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Abstract: The measurement of forestry trials is a costly and time-consuming process. Over the past
few years, unmanned aerial vehicles (UAVs) have provided some significant developments that could
improve cost and time efficiencies. However, little research has examined the accuracies of these
technologies for measuring young trees. This study compared the data captured by a UAV laser
scanning system (ULS), and UAV structure from motion photogrammetry (SfM), with traditional
field-measured heights in a series of forestry trials in the central North Island of New Zealand.
Data were captured from UAVs, and then processed into point clouds, from which heights were
derived and compared to field measurements. The results show that predictions from both ULS
and SfM were very strongly correlated to tree heights (R2 = 0.99, RMSE = 5.91%, and R2 = 0.94,
RMSE = 18.5%, respectively) but that the height underprediction was markedly lower for ULS than
SfM (Mean Bias Error = 0.05 vs. 0.38 m). Integration of a ULS DTM to the SfM made a minor
improvement in precision (R2 = 0.95, RMSE = 16.5%). Through plotting error against tree height,
we identified a minimum threshold of 1 m, under which the accuracy of height measurements using
ULS and SfM significantly declines. Our results show that SfM and ULS data collected from UAV
remote sensing can be used to accurately measure height in young forestry trials. It is hoped that this
study will give foresters and tree breeders the confidence to start to operationalise this technology for
monitoring trials.
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1. Introduction

Forestry trials are established to evaluate and monitor a variety of factors that affect growth.
Typical examples include genetics trials, in which different provenances, families and individuals are
assessed for their growth characteristics [1] or silvicultural trials, in which various silvicultural regimes
are assessed to ascertain optimum management prescriptions to inform future establishment. As trials
often require regular measurement of individual trees, this is a costly, time consuming, and frequently
difficult task.

The use of remotely sensed data has considerable potential for overcoming difficulties associated
with trial measurement. This type of data has been captured and utilised in forestry from manned
aircraft since the 1920s, when aerial photography was first used in Canada [2], and satellites since
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Landsat imagery was first used in 1972 [3]. Lidar, or airborne laser scanning (ALS), in particular,
has emerged as a common tool for forest inventory. This technology has been widely researched for
forestry since 1976 and deployed operationally for forest inventory over the past two decades [4–7].

ALS is an active remote sensing technology that emits laser pulses and then senses the backscatter of
a laser’s energy off a target, calculating the distance between the target and the sensor [8]. This “return”
is then stored as an XYZ position relative to a specified coordinate system, known as a “point”. Over a
single flight, thousands of these points are collected and later reconstructed into a three-dimensional
(3D) model of the area of interest, known as a point cloud. Unlike passive sensors, such as aerial
photography that only sense ambient light levels, the active pulse of ALS allows for penetration of the
forest canopy down to the forest floor, opening up possibilities for the measurement of forest attributes,
including canopy height, canopy structure and terrain properties.

A large body of research has focussed on the application of ALS to forestry. ALS is well suited
for inventory [9–14], and for predicting metrics such as height [11,15–17], diameter at breast height
(DBH) [18–20], tree crown diameter and volume [21,22], leaf area index (LAI) [23–25] and stand density
(for reviews, see Kaartinen et al. [26] and Eysn et al. [27]). This technology has also been used for
silvicultural operations, such as identifying the optimal time for thinning, assessment of thinning
intensity [28,29], and forest fuel assessment for fire modelling [30–33]. ALS has also been widely
researched for carbon inventory purposes, including the estimation of above-ground biomass [34–38]
and for mapping forest carbon [39–41].

Amongst inventory attributes, ALS typically estimates tree height with the highest precision [11,16]
and errors are comparable to those of field measurements in tall trees [42]. The accurate estimation of
height from ALS is important from an inventory perspective as this attribute is most time consuming to
measure and as a result, traditional methods often rely on some form of subsampling [43]. Height can be
derived from ALS using an area-based approach (ABA), where predictions are averaged to the resolution
of the plot [44,45] or at individual tree level using individual tree detection (ITD) approaches [38,46].

