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Abstract: Most mainstream research on assessing building damage using satellite imagery is based on
scattered datasets and lacks unified standards and methods to quantify and compare the performance
of different models. To mitigate these problems, the present study develops a novel end-to-end
benchmark model, termed the pyramid pooling module semi-Siamese network (PPM-SSNet),
based on a large-scale xBD satellite imagery dataset. The high precision of the proposed model
is achieved by adding residual blocks with dilated convolution and squeeze-and-excitation blocks
into the network. Simultaneously, the highly automated process of satellite imagery input and damage
classification result output is reached by employing concurrent learned attention mechanisms through
a semi-Siamese network for end-to-end input and output purposes. Our proposed method achieves F1
scores of 0.90, 0.41, 0.65, and 0.70 for the undamaged, minor-damaged, major-damaged, and destroyed
building classes, respectively. From the perspective of end-to-end methods, the ablation experiments
and comparative analysis confirm the effectiveness and originality of the PPM-SSNet method. Finally,
the consistent prediction results of our model for data from the 2011 Tohoku Earthquake verify the
high performance of our model in terms of the domain shift problem, which implies that it is effective
for evaluating future disasters.

Keywords: pyramid pooling module; semi-Siamese; benchmark model; damage assessment;
end-to-end; xBD dataset

1. Introduction

Natural disasters, which have been occurring frequently in recent years [1], pose a huge
threat to the safety of residential buildings as well as life and property. Therefore, it is of great
significance to obtain accurate information on damaged buildings to carry out interventions after
natural disasters [2,3]. Satellite remote sensing technology is used to obtain disaster information
because it can acquire rapid and large-scale surface information [4–9]. In particular, the recent
development of deep convolutional neural network algorithms has improved disaster assessment
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accuracy based on satellite imagery [7,10–14]. Nevertheless, the practicability of disaster assessment
methods also needs to be considered and the development of a high-precision and practical disaster
assessment method is of great significance for emergency rescues during disasters.

The key factor to obtaining disaster information is assessing building damage. Mainstream building
damage assessment methods include two main steps: building localization and damage classification.
First, building localization is unnecessary if building footprint information is provided; however, this
information is rarely available in disaster events, especially those in underdeveloped areas. Second,
damage classification relies heavily on building footprint information; therefore, the accuracy of
building localization information directly affects this classification. Xu et al. [12] proposed a two-step
model for assessing building damage. A faster region-based convolutional neural network (R-CNN)
architecture was used to localize building information, followed by a change detection network to
identify building damage from both multi-phase before and after disaster satellite imagery. Gupta et al.
developed a two-stage baseline model [15] based on the xBD dataset [16] in which a U-Net model
was implemented to first detect building areas and then classify damage based on detecting change.
However, the separation of building localization and damage classification requires phased training,
which finds the local optimization for each stage using parameters with the temporal results of previous
stages fixed. Consequently, such two-stage methods often suffer from low operability during actual
disaster responses. The main reason behind this low operability is that although each stage needs an
input and a ground truth label, there is no corresponding ground truth for the building localization
results. The alternative is to use the building localization ground truth as the damage classification
input, which lowers performance when predicting the damage level using a bad building localization
result. The shortcomings of the two-stage method have been discussed and the end-to-end method
is more popular than other methods because of its better performance and convenience in one-step
training.

To solve the above challenges, some researchers apply five-class semantic segmentation,
which simply regards “no building” as a damage class [17,18]. This approach solves the problem
that the classification of damage level depends highly on the precision of building localization under
the two-stage architecture. Adopting the end-to-end strategy usually improves the classification of
damage level greatly; however, building localization performance may worsen slightly. Weber et al. [19]
used the Mask R-CNN with the FPN architecture and the same model architecture for both building
localization and per-pixel damage classification. Further, instead of working with full images, they
trained the architecture on both the pre- and the post-image quadrants and fused the final segmentation
layer to draw building boundaries more accurately. Hao [20] designed a Siam-U-Net-Attn model
end-to-end for both damage classification and building segmentation, which indicated that embedding
building segmentation helped classify damage. In detail, the U-Net model was used for both the
pre-disaster and the post-disaster images to produce binary masks. The two features produced by
the U-Net encoder were merged using different fusion methods in the Siamese network to compare
the features of the two input frames to detect building damage. Meanwhile, the features extracted
from the encoder regions also assisted in damage classification.The baseline achieved an appreciable
intersection over union (IoU) score for localization and performed well when classifying buildings
into not damaged and destroyed. Hence, end-to-end methods need to balance building detection with
damage classification.

However, these baseline models cannot accurately distinguish between minor- and
major-damaged buildings. Indeed, five-class semantic segmentation is a harder task than building
localization. Using the transfer learning technique, the performance of some end-to-end models
can be enhanced by initializing the final model with pre-trained building localization weights.
Nia and Mori [21] proposed a original deep learning model for buildings damage assessment using
only post-disaster images. The model transferred three neural networks: DilatedNet, LeNet, and VGG.
VGG and LeNet extracted deep features from the input source, while DilatedNet preprocessed the
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input data. The transfer learning mechanism can thus benefit all end-to-end models; however, we do
not apply the mechanism to compare the performance of model structures in this study.

