C). The 
standard deviation value of MODIS (1.85) is also smaller than the Landsat (2.29). In this study, we 
used MOD11A2 LST to compare with the Landsat LST images, and 𝑁𝑁𝑀𝑀𝐿𝐿𝑅𝑅 (root mean square error) 
is calculated by the following equation: 

𝑁𝑁𝑀𝑀𝐿𝐿𝑅𝑅 = �∑ (𝐿𝐿𝐿𝐿𝜆𝜆 − 𝑀𝑀𝑀𝑀𝐷𝐷𝜆𝜆)2𝜆𝜆
1

𝑙𝑙
 (12) 

where 𝐿𝐿𝐿𝐿 is mean LST value of the Landsat image, 𝑀𝑀𝑀𝑀𝐷𝐷 is mean LST value of the MOD11A2 image, 
𝑖𝑖 is the number of the years, and 𝑙𝑙 is the total number of periods. 

Table 4. Statistical comparisons between LST of Landsat and MOD11A2 images from 2001 to 2019. 

No LST Image Minimum (°C) Maximum (°C) Mean (°C) Standard 
Deviation 

1 Landsat 31.53 39.63 34.81 2.29 
2 MODIS11A2 32.22 38.71 34.85 1.85 

In addition, we calculated the relationship of LST between Landsat and MOD11A2 images by 
the r coefficient (Pearson correlation coefficient) to evaluate the reliability of the results. Equation (13) 
for calculating the coefficient r: 

𝑟𝑟 =
∑ (𝐿𝐿𝐿𝐿𝜆𝜆 − 𝐿𝐿𝐿𝐿���)(𝑀𝑀𝑀𝑀𝐷𝐷𝜆𝜆 − 𝑀𝑀𝑀𝑀𝐷𝐷�������)𝜆𝜆
𝜆𝜆=1

�∑ (𝐿𝐿𝐿𝐿𝜆𝜆 − 𝐿𝐿𝐿𝐿���)2𝜆𝜆
𝜆𝜆=1 �∑ (𝑀𝑀𝑀𝑀𝐷𝐷𝜆𝜆 − 𝑀𝑀𝑀𝑀𝐷𝐷�������)2𝜆𝜆

𝜆𝜆=1

 (13) 

where 𝐿𝐿𝐿𝐿 is mean LST value of the Landsat image, 𝑀𝑀𝑀𝑀𝐷𝐷 is mean LST value of the MOD11A2 image, 
𝐿𝐿𝐿𝐿��� and 𝑀𝑀𝑀𝑀𝐷𝐷������� are average of Landsat and MOD11A2 mean values, 𝑖𝑖 is the number of the years, and 
𝑙𝑙 is the total number of period. 

The RMSE (root mean square error) value obtained was 0.79 °C and the r (Pearson correlation 
coefficient) value was 0.94. With the relatively small RMSE value of 0.79 °C, we found that the LST 
value obtained from the Landsat image is highly reliable for the project area. In addition, the 
correlation coefficient r is close to 1, which also shows a very high positive correlation between the 
Landsat LST values and the MODIS LST values. According to the results, we are convinced that the 
Landsat images can be used to retrieve reliable LST for the project area.  

To verify LST data derived from Landsat image, historic AT data from the nearby weather 
station (Phan Thiet weather station at 108°06′ E 10°56′ N, about 45 km to the south from the study 
area) were used. They were collected daily throughout the last thirty years of study period [63]. This 
dataset is accessible from the website of National Climatic Data Center, U.S. Department of 
Commerce (https://www7.ncdc.noaa.gov/CDO/cdo). Figure 9 shows, side by side, the dry season 
average AT recoded at the weather station and the LST from Landsat for Bac Binh district. The 
difference between these two sets of temperature mean value are +7.02 °C. The average absolute 
temperature collected at the meteorological station (AT) in the dry season also increased by 0.03 °C 
per year in the period 1989–2019 at the same increase rate as LST derived from the Landsat image 
series. 

http://www.commerce.gov/
http://www.commerce.gov/
https://www7.ncdc.noaa.gov/CDO/cdo
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Figure 9. Comparison of Landsat LST with AT in-situ measurements of Phan Thiet weather station 
from 1989 to 2019. 

4.4. Correlation between LST and Land-Cover 

The land-cover classification results from Landsat image over time show the predominance of 
the two main land-cover types: Green Vegetation and Bare Land in the project area. The total 
coverage of these two classes is more than 99% for all the thirty years. The land-cover change in the 
project area is mainly between these two classes Green Vegetation and Bare Land, from Green 
Vegetation to Bare Land. The Water Bodies and Built-up Area cover always only less than 1% and 
the change of these land-cover classes has limited influence in the area. 