The use of ALS within forestry is often restricted by the cost of capture. Certain operations, such as
the capture of data immediately following various forestry operations for quality control purposes
or inventory of small woodlots, are often too expensive to justify the cost. With the emergence of
commercially available unmanned aerial vehicles (UAVs), and the miniaturization of airborne laser
scanners, the expense of lidar capture has been reduced. UAV laser scanning (ULS) can be used to
capture lidar in a timely and cost-effective manner over smaller areas where ALS is not cost-effective.

Compared to ALS captures that are typically collected at pulse densities of between 4 and 20 ppm2,
ULS can achieve far higher pulse density that can reach up to 11,000 ppm2 [47]. These increases
in point density significantly improve rates of tree detection using ITD [48] and may be critical for
height estimation of recently planted trees with a small crown area due to a higher probability of laser
interception with the apex.

There is a discrete but growing body of research into the use of ULS for the description of forest
height. Early research by Jaakkola et al. [49] demonstrated that a UAV-mounted laser scanning system
could predict tree height with a bias of 0.15 m, and DBH with a bias of 0.02 m from point clouds with
densities ranging from 100 ppm2 to 1500 ppm2. Using an octocopter-based system with an Ibeo Lux
scanner, Wallace et al. [50] achieved a similarly high level of accuracy (RMSE = 0.52 m (6.8%)).

Later studies confirmed the accurate prediction of height using UAVs equipped with laser scanners
adapted from assisted and autonomous vehicle applications such as the Velodyne Puck series (Velodyne,
San Jose, CA, USA) [51,52] and Velodyne HDL-32E [53,54] that typically collect lidar at point densities
ranging from 11.5 to 800 ppm2 [52,55]. More recently, specialised UAV laser scanners such as the Riegl
VUX series have become available. The Riegl VUX sensors are capable of collecting point clouds at
very high densities, with reported averages of 4059 ppm2 [56] and 11,000 ppm2 [47]. Studies using
Riegl scanners have found very strong correlations between the ULS and field-measured data [47,56].
Despite these promising results, we are unaware of any published research that has explored the lower
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limit at which height predictions can be robustly made using ULS, and the minimum tree height
predicted to date has been 5.7 m [57].

Although costs have decreased, ULS is still cost-prohibitive for many operational uses.
With low-cost, prosumer-grade UAVs becoming common, structure from motion photogrammetry
(SfM) offers an appealing and cost-effective alternative to laser scanning for the assessment of key
forestry metrics such as tree height. SfM photogrammetry utilises multiple overlapping images focused
on an area of interest to generate a 3D representation of the area. SfM leverages computer vision and
photogrammetric principles to simultaneously estimate camera position and scene geometry through
common-feature mapping between overlapping images taken from different locations [58]. Through a
combination of the SfM methodology and the prosumer-grade UAVs commonly used in forestry,
3D models of forest areas can be created in the form of a point cloud, which provides a low-cost
alternative to lidar. SfM cannot penetrate through gaps in dense forest canopies to measure ground
height to the same extent as ULS. Terrain under the canopy can only be reconstructed if there are
sufficiently large gaps with adequate illumination to enable these gaps to be detected and reproduced
through the SfM pipeline. With ULS, smaller gaps can be penetrated with multiple returns, meaning
that partially occluded gaps can be resolved, owing to the active nature of the laser not requiring
illumination. Pre-existing terrain information from other sources can be combined with SfM data
if needed.

The use of photogrammetry and SfM for modelling tree attributes in forestry has been widely
researched in recent years. Studies using SfM have covered a diverse range of forest environments
including coniferous plantations [59–65], eucalyptus plantations [63,66], temperate coniferous
forests [67–72], temperate deciduous forests [73–78], boreal forests [79–81], tropical rainforests [82],
urban trees [83,84] and palm plantations [85,86]. Using SfM data, height has been accurately predicted
for both large [60,71,87] and smaller trees [59,63,88]. Although the height of trees as small as 0.9 m
have been predicted using SfM [63], we are unaware of any research that has investigated whether
predictive accuracy deteriorates below this height.

A number of studies have compared SfM to ALS [74,75,78,89], and of these, a few have compared
the precision of height predictions between ULS and SfM [51,53,54,90]. However, studies comparing
the two technologies have returned conflicting results. Cao et al. [51] and Wallace et al. [90] found
that ULS outperformed SfM when used to predict Lorey’s Mean Height and individual tree height.
In contrast, SfM was found to outperform ULS for prediction of plot-level [53] and individual tree
heights [54].