In addition to those works discussed above, Valentijn et al. [22] addressed the problem of
automated building damage assessment based on the xBD dataset. The authors proposed a CNN
consisting of two inception-v3 blocks for extracting features from pre-/post-disaster images and a
stack of fully connected layers for the classifier. To overcome the overfitting problem, they employed
a batch normalization layer and a dropout layer for each fully connected layer and analyzed the
generalizability and transferability of the CNN. Harirchian et al. [23] addressed the problem of risk
assessment using SVM and data on the Düzce Earthquake in Turkey. They employed 22 building
features such as system type, year of construction, and ground floor area as inputs to the SVM
for the estimation. Compared with CNN-based methods, this method is a “white box”. However,
it relies more on carefully chosen parameter(s) for the SVM and may perform worse than CNN-based
methods. Zhuo et al. [24] focused on evaluating the risk of the subsidence of reclaimed land at
the Xiamen Xi’an New Airport in China. They showed that SAR data are a powerful information
source for analyzing reclaimed land subsidence as well as estimating the risk of future subsidence,
which is valuable for land use planning. Morfidis et al. [25] used an artificial neural network
(ANN) to estimate seismic damage to structures. This study provided a good explanation for civil
engineers unfamiliar with ANNs. Harirchian et al. [26] addressed the problem of predicting damage to
reinforced concrete buildings when an earthquake occurs. They employed six human-defined features
to represent a building. A shallow neural network was then used as the estimator, which was
trained and tested based on the representation vectors consisting of the six features for each
sample. The dataset employed for this work was obtained from the Düzce Earthquake in Turkey.
Morfidis et al. [27] addressed the problem of estimating damage to reinforced concrete buildings using
ANNs. The authors employed human-defined features (i.e., seismic and structural parameters) to
train a shallow neural network consisting of linear production layers and activation layers and then
analyzed the network’s hyper-parameters and human-defined features, providing a good guide for
applying ANNs experimentally.

In this study, we design a concurrent learned attention network, which is an end-to-end trainable,
unified model, to localize buildings and classify damage jointly. This network is built on a semi-Siamese
strategy that can learn collectively. We use a pixel-level segmentation-based approach as well as
residual blocks (RBs) with dilated convolution and squeeze-and-excitation (SE) blocks to detect
damage to the segmented buildings. To model the global contextual prior, we also introduce
the pyramid-pooling module (PPM) that enhances the scale invariance of images, while lowering
over-fitting risk.

To benchmark our method, we develop our model based on the large-scale xBD dataset,
which contains satellite images from multiple disaster types worldwide such as earthquakes,
hurricanes, floods, and wildfires. To verify our method’s effectiveness and practicality, we compare its
performance with that of the published baseline model based on the xBD dataset. To demonstrate its
usefulness, we use data from the 2011 Great East Japan Earthquake.

We contribute to the body of knowledge in four main ways. First, redwe propose a benchmark
model for assessing building damage based on a large-scale xBD satellite imagery dataset. Second,
we put forward an end-to-end model for assessing building damage, termed PPM-SSNet, which adopts
the semi-Siamese technique, the PPM, and an attention mechanism. To overcome the difficulty of
multi-target learning, we use the weighted combined losses of dice, focal, and cross-entropy. Third,
we use efficient five data augmentation methods and four class balance strategies designed for these
tasks to improve the task performance of all the mainstream models. Finally, we use different disaster
images, including severely damaged images and rare disaster images, to test our model’s robustness
by comparing it with two strong baseline models.
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2. Data

The xBD dataset [16] used in this study comes from xView 2 challenge (https://xview2.org/
dataset). It contains over 850,000 building polygons from six types of disasters (earthquake, tsunami,
flood, volcanic eruption, wildfire, and wind) worldwide, covering 45,000 km2. The building polygons
and damage scales are included. Following the joint damage scale (JDS) based on EMS-98, the building
damage scales are visually interpreted from satellite imagery and categorized into undamaged,
minor-damaged, major-damaged, and destroyed buildings. The training dataset contains 9168 pairs of
pre-event/post-event three-band images with a spatial resolution of 1024 × 1024 pixels. Moreover,
segmented ground truth masks with building polygons and building damage class labels are provided
in the JSON file format. Figure 1 shows the details of the xBD dataset. Approximately 96.7% of the
pixels are in the non-building area, as shown in Table 1, which indicates the sample imbalance among
our original data.

(a) Pre-disaster Image (b) Post-disaster Image

(c) Damage Scale Label (d) Building Footprint

200M

200M

200M

200M

Figure 1. Example of the xBD dataset: Tsunami in Palu, Indonesia. From left to right: (a) Pre-disaster
image, (b) Post-disaster image, (c) Damage scale, and (d) Building footprint.

Table 1. Non-building area to building area ratio at the pixel level.

Non-Building Area Building Area

96.97% 3.03%

Consistent with real-world disaster case scenarios, the xBD dataset presents severe class imbalance.
In terms of the building area/non-building area ratio at the pixel level, the non-building pixel
occupies 97% of the image pixels, as shown in Table 1. Regarding the proportional distribution

https://xview2.org/dataset
https://xview2.org/dataset
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of the damage class at the pixel level, the number of undamaged building pixels far exceeds that of
the other three classes, with a ratio of up to 76%. Only 6% of pixels belong to the class of destroyed.
The minor-damaged and major-damaged categories account for almost the same proportion. Figure 2
compares the class balance.

Figure 2. Ratio of damage class at the pixel level.