In Figure 10a, we see the steady increase of the share of Bare Land and Built-up classes and the 
area with LST values >35 °C. Figure 10b shows a consistent coverage decrease of Water Bodies and 
Green Vegetation areas and a simultaneous decrease of the area with LST values <30 °C during the 
observed thirty years. Applying Equation (13) to investigate the correlation coefficient between share 
of the study area with LST < 30 °C and the share of the area of Green Vegetation and Water Bodies, 
the value r = 0.50 was obtained. For the area with LST > 35 °C and the area of Bare Land and Built-up 
Areas classes, r = 0.94 was obtained. Both suggests a high positive correlation between the sets of 
data. This result shows that the area with LST > 35 °C vs. Bare Land and Built-up Areas classes has a 
higher correlation than the area with LST < 30 °C vs. Green Vegetation and Water Bodies cover 
classes. 
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(a) 

 
(b) 

Figure 10. Change trends for LST range and land-cover by classes from 1989 to 2019. (a) Share of are 
with LST > 35°C vs. share of area with Bare Land and Built-up Area, (b) Share of are with LST < 35°C 
vs. share of area with Green Vegetation and Water Bodies. 

5. Discussion 

The land-cover classification accuracy has been validated for the years 2000, 2010 and 2019 using 
high-resolution SPOT images. The overall accuracy is in the range from 70% to 80% with a Kappa 
coefficient of 0.63 and 0.73. These values are in range with other studies [64,65], indicating an 
acceptable quality for the further analysis. The classification results show that classes Bare Land and 
Green Vegetation dominate the study area and that the land-cover has changed greatly over thirty 
years. The share of Bare Land area has increased from 52.0% to 80.9% (from 949 km2 to 1,475 km2), 
while the share of Green Vegetation cover decreased from 47.8% to 18.37% (from 872 to 335 km2) in 
the 1989–2019 study period. Decreasing precipitation, groundwater depletion and soil degradation 
are identified as drivers of this land-cover change, leading to the decrease of forested areas and even 
to desertification processes of the Bare Land covered areas [66,67]. 

Another type of land use change in the area has also been addressed in local government reports, 
according to which, the expansion and development of urban residential areas, tourist areas and 
mineral resource exploitation are continuously intensified [68]. The research result shows clear 
evidence of these changes. The Built-up Area has increased by more than 500% during thirty years of 
observation (Figure 3b). Along with that, we also found that the area covered by Water Bodies 
increased four-fold as result of expanding reservoirs for storing water for daily life and for irrigation. 
An example is the Ca Giay Lake, one of the biggest reservoirs in the area. The dam for the reservoir 



Remote Sens. 2020, 12, 4067 15 of 21 

 

was constructed from 1996 to 1999 [69] that finally contributed to the increase of Water Bodies 
coverage from 0.07% to 0.36% (increased by 5.3 km2) 1989–2019 period. The increase of Water Bodies 
area from 1999 marks the first operation of the dam after the construction period (Figure 3b). 

For the monitoring of LST change, this study used Landsat images, which have a higher spatial 
resolution than MODIS images, which was used in similar previous research on regions in Vietnam 
[70]. To ensure the LST value representativeness, our study used multiple Landsat scenes for each 
dry season (2 to 4 scenes) to obtain LST values instead of using only one scene for the whole season 
as it has been done in other studies [71]. The average LST of 37.07 °C for the thirty years period for 
the Bare Land area is always higher than the average LST of the other land-cover classes. Moreover, 
the average LST for Green Vegetation area is 28.70 °C and always lower than the LST of other land-
cover classes. The difference between the average LST values for the two largest land-cover classes 
Bare Land and Green Vegetation is relative high (8.37 °C). This result is consistent with the finding 
from previous research on the Bare Land and Green Vegetation LST [72]. The general increase in LST 
over the last 30 years are in line with the 2018 IPCC report. [1]. During these thirty years, the average 
dry season LST shows an annual increase of 0.03 °C. The area experiencing an LST < 25 °C decreased 
on average by 0.41% per year and the area affected by a LST > 40 °C increased in average by 0.25% 
per year. There has been significant human impact on the natural land-cover area in this area, with 
groundwater resources and forest areas decreasing as a result to human exploitation [73–76]. We 
assume that the increase in LST during the dry season in Bac Binh are closely linked to the observed 
land-cover changes, especially the conversion from Green Vegetation to Bare Land. 

To evaluate the reliability of the study result, we compared the LST value derived from Landsat 
image with LST extracted from MODIS MOD11A2 products (Tables 3 and 4) and AT recorded from 
the nearby weather monitoring station (Figure 9). The MODIS LST for each year is an average value 
from all images of dry season. The Landsat LST and MODIS LST comparison shows an average 
difference of −0.04 °C. The difference between The Landsat LST and MODIS LST in our research are 
consistent with findings in other studies [77,78]. The comparison shows a solid correlation between 
the Landsat LST and MODIS LST value series with RMSE = 0.79 °C and high positive correlation r = 
0.94 that indicates the reliability of the Landsat-derived LST. 