In this study, six large trials of the widely grown plantation species Pinus radiata D. Don, that
covered a height range of 0.4–6.1 m, were measured and scanned using SfM and ULS. The P. radiata
established in these trials included a common commercial seedlot, a selection of clonal stock and a
P. radiata x P. attenuata hybrid; the hybrid was also sourced through clonal propagation. Using these
data, our objectives were to (i) compare the precision and bias of height models derived from ULS and
SfM data, (ii) determine if a model that combines SfM data with a ULS DTM significantly improves
tree height estimation over the use of only SfM data and (iii) identity height thresholds above which
these data sources can be used to accurately predict tree height.

2. Materials and Methods

2.1. Data Collection

2.1.1. Study Sites and Field Data

Data were collected from four field trial sites within the central North Island of New Zealand
(Figure 1) that covered a broad range of environments to test the generality of the developed methods.
Topography at these four sites ranged from flat (Scion), to gently rolling (Rangipo; Kaingaroa 127) and
rolling (Kaingaroa 861) terrain. Varying levels of debris and weed cover were also represented through
the sites, from regularly mowed research trials (Scion) and first-rotation sites with little harvest residue
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or weed cover (Rangipo) to multiple-rotation forest sites with moderate levels of harvest residue that
are more typical of production forestry (Kaingaroa sites). The establishment techniques at each of the
sites also differed. The Scion site was established directly into mowed, flat grass. The Rangipo site was
established on a first rotation site with half of the site rip-mounded, with the other half planted into
bare pasture. The two Kaingaroa sites were mechanically spot-mounded, a process by which harvest
residue is cleared from the planting area and stacked in windrows, and the seedlings are established
on a small mound of earth [91,92].
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Figure 1. Map showing the location of the four study sites across the North Island of New Zealand,
and aerial images demonstrating the variable site conditions—Top: Kaingaroa 861; Middle: Scion;
Bottom: Rangipo.

Within three of the sites (Rangipo, Kaingaroa 127 and Kaingaroa 861) a single trial was selected,
while within the Scion site we selected three trials with different age classes (Scion: North, South and
West). These six trials encompassed a variety of age classes and a wide range of tree heights. At the
time of UAV data capture, the age of the stands at the Scion site ranged from 5 months at the west site
to 3.5 years at the south site (Table 1). The other three trials (Rangipo, Kaingaroa 127 and Kaingaroa
861) were around 3 years old at the time of capture (Table 1). There was a maximum difference of eight
weeks between field measurements and UAV data capture and measurements were made in winter to
mitigate the impact of this interval on height growth.

Tree heights were measured at the Kaingaroa and Rangipo sites using a height pole for trees up to
~6m tall, and a Vertex 4 hypsometer (Haglöf, Langsele, Sweden) for taller trees. Within the Scion site,
a height pole was used for the smaller trees at the West site, while a Vertex was used to measure trees
at the North and South sites. A total of 6616 trees were measured across the six sites with heights that
ranged from 0.12 to 6.1 m (Table 2) and a mean height of 2.6 m. The distribution of measured heights
was bimodal with peaks evident at both 0.4 m and 3.0 m (Figure 2).
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Table 1. Description of the establishment date, point cloud capture date and age at the capture date.
The number of trees (N) measured at each site and the mean and range of measured heights are
also shown.

Site

Trial Age and Capture Date Number of Trees and Height Statistics

Estab. Capture Age at N Min. Mean Max.

Date Date Capture (Yrs) m m m

Rangipo August 2016 July 2019 3 1940 0.6 3.3 5.6
Kaingaroa 861 August 2015 June 2018 3 1385 0.4 2.9 5.5
Kaingaroa 127 July 2016 June 2019 3 938 0.7 2.5 4.3
Scion: South October 2015 April 2019 3.5 613 1.4 4.2 6.1
Scion: North October 2016 April 2019 2.5 875 0.34 1.7 3.1
Scion: West October 2019 March 2020 0.4 865 0.12 0.4 0.61

Total and mean 6616 0.12 2.6 6.1

Table 2. Unmanned aerial vehicle (UAV) flight parameters for data captures.