To verify our method’s transferability, we test other satellite imagery with the developed model
based on the xBD dataset. Two areas in Higashi Matsushima severely affected by the 2011 Great
East Japan Earthquake are used for testing, as shown in Figure 3a–c. These two areas are selected
because the xBD dataset does not contain any disaster data from Japan and data on the tsunami in
the xBD dataset are scarce. This design can test the ability of our model for to evaluate and predict
unknown disasters.

© OpenStreetMap (and)

contributors, CC-BY-SA

M0 500

0 42
Km

Km0 2

Destroyed Major Damage Minor Damage Undamaged

(a)(b)

(c)

Higashi Matsushima City, JapanGround Truth Data

Ground Truth Data

Figure 3. Validation area. (a) Higashi Matsushima in the Tohoku region of Japan; the rectangular areas
marked in blue and red are the selected validation areas; (b) The close-up of the blue area as shown
in Figure 10a with the ground truth data of building damage; and (c) The close-up of the red area as
shown in Figure 10a with the ground truth data of building damage.
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The building damage ground truth data for the testing area are gathered from the field
investigation conducted by TTJS [28]. To retain consistency with the xBD data label as much as
possible to facilitate the comparative analysis, we recategorize the TTJS building damage data into
four classes: “undamaged”, “minor damage” (including “moderate damage and” “minor damage in
the” TTJS standard), “major damage,” and “destroyed” (including “washed away,” “collapsed,” and
“completely damaged” in the TTJS standard) as shown in Figure 3b,c. We implement this classification
standard because standards based on field surveys are much stricter than the visual interpretation
based on satellite images.

The four-band multispectral high-resolution Worldview-2 images with a spatial resolution of
0.6 m, collected before and after the 2011 Great East Japan Earthquake, were utilized for validation as
shown in background of Figure 3b,c.

3. Methodology

The PPM-SSNet model developed in this research employed dilated convolution, the SE
mechanism for attention, and the PPM, as detailed below.

3.1. Dilated Convolution for Large Receptive Fields

Collectively leveraging the global and local features of an input image is effective at solving
computer vision problems [29–32]. Because of the nature of images, the different characters of an
image are represented on different scales. A large field in an image includes global appearances such
as objects’ contours, whereas a small field includes local appearances such as local textures. This also
applies to building localization and damage assessment. One way to realize this idea is with image
down-sampling, which reduces the size of an image. This is equivalent to enlarging the receptive field
of a convolutional unit in a specific location of an image. Although down-sampling an image leads to
less information compared with a reduction in the resolution, it is still used when computing resources
(e.g., GPU memory) are limited. Another way to enlarge the convolutional receptive field is by
employing dilated convolution [29]. A dilated convolutional unit performs in the same way as normal
convolution on an image. The difference is that it has dilated convolutional kernels. A high-dilated
rate enables us to have a large convolutional receptive field for the unit. Further, no information is lost
with an increasing receptive field under dilated convolution. Figure 4 shows an example of dilated
convolution with a dilated rate of 2.
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Figure 4. Dilated convolution with dilated rates of 1 (i.e., normal convolution; left side of the figure)
and 2 (right side of the figure). g, h, and u mean the input image (or activation map), convolutional
kernel, and output. An output u is calculated by summing the multiplications of each value (i, j) at the
kernel h and its corresponding value (x, y) at g.

3.2. SE Mechanism for Attention

The SE mechanism was originally developed to improve the performance of image classification
on ImageNet [33]. It is a weighting system that produces and applies channel-wise weights on a
feature map (i.e., the output from an intermediate layer in a CNN). To determine the weight on each
channel, it computes the average activation values of the channels; then, these are converted by two
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linear production layers with ReLU and Sigmoid activation functions to generate the channel-wise
weights. The aggregation of the activation values is equivalent to global average pooling, as shown
in Figure 5. A CNN, which is equipped with a number of attentional mechanisms, can perform
feature recalibration; it learns to selectively emphasize informative features and suppress less useful
features, which helps reduce ambiguity when estimating the correct damage level and thus improves
the accuracy of building assessment.

Input tensor Output tensor

GAP !! !"

⨂

Squeeze-and-Excitation (SE) block

Figure 5. Squeeze-and-excitation (SE) blocks produce and apply channel-wise attention on the
activation maps. GAP means global average pooling. wi denotes the ith linear production layer.
ReLU and Sigmoid are employed following w1 and w2 for the activation functions. The columns
depicted in different colors represent the activation map of each channel of the input/output tensor.

3.3. PPM

The PPM pools the activation map of each channel in a pyramidal fashion [34]. It makes N × N
(N = 1, 2, 4, ...) grids on the activation map of each channel. Each cell of a grid overlaps with a square
region of the activation map. Each grid for the channel perfectly covers the whole activation map.
On the region covered by each cell of a grid, a user-defined pooling process such as global max pooling
or global average pooling is employed to pool the region into a single value. This process quantifies
each activation map into a vector with a length equal to N × N. The vectors produced with different N
(e.g., 1, 2, and 4) are then concatenated into a representation vector for the channel. The above process
is applied to all the channels to produce their representation vectors. The final output of this module is
generated by concatenating these representation vectors, as shown in Figure 6. The PPM is a simple yet
effective feature aggregation mechanism. It aggregates features from multiple scales. Global features
such as the shapes of buildings are covered with a small N (e.g., N = 2), whereas local features such as
the details of damaged buildings are covered with a large N (e.g., N = 4). Then, the final output of
this mechanism becomes a representative vector of the input sample, which improves the accuracy of
building localization and damage assessment.