When comparing the LST results derived from Landsat images and recorded AT value from the 
nearby weather monitoring station, we found the same temperature increase trend of 0.03 °C per year 
in both datasets. However, there is constant absolute temperature difference where AT value is about 
7 °C lower than LST. In other published research results [79,80], it has been observed that at the same 
location in clear cloudless weather, the LST measured on the ground is usually higher than AT 
measured in 2 m height. In our research, the nearby weather monitoring station is about 45 km 
outside the study area and located near the coastline where the temperature in this region is expected 
to be lower than in our study area. The comparison of LST and AT shows a consistent temperature 
increase for both sets of measurements. Coincident with the results from other studies [79,80], the 
LST and AT values in our study area are highly correlated during the thirty years from 1989 to 2019. 

The AT measurements of the Phan Thiet weather station, as well as regional climate databases 
(http://berkeleyearth.lbl.gov/regions/vietnam) confirm the low LST value for 2011, as well as high 
values for example for the years 1998 and 2015. Yet, the extremely high average LST value with 39.63 
°C for 2005, which was confirmed by the MODIS MOD11A2 product for the respective year, can 
neither be explained by the AT measurement of the 2005 dry-period nor by regional climate statistics. 

The thirty-year LST dataset allowed detailed monitoring and analyses the relation between land-
cover change and the LST fluctuation in the project area. In contrast to other studies in Vietnam and 
worldwide [20,81,82] that investigated only at the difference in LST between different regions or 
different land-cover types, our research also compares the increase and decrease of trends of LST 
levels with the trends of land-cover change. The results show a close relationship between the change 
in coverage of Green Vegetation and Water Bodies versus the area with LST < 30 °C, as well as 
between Built-up Area and Bare Land area versus the area with LST > 35 °C. The total area of Bare 
Land, Built-up Area and the area with LST > 35 °C have steadily increased, while the total area of 
Green Vegetation, Water Bodies area and the area with LST < 30 °C are decreasing. Analyses came 
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up with correlation value between area with LST > 35 °C and Bare Land and Built-up Areas classes, 
r = 0.94, that shows close correlation between the increase of the area with LST > 35 °C and the increase 
of Bare Land and Built-up Area. This leads to the conclusion that the land-cover change in the project 
area contributes significantly to the LST increase. 

6. Conclusions 

The results proved the suitability of monitoring LST using Landsat multi-temporal satellite 
images. The study shows that, during thirty years of social and economic development, the land-
cover in the study area has been changed significantly in the Bac Binh district, Vietnam. The share of 
Bare Land has increased from 52.0% to 80.9% (from 949 km2 to 1,475 km2), while the share of Green 
Vegetation cover decreased from 47.8% to 18.37% (from 872 to 335 km2) in the 1989–2019 study 
period. The area covered by Water Bodies and Built-up Area has increased more than four- and five-
fold respectively. 

We have shown that areas affected by high LST (> 35 °C) have increased over the past thirty 
years, during which, the absolute average LST has increased on average by 0.03 °C per year. In 
addition, we used LST value obtained from MODIS and AT from a weather monitoring station for 
comparison and evaluation of the Landsat-derived LST. The results confirm the Landsat derived LST 
trends. MODIS LST and AT datasets also showed a 0.03 °C increase in temperature per year as the 
LST derived from the Landsat time-series. 

The research result shows that the area with LST < 30 °C and the area of Green Vegetation and 
Water Bodies land-cover classes are similarly decreasing. At the same time, the opposite trend is seen 
with the relationship between the area with LST > 35 °C and the area of Bare Land and Built-up Area. 
This indicates a clear correlation between the LST trends and the change in land-cover types of the 
region over the 30-year study period. 

This is the first study on the change of LST for a thirty-year period in the Bac Binh area. The high 
spatial resolution and the results from the LST time series provide a detailed and reliable dataset, 
compared to other studies that investigate correlating trends of LST and land-cover. The study uses 
multiple image scenes per dry season to ensure LST representativeness and validates the results 
successfully with MODIS LST products and AT measurements of a nearby weather station.  

In order to achieve a more comprehensive assessment and analysis on the development of LST 
in this study area or comparable sites, it will be necessary to perform the analysis on the entire year, 
including the rainy season. Yet, the results for the dry-season provide valuable information, which 
might contribute to a better understanding of the climate change effects and to develop adaptation 
strategies for water management and spatial planners to better cope with climate change and 
warming of the Bac Binh study area. 
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