SfM Altitude (m) Overlap %
(Forward:Side)

Point Density
(pt/m2) Speed (m/s) GSD (cm/pxl)

Rangipo 74 90:80 580 3.5 1.9
Kaingaroa 861 74 90:80 443 3.5 1.9
Kaingaroa 127 74 90:80 573 3.5 1.9

Scion: North and South 60 85:80 939 3 1.6
Scion: West 74 90:80 410 3.5 2.0

ULS Altitude (m) Line Spacing
(m)

Point Density
(pt/m2) Speed (m/s)

Rangipo 45 16 638 5
Kaingaroa 861 45 16 649 5
Kaingaroa 127 45 16 631 5

Scion: North and South 45 21 325 5
Scion: West 45 10 487 5
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2.1.2. UAV Data Acquisition Methodology

Ground control was set up prior to data capture. A Trimble Geo7X handheld GPS unit (Trimble Inc.,
Sunnyvale, CA, USA) with a Trimble Zephyr Model 2 external aerial was used to survey in a minimum
of five ground control points (GCPs) following best practice guidelines for Pix4D [93]. RMSE of GCPs
collected per site ranged from 0.01 m to 0.11 m.

ULS data were captured using a LidarUSA Snoopy V-series system (Fagerman Technologies,
INC., Somerville, AL, USA), with an integrated Riegl MiniVUX-1 UAV scanner (Riegl, Horn, Austria),
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mounted on a DJI Matrice 600 Pro UAV (DJI Ltd., Shenzhen, China). SfM data was captured using
a DJI Phantom 4 Pro UAV (DJI Ltd., Shenzhen, China) equipped with an integrated 1-inch 20 MP
RGB camera.

The UgCS software (SPH Engineering, Riga, Latvia) was used for ULS data capture as this
software can incorporate adaptive banking turns into flight plans, reducing the potential error in the
scanner’s IMU position during turns. Map Pilot (Drones Made Easy, San Diego, CA, USA) was used
for photogrammetry and was selected for its terrain-following functionality that ensured an even GSD
across images. The altitude, line spacing and speed required to obtain a range in point density of
325–649 pt/m2 between the sites are specified in Table 2.

Flight parameters for SfM broadly followed guidelines from Dandois et al. [75] who stipulate that
flights should only be carried out under clear sky conditions with wind speeds of less than 20 km/h
and high solar angle to reduce the effects of shadow. A flight altitude of approximately 80 m AGL
(74 m was chosen to obtain a GSD of approximately 2 cm), and at least 80% forward overlap are also
stipulated in the same study. We increased our overlap in line with guidance from Frey et al. [61],
who recommended higher forward overlap as being optimal for the reconstruction of more complex
forest environments. Flight parameters for the Scion North and South datasets were slightly different
as these data were captured as part of a previous experiment [94]. The default camera settings were
used with the Map Pilot application, which included infinity focus, auto exposure and a nadir camera
angle. The only changes made to the default was to set white balance to “sunny”. With these settings,
the aperture, shutter speed and ISO were variable and controlled by the application. The point density
of the SfM captures ranged from 410 to 939 pt/m2 (Table 2).

2.2. Data Processing and Analysis

The methodology for this project involved three broad phases: (1) processing of raw data into
point clouds, (2) quality control and cleaning of the point cloud data, and (3) analysis of the point
cloud data.

2.2.1. Processing Raw Data

UAV Laser Scanning

ULS data generally have to be retrieved from the scanner in the manufacturer’s native format
and then processed into a more universal format, such as LAS or ASCII. The Snoopy V-Series can be
operated as a PPK (post-processed kinematic) system, meaning that raw sensor data from the scanner
can be post-processed with reference to GNSS base station data to increase the inherent accuracy of
the point cloud. The system uses the Inertial Explorer Xpress (IE Xpress) (NovAtel Inc., Calgary, AB,
Canada) software suite to apply a correction to the GNSS rover trajectory data from the GNSS log
data captured by the CHCX900B base station (CHC Navigation, Shanghai, China) during the flight
operations. ScanLook Point Cloud Export (Scanlook PC) (Fagerman Technologies INC., Somerville, AL,
USA) was then used to combine the post-processed trajectory data with the raw sensor data. This data
can then be exported in a universal point cloud format (in this case LAS). ULS data collected per site
has a maximum RMSE of 0.01 m for horizontal values and 0.03 m for elevation values.