𝑔

N = 1

N = 2

N = 4

…

Concatenate

…

Representation vector

Figure 6. The pyramid pooling module (PPM) g represents an activation map of a single channel. N is
the number of cells in a row/column of a pooling grid.
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3.4. Pyramid Pooling Module-Based Semi-Siamese Network (PPM-SSNet)

The task of estimating the damage assessment of buildings is divided into two stages. The first
stage identifies the buildings on an image. This can be treated as a localization problem in which
a system such as a CNN is employed to estimate the binary localization map for an input image.
A location with 1 or 0 on the map indicates whether it is a building or not. The localization map is
then employed as a prior for the second stage to estimate the damage assessment of a location with
a value equal to 1. Based on this idea, we design a network to jointly estimate buildings’ locations
and assess their damage. We use the pre-image alone to estimate the location map and then use
both the pre- and the post-images to estimate the assessment result. To leverage the localization map
to produce an accurate assessment result, we directly multiply it by the output of the assessment
estimator. This process corrects the assessment result, improving its quality from a coarse to a fine
level (see Figure 7).

Figure 7 shows the architecture. The network is built on a semi-Siamese strategy. We let the
weights at the shallow layers of the network share the two input images (i.e., pre-/post-images)
to enable it to produce a good “filters’ bank” by collectively learning the low-level features from
both. As the layers go deeper, we stop sharing weights and use independent branches for the two
inputs instead. The two branches are merged by subtracting one from the other along their channels,
which encourages the network to learn the differences between the pre- and post-images. For the
tail of the network, we use a single branch of the layers to produce the final estimation result. In the
network, we employ RBs with dilated convolution and SE blocks. Our motivation for using RBs is
that the network can extract features from large and small receptive fields by employing the large
and small dilated rates used in RBs, which may improve its representation ability for the estimations.
In addition, SE blocks are employed to encourage the network to focus on the important features,
while suppressing the less useful ones. We employ a PPM at the end of the network, immediately
before an SE block, and a convolutional layer to aggregate the features.

𝑐

⨂
Assessment 

result

GAP !! !"

⨂

Squeeze-and-Excitation (SE)

!

N = 1

N = 2

N = 4

…

Concatenate

…

Pyramid Pooling Module (PPM)

⊖

Pre-image

Post-image

𝑏+𝑟𝑐 𝑏+𝑟𝑐

Residual Block (RB)

𝑏+𝑟𝑐 𝑏+𝑟𝑐 𝑐 𝑏

⊕

𝑟

×1

Localization map

Coarse-level 
assessment result

𝑏+𝑟𝑐

×2

RB’RB

SERB’

×1

×1

RB

×3

×3

SE

×1

×1

RB’

×22

×22

RBSE

RB’

×1

RB

×2

𝑐𝑑 SE PPM

SE

Residual Block-v2 (RB’)

𝑏+𝑟𝑐 𝑏+𝑟𝑐 𝑐 𝑏

⊕

𝑟
𝑏𝑐

Figure 7. The architecture of the proposed network. c, b, d, and r represent the convolutional layer,
batch normalization layer, dropout layer, and ReLU layer. SE, RB’, RB, and PPM represent the modules
illustrated at the bottom of this figure. The difference between RB’ and RB is that RB’ has an additional
convolutional layer + batch normalization layer, which is designed to change the number of channels
or size of the input tensor if needed. See Table 2 for more details.
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Table 2. Details of the proposed network. Conv., RB’, RB, SE, Drop, and PPM mean the convolutional
layer (c), RB-v2 (RB’), RB, SE, dropout layer (d), and PPM (see Figure 7). For the convolutional
layer (Conv./conv.), in, out, stride, and dila mean the input’s dimension, output’s dimension, stride,
and dilation rate for the layer. k× k means the size of the convolutional kernel. For an SE module, in,
mid, and out mean the input’s dimension, dimension of the output of the middle layer, and output’s
dimension. For the PPM, out means the output’s dimension.

Layer Parameters Number

Share
Conv. [ 7× 7, in = 3, out = 16, stride = 1, dila = 1 ] ×1

Conv. [ 3× 3, in = 16, out = 16, stride = 1, dila = 1 ] ×1

Conv. [ 3× 3, in = 16, out = 32, stride = 2, dila = 1 ] ×1

Share

RB’


conv., 1× 1, in = 32, out = 64, stride = 1, dila = 1

conv., 3× 3, in = 64, out = 64, stride = 2, dila = 1

conv., 1× 1, in = 64, out = 256, stride = 1, dila = 1

down., 1× 1, in = 32, out = 256, stride = 2, dila = 1

 ×1

RB

conv., 1× 1, in = 256, out = 64, stride = 1, dila = 1

conv., 3× 3, in = 64, out = 64, stride = 1, dila = 1

conv., 1× 1, in = 64, out = 256, stride = 1, dila = 1

 ×2

Independent

SE [ in = 256, mid = 16, out = 256 ] ×1

RB‘


conv., 1× 1, in = 256, out = 128, stride = 1, dila = 1

conv., 3× 3, in = 128, out = 128, stride = 2, dila = 1

conv., 1× 1, in = 128, out = 512, stride = 1, dila = 1

down., 1× 1, in = 256, out = 512, stride = 2, dila = 1

 ×1

RB

conv., 1× 1, in = 512, out = 128, stride = 1, dila = 1

conv., 3× 3, in = 128, out = 128, stride = 1, dila = 1

conv., 1× 1, in = 128, out = 512, stride = 1, dila = 1

 ×3

SE [ in = 512, mid = 32, out = 512 ] ×1

RB’


conv., 1× 1, in = 512, out = 256, stride = 1, dila = 1

conv., 3× 3, in = 256, out = 256, stride = 1, dila = 2

conv., 1× 1, in = 256, out = 1024, stride = 1, dila = 1

conv., 1× 1, in = 512, out = 1024, stride = 1, dila = 1

 ×1

RB

conv., 1× 1, in = 1024, out = 256, stride = 1, dila = 1

conv., 3× 3, in = 256, out = 256, stride = 1, dila = 2

conv., 1× 1, in = 256, out = 1024, stride = 1, dila = 1

 ×22

SE [ in = 1024, mid = 64, out = 1024 ] ×1

Single

RB‘


conv., 1× 1, in = 1024, out = 512, stride = 1, dila = 1

conv., 3× 3, in = 512, out = 512, stride = 1, dila = 4

conv., 1× 1, in = 512, out = 2048, stride = 1, dila = 1

conv., 1× 1, in = 1024, out = 2048, stride = 1, dila = 1

 ×1

RB

conv., 1× 1, in = 2048, out = 512, stride = 1, dila = 1

conv., 3× 3, in = 512, out = 512, stride = 1, dila = 4

conv., 1× 1, in = 512, out = 2048, stride = 1, dila = 1

 ×2

Drop − ×1

Single

Conv. 3× 3, in = 2048, out = 512, stride = 1, dila = 2 ×1

SE [ in = 512, mid = 16, out = 512 ] ×1

PPM [ out = 512] ×1

SE [ in = 1024, mid = 64, out = 1024 ] ×1

Conv. 1× 1, in = 1024, out = 5, stride = 1, dila = 1 ×1
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4. Experimental Analysis

Resampling and data augmentation are adopted in this study. The assessment metrics as well as
loss and mask dilation parameter settings are detailed below.

4.1. Resampling

Building damage detection networks based on xBD generally perform badly when detecting
minor and major damage, resulting in comparatively low recalls and F1 scores for these two categories
because of imbalanced training data. To overcome this problem, we devise several methods to increase
the number of minor damage and major damage instances, one of which is over-sampling the training
dataset. Since our model is designed to generate pixel-level classification results, we suggest using a
main label to decide how many times a picture containing multi-label pixels should be repeated in the
training dataset. A weight vector w = (w0, w1, w2, w3)

T is given based on experience, each element of
which represents the relative importance of the corresponding category. For picture i, ni is the vector
recording the number of pixels of each category and its main label is defined as

Main Labeli = arg max
j∈{0,1,2,3}

wjnij (1)

where category 0 denotes no damage, category 1 denotes minor damage, and so on. Table 3 shows the
main label categories and corresponding repeated times.

Table 3. Main labels and corresponding repeated times.

Main Label No Damage Minor Damage Major Damage Destroyed

Repeated Times 0 3 2 1

Since the images are cropped and randomly augmented later, there is no concern that the repeated
pictures are identical to the original ones.

After over-sampling, we perform a cropping-and-selecting process with discrimination. Similar to
above, we reweight each pixel as inversely proportional to the frequency of its corresponding damage
level. The original image size is 1024× 1024. We uniformly sample several 512× 512 crops from each
image and choose the one with the largest sum of pixel weights. Without increasing the volume of the
training data, such a process further alleviates the data imbalance of the xBD dataset.

4.2. Data Augmentation

To enhance the generalizability of our model, we apply the following data augmentation methods
sequentially to each image. As shown in Table 4, every method is assigned a value, indicating the
probability of occurrence. In other words, the sequence of augmentation methods applied to an image
is determined randomly and the higher the order, the earlier is the execution.
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Table 4. Data augmentation methods and probabilities.

Method Pre to Post Flip Rotate by 90 Degree Shift Pnt

Probability 0.015 0.5 0.95 0.1

Method Rotation Scale Color shifts Change hsv

Probability 0.1 0.7 0.01 0.01

Method CLAHE Blur Noise Saturation

Probability 0.0001 0.0001 0.0001 0.0001

Method Brightness Contrast

Probability 0.0001 0.0001

4.3. Assessment Metrics

End-to-end building damage assessment includes two progressive tasks: building localization
and damage classification. The former can be regarded as a binary segmentation, while the latter
is a multi-classification task. This study adopts F1 scores, precision, recall, and IoU to evaluate our
network’s performance. For the localization task, the F1 score [19] is used:

loc F1 =
2TPloc

2TPloc + FNloc + FPloc
(2)

where TPloc denotes the number of pixels precisely categorized as buildings, FNloc denotes the number
of pixels miscategorized as non-building area, and FPloc represents the number of pixels miscategorized
as buildings. For the classification task, the F1 scores, precision, and recall for each damage category
are calculated. A macro-IoU is also implemented to quantify accuracy when data are imbalanced:

precisionj =
TPj

TPj + FPj
(3)

recallj =
TPj

TPj + FNj
(4)

cls F1j =
2× precisionj × recallj

precisionj + recallj
(5)

IoUj =
TPj

TPj + FPj + FNj
(6)

IoU =
1
4

4

∑
j=1

IoUj (7)

where j ∈ {0, 1, 2, 3}, TPj denotes the number of pixels (or instances) precisely categorized as category
j, FPj represents the number misclassified as category j, and FNj denotes the number misclassified as
other categories [20].