Rudimentary filtering was carried out on the raw lidar data within Scanlook PC. Further de-noising
of the point cloud was carried out in LasTools (see Section 2.2.2). Turns and irrelevant flight lines,
such as taxiing flights to and from the area of interest, were removed by a quality control process.
This was carried out in the Graphics Mode feature of Scanlook PC, in which the trajectory of the flights
can be filtered to remove sections of the point cloud that could provide potential sources of error.
Crucially, ScanLook PC also applies boresight calibration angles and lever arm offsets. These two
corrections are, respectively, the X, Y and Z offsets between the IMU and the scanner, and the X, Y
and Z offsets between the IMU and the GNSS antenna and are critical measurements to ensure the
accuracy of the point clouds. Failure to calibrate the data for either of these two measurements can
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build inherent errors into the point cloud data, such as the mismatching of opposing flight lines,
or errors in point alignment.

Structure from Motion

The software Pix4Dmapper (Pix4D, Lausanne, Switzerland), hereafter referred to as Pix4D,
was used to process the raw images from the UAV and generate the required spatial outputs.
Pix4D follows three basic stages during the processing of SfM data that include: 1. Initial Processing;
2. Point Cloud and Mesh generation; and 3. DSM, Orthomosaic and Index generation. For this study,
the standard 3D mapping processing settings were followed within Pix4D, except for the following
adjustments. For the Initial Processing stage, Geometrically Verified Matching was disabled under the
advanced and the Matching Table. This is designed to discard geometrically inconsistent matches and is
promoted as being useful for projects that include rows of plants in agricultural fields [95]. Initial trials
with the settings returned better results for datasets in this study with this option switched off. In the
Point Cloud and Mesh generation stage, the Minimum Number of Matches was increased from the
standard setting of three to five, to reduce noise and improve the quality of the point cloud. Trials with
the minimum number of matches indicated three to be optimal for the data. The Classify Point Cloud
option was also selected to aid in the generation of a DTM. Point clouds were exported as a single
merged file in LAS format. No changes were made to the settings in stage three, other than to specify
that all spatial outputs other than an orthomosaic should not be produced. Once the initial processing
stage was completed, spatial reference data in the form of 3D GCPs were added to the projects
to reprocess the models into a spatial coordinate system that matched the lidar (NZGD2000/New
Zealand Transverse Mercator 2000 (EGM 96 Geoid)). A point cloud and orthomosaic were generated
in subsequent steps and exported in LAS and TIF format, respectively.

2.2.2. Point Cloud Processing

The tree locations were manually identified to eliminate the error in data matching between
the predicted and measured tree tips so that the precision of the methods at predicting height
could be assessed. Using ArcGIS Pro 2.5.1 [96], individual trees were manually annotated on the
RGB orthomosaic that was created for each site in Pix4D using the trial tree maps as a reference.
These annotations were then buffered and used to confine the search area for tree tips within the point
cloud. Figure 3 shows an example of these tree annotations overlaid on a raster of predicted height.
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In order to extract the required metrics from the ULS and SfM point clouds, it was first necessary
to process the data. Using LAStools software version 190,404 [97], the point cloud datasets were tiled,
de-noised and thinned. The datasets were ground classified using the lasground_new algorithm with
a terrain resolution of 10 m for the Scion data and 3 m for all other datasets. The Kaingaroa datasets
were processed separately with care given to ensure the ground classification accounted for the spot
mounds present at these sites. The point clouds were then height normalised to the terrain model
generated from the ground classified points. For the datasets combining ULS ground data with SfM
data, the ULS ground terrain models at 0.5 m resolution were merged with unclassified SfM point
clouds before height normalisation.

Using these individual tree annotations, the predicted heights for each tree were extracted from
the normalised point cloud heights using the LidR library [98] in R statistical software version 3.6.0 [99].
Specifically, the grid_canopy algorithm was used to identify the local maxima within the individual
polygons defined around each tree canopy.