4.4. Loss and Mask Dilation

The output damage scale classification mask has five channels: the four damage levels and
no-building label. We adopt a weighted mixed loss that consists of dice loss and focal loss for
the damage scale classification loss Ld and weighted binary cross-entropy loss for the building
segmentation loss Ld, which are defined as [20]
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Ls = −[ws,1 × ys log Ps + ws,0 × (1− ys) log(1− ps)] (8)

Segc = w1 ×Dicec(mp, mt) + w2 × Focalc(mp, mt) (9)

Ld =
5

∑
c=1

wc × Segc (10)

where yp and ys are the reference label and probability of segmented building, respectively, while mp

and mt are the true mask and predicted mask for damage scale c, respectively. As most samples do not
contain buildings, we use a bigger weight for the building class, as indicated by ws,1 in segmentation
loss Ls. In addition, minor-damaged and-major damaged buildings are uncommon in our samples.
Therefore, we select larger weights for them (c = 2, 3) in damage scale classification loss. We also use
weighted mixed loss in which focal loss accounts for a larger proportion to improve category imbalance.

To achieve better classification at the boundary, we expand the building damage scale labels.
Given the overlap in pixel’ labels, we prioritize minor damaged and major damaged buildings (c = 2, 3),
which are relatively vulnerable in the classification.

5. Results and Discussion

5.1. Experimental Setting

In this work, we use PyTorch deep learning framework. All the experimentation and modeling
tasks are implemented in the public cluster in the x64 Linux environment with the public computing
cloud at the Renmin University of China. This computing cloud is equipped with the Simple Linux
Utility for Resource Management (Slurm) scheduling system. Computations are performed on the
node titan, which is configured with 128 GB of RAM, two Intel Gold 5218 CPUs, and two NVIDIA
Titan RTX GPUs.

5.2. Ablation Study

In this study, we use an ablation experiment to demonstrate the effectiveness of our proposed
method. An ablation study typically refers to subtracting a “feature” of the model or algorithm and
verifying how this affects performance. Instead of subtracting, however, we gradually add modules
such as Siamese, attention, and pyramid pooling into our proposed baseline network to verify its
performance. Nevertheless, the improvement of the model performance is incompatible with different
sectional tasks. Conducting experiments over several rounds guarantees that the modules of interest
boost model performance.

Tables 5 and 6 show the results of the ablation experiment. The shaded row in the tables represents
the performance of our proposed baseline model. The second row in Table 5 indicates that deploying
the Siamese network module to the baseline model leads to a significant improvement in all the metrics.
Adding the attention module into the model results in a slight decline in all the metrics except the
recall rate. The increase in the recall rate might be a consequence of the scale-aware semantic image
segmentation that arises with an attention mechanism. We then introduce the PPM, which raises
all the metrics except the recall rate slightly. This variation can be attributed to pyramid pooling,
which enhances the scale invariance of images, while lowering the risk of over-fitting.
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Table 5. Ablation experiments of the location methods with different modules (the shaded row represents the results of the ablated model).

IOUNon−building(%) IOUBuilding(%) Mean IoU(%) Precisionloc(%) Recallloc(%) F1loc(%) Diceloc(%) Scoreloc(%)

Baseline model 94.91 52.57 73.74 54.70 75.27 63.36 95.14 56.07
+Siamese 96.98 66.07 81.53 73.93 82.42 77.95 95.98 61.97

+Siamese + Attention 96.60 65.45 81.03 64.98 87.26 74.49 96.15 60.90
+Siamese + PPM + Attention 97.00 67.33 82.17 71.15 85.58 77.70 95.95 66.40

Table 6. Ablation experiments of the multi-classification methods with different modules (the shaded row represents the results of the ablated model).

Pcl f0(%) Rcl f0(%) F1cl f0(%) Pcl f1(%) Rcl f1(%) F1cl f1(%) Pcl f2(%) Rcl f2(%) F1cl f2(%) Pcl f3(%) Rcl f3(%) F1cl f3(%) F1cl f (%)

Baseline Model 87.22 93.04 90.04 54.64 26.20 35.43 48.14 56.41 51.95 85.41 45.02 58.96 52.95
+Siamese 90.19 79.10 84.28 22.59 55.14 32.05 67.24 65.25 66.23 92.07 55.73 69.44 55.12

+Siamese + Attention 91.35 77.26 83.72 22.52 56.60 32.22 61.73 66.64 64.10 83.07 62.31 71.21 55.08
+Siamese + PPM + Attention 90.64 89.07 89.85 35.51 49.50 41.36 65.80 64.93 65.36 87.08 57.89 69.55 61.55
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Table 6 shows that sequentially applied modules improve overall performance since total F1,
the harmonic mean of the F1 of each category, increases gradually with a mere recession. As for
the irregular increment in the metrics, a balance between the precision rate and recall rate and the
respective F1s of the different classes often results. For instance, deploying the Siamese network raises
F1cl f2 and F1cl f3 and lowers F1cl f0 and F1cl f1 . This is based on the decision boundaries, mutually
exclusive in hyperspace, and generated by the recently attached module that changes when another
module is consequently applied, leading to fluctuations in the metrics. Finally, the introduction of
pyramid pooling, which is noteworthy for its scale-adaptive feature extracting ability, enables the
model to yield rather satisfactory metrics for all the categories.

Table 7 also shows the confusion matrix of our final PPM-SSNet. Our model performs well overall
and the non-building category holds the highest accuracy of 96.52%; whereas accuracy for the minor
damage pixel is only 30.29%.

Table 8 compares the experimental results between the post-and-pre strategy (both pre-disaster
and post-disaster images are available) and the post-only strategy (only the post-disaster images are
applied). According to the results, the post-only strategy does not perform as well as the pre-and-post
strategy, demonstrating the importance of pre-disaster images in building localization and damage
classification.

Table 7. Confusion matrix.

Ground Truth

Non-Building No-Damage Minor Damage Major Damage Destoryed

Prediction

Non-building 8.88× 108 2.16× 108 2.60× 108 2.84× 108 2.05× 106

No-damage 2.22× 107 3.67× 107 8.31× 105 3.76× 105 7.43× 104

Minor damage 4.26× 106 2.53× 106 2.06× 106 3.81× 105 1.50× 104

Major damage 4.93× 106 1.60× 106 1.21× 106 4.15× 106 2.06× 105

Destoryed 1.39× 106 4.09× 105 1.12× 105 1.28× 105 1.95× 106

Total 9.20× 108 6.29× 108 6.80× 106 7.91× 106 4.30× 106

Accuracy(%) 96.52 58.35 30.29 52.47 45.35

Table 8. Comparison between the pre-and-post strategy and the post-only strategy.

Strategy MeanIoUNon−building(%) MeanIoUBuilding(%) MeanIoUloc(%) F1loc(%) Scoreloc(%) F1clf0(%) F1clf1(%) F1clf2(%) F1clf3(%) F1clf(%)

post-only 91.88 47.32 69.60 56.94 58.16 82.84 38.16 63.23 71.10 58.69
pre-and-post 97.00 67.33 82.17 77.70 66.40 89.85 41.36 65.36 69.55 61.55

5.3. Comparisons with Other Methods

Since the release of the xBD dataset, some studies have divided a share of its data for training and
achieved good results, whereas others use different evaluation metrics to assess accuracy. Moreover,
some work is not strictly an end-to-end study, preventing us from being able to compare these
published results with ours. To solve this problem, we reproduce previous research results and carry
out comparative experiments under uniform experimental conditions. A Mask R-CNN network [19]
and Siam-U-Net-Attention network [20] are compared.

Weber et al. [19] used the Mask R-CNN with the FPN architecture as well as the same model
architecture for both building localization and damage classification. However, instead of working
with full images, they trained the architecture on both the pre- and the post-image quadrants and fused
the final segmentation layer to draw building boundaries more accurately. For the class imbalance
problem, they engineered their loss function to weight errors on classes inversely proportional to
their occurrence on the dataset. However, this is insufficient to address the problem. In practice,
to solve class imbalance, we usually combine multiple approaches such as over-sampling and reweight
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operation with the weighted loss functions used in our experiment. Figure 8 shows the details of the
Mask R-CNN network.

Figure 8. FPN R-CNN network.

Hao [20] designed an end-to-end Siam-U-Net-Attn model. This model applied U-Net structures
to analyze both pre-disaster and post-disaster images and produce the corresponding segmentation
masks that showed building locations. Meanwhile, the features extracted from the of the U-Net
encoders were utilized in damage classification. More specifically, features produced by both the
pre-image and the post-image U-Net encoders would be used by a middle part: a separate decoder
in the Siamese network that compared the features from the pre-disaster and the post-disaster
frames to detect damage levels. The network achieved an appreciable IoU score on localization
and performed well when classifying undamaged and destroyed buildings. However, the model could
not identify minor-damaged and major-damaged buildings accurately. Figure 9 shows the structure of
the end-to-end Siam-U-Net-Attention network.

Figure 9. Siam-U-Net-Attention network model.

We train and test our network and other methods using the same datasets described above and
same parameter settings. The results show that our proposed network easily outperforms the other
approaches, as shown in Tables 9 and 10. We also compare the classification results of earthquakes,
tsunamis, floods, typhoons, and volcanic eruptions, as shown in Figure 10. The results again verify the
superiority of our method over previous approaches.
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Table 9. Comparison with other methods on the location task.

Networks Mean IOUNon−building(%) Mean IOUBuilding(%) Mean IoU(%) Precisionloc(%) Recallloc(%) F1loc(%)

Siam-U-Net-Diff 96.50 44.57 70.54 52.75 90.75 66.72
Weber et al. 95.63 48.62 72.13 85.30 82.90 84.10
PPM-SSNet 97.00 67.33 82.17 71.15 85.58 77.70

Table 10. Comparison with other methods on the classification task.

Networks Pclf1(%) Rclf1(%) F1clf1(%) Pclf2 (%) Rclf2(%) F1clf2(%) Pclf3(%) Rclf3(%) F1clf3(%) Pclf4(%) Rclf4(%) F1clf4(%) F1clf(%)

Siam-U-Net-Diff 80.58 49.64 60.51 28.69 26.32 27.45 51.31 27.60 35.89 75.00 33.03 45.86 39.01
Weber et al. 94.80 56.90 71.10 58.90 22.00 32.00 70.10 38.00 49.30 89.50 40.03 60.71 48.73
PPM-SSNet 90.64 89.07 89.85 35.51 49.50 41.36 65.80 64.93 65.36 87.08 57.89 69.55 61.55

Further, our model outperforms baseline models when predicting building localization and
damage classification. Post-disaster images with destroyed buildings make a noise to building
localization since the edges of destroyed buildings may be vague. FPN-R-CNN classified the majority
of destroyed buildings into the no building category, while the U-Net-Siam-Attn’s prediction of
destroyed buildings is not robust. In these cases, our model can easily distinguish undamaged and
destroyed buildings, but it is difficult to distinguish minor from major damage.

Figure 10. The results from our proposed method and comparisons with others. (a) Image collected
before the disaster (b) Image collected after the disaster; (c) Reference data; (d) Proposed PPM-SSNet
model; (e) Siam-U-Net model; and (f) FPN-R-CNN model.

5.4. Robustness of the Method

The validation areas are featured by a various of environmental and geographical background,
building structures and spatial settings, tsunami impacts, and satellite image acquisition conditions,
as shown in Figure 11(a1,b1,a2,b2), respectively. Considering the differences between validation area
and the training data, we approximate the prediction results: When the category of a single pixel
matches its neighbor’s, we assume it’s the right prediction(we take a neighbor area of 10*10 pixels).

The predicted results show that the proposed model detects destroyed and undamaged buildings,
but separating minor damage from major damage is still challenging, as shown in Figure 11(c1,d1,c2,d2)
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and Table 11. Partly because the Tohoku tsunami’s annotation standard and that of the xBD dataset
are not uniform. The Tohoku tsunami’s building label is from a field survey, while the label of the
xBD dataset comes from a visual interpretation, leading to an error in the like-for-like comparison.
As the small validation area as shown in Figure 3c contains almost destroyed buildings, therefore we
only did quantitative confusion matrix (Table 11) analysis for the larger validation area with variety
of damage types as shown in Figure 3b. Still, We can visually interpret that the prediction results of
the small validation area as shown in Figure 11(c1) are quite consistent with the ground truth data
as shown in Figure 3c. Further, satellite remote sensing is limited when detecting fine-scale building
damage because of its lower spatial resolution. Therefore, the method’s inability to distinguish major
and minor damage is logical. One way to solve this challenge would be to use high-resolution drone
images. In general, our prediction results are consistent with the field observation data.

Pre-disaster Image Post-disaster Image Predicted Damage Scale Predicted Building Footprint

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

500M500M 500M500M

2KM2KM 2KM 2KM

Figure 11. Prediction results from our proposed method in the validation areas. (a1,a2) Pre-disaster
image; (b1,b2) Post-disaster image; (c1,c2) Predicted damage scale by the PPM-SSNet model; and
(d1,d2) Prediction building footprint by the PPM-SSNet model.

Table 11. Confusion Matrix of Tohoku Tsunami Building Damage Prediction Experiment.

Prediction

Non-Building No-Damage Minor Damage Major Damage Destoryed

Ground Truth

Non-building 38,960,379 66,366 50,870 19,195 34,488

No-damage 215,480 368,283 862 1962 39,889

Minor damage 58,680 2841 34,629 1736 8293

Major damage 86,002 8 4331 43,611 3272

Destoryed 196,579 80,942 12,550 6839 314,583

Total 39,517,120 518,080 103,242 73,343 400,525

Accuracy(%) 98.59 71.04 33.54 59.46 78.54

6. Conclusions

In this study, we developed an end-to-end attention-guided semi-Siamese network with a
pyramid-pooling module. Our proposed model yielded satisfactory results when focusing on
building localization and damage classification compared with other methods. Employing dilated
convolution, the method leveraged the global and local features of an input image. To improve
damage classification performance, we adopted a squeeze-and-excitation mechanism, a weighting
system that produces and applies channel-wise weights on a feature map. Our ablation
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experiments on the xBD dataset demonstrated that the developed semi-Siamese network,
dilated convolution, and squeeze-and-excitation mechanism were both necessary and effective.
Meanwhile, the demonstration with 2011 Great East Japan Earthquake data revealed consistent
results with the ground truth data, confirming the effectiveness of evaluating future disasters using our
proposed method. Further, it achieved true end-to-end input and output. Thanks to the open source
of the large-scale high-precision xBD dataset, which used to be the main challenge of training deep
learning models for building damage assessment from satellite imagery, it has become unnecessary
to xxxx. Nevertheless, the contribution of this research is developing a damage detection algorithm
based on large-scale benchmark data from multiple types of disasters. Therefore, we do not provide
targeted solutions for a specific type of disaster.

Our research has some limitations. It is based on the visual information of optical images,
meaning that it may be unable to measure extensive flood damage under an intact roof. To address
this, researchers could consider using synthetic aperture radar images to detect bottom or sidewall
damage [35]. In addition, wall ruptures caused by earthquakes may not be effectively measured,
which could be overcome using higher resolution drone images to detect this type of damage [36].
These limitations suggest that despite the contributions of the proposed approach, a highly robust and
transplant deep learning model for assessing building damage with high precision is still urgently
needed. Since domain shift is still an important challenge in deep learning, satellite imagery is
particularly problematic in this field, and this will be the direction of our future efforts.
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