2.2.3. Integrating SfM DSM with ULS DTM

In order to integrate the ULS DTM with the SfM DSM, the models were first accurately aligned
within the CloudCompare software version 2.1.1 [100]. This was undertaken by utilising the “Align
(point pairs picking)” tool to align the point clouds by the ground control points laid out across each
site. Aligned point clouds were then exported in LAS format and analysed following the methodology
outlined in 2.2.2 and these point clouds will be referred to hereafter as SfMUTM.

2.3. Statistical Analysis

The precision and bias of height predictions using the three data types were assessed using the
root mean square error (RMSE), mean bias error (MBE), and the coefficient of determination (R2).
These metrics were calculated using the following equations:

RMSE =

√∑n
i=1 (ŷi − yi)

2

n

MBE =
1
n

n∑
i=1

yi − ŷi

R2 =

∑
i (ŷi − y)2∑
i (yi − y)2

where yi represents field measured heights, ŷi represents predicted heights from UAV point clouds, y is
the average of the observed values and n represents the sample size. The percentage RMSE (RMSE%)
was also determined through expressing the RMSE as a percentage of the average observed values, y,
as RMSE% = 100 (RMSE/y). The effect of height on error was examined using absolute error (AE) and
percentage error (PE), which were both calculated at the tree level. The absolute error for each tree
was determined from

∣∣∣yi − ŷi
∣∣∣. The percentage error was determined for each tree from 100 × AE/yi.

The effect of height on error was examined through plotting values of AE and PE against tree heights
categorised into 0.5 m bins ranging from 0–0.5 to 6.5–7.0 m.

3. Results

Across all sites, the results from the ULS data show a high level of precision and a low level of
bias (Table 3 and Figure 4). Overall, there was a very strong correlation between ULS predictions and
field-measured heights with an R2 of 0.99 (Figure 4), and RMSE of 0.15 (5.91%) (Table 3). There was
slight underprediction of height, as evidenced by the MBE of 0.05 m (Table 3), but overall there was
little apparent bias in predictions across the height range (Figure 4a).
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Table 3. Statistics describing the precision and bias of predictions of height using ULS, SfM and SfM
that used a ULS DTM (SfMUTM). Shown are the coefficient of determination, root mean square error
(RMSE) and mean bias error (MBE).

Site

ULS SfM Dataset SfM with ULS DTM

R2 RMSE MBE R2 RMSE MBE R2 RMSE MBE

m m m m m m

Rangipo 0.97 0.15 0.06 0.87 0.56 0.48 0.88 0.47 0.38
Kaingaroa 861 0.94 0.19 0.03 0.86 0.42 0.30 0.86 0.29 0.07
Kaingaroa 127 0.94 0.17 0.06 0.79 0.53 0.44 0.81 0.53 0.45
Scion: South 0.97 0.17 0.03 0.80 0.61 0.40 0.81 0.60 0.45
Scion: North 0.95 0.11 0.00 0.76 0.37 0.31 0.75 0.27 0.18
Scion: West 0.27 0.13 0.10 0.05 0.31 0.29 0.02 0.37 0.35

Mean 0.99 0.15 0.05 0.94 0.48 0.38 0.95 0.43 0.32
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Figure 4. Correlation between field-measured tree heights and heights predicted from (a) ULS, (b) SfM
and (c) SFMUTM. The 1:1 line is shown as a dashed black line and a linear model fitted through the
data is shown as a solid red line.

Variation in precision between individual sites was relatively low for all sites, apart from Scion
West, in which the trees were markedly smaller. For the five sites with the tallest trees, the R2 ranged
from 0.94 to 0.97, with RMSE and RMSE%, respectively, ranging from 0.11 to 0.19 m and from 4.01 to
6.61%. Bias was relatively low for these five sites, ranging from 0 to 0.06 m, which was also evidenced
by the close correspondence of predictions to the 1:1 line for these sites (Figure 5a–e). Predictions of
height at the Scion West site had far lower precision (R2 = 0.27, RMSE = 32.1%) and were also more
biased (MBE = 0.10 m) with ULS markedly underestimating tree height (Figure 5f).
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Predictions of height from SfM had a lower precision and greater bias than predictions using
ULS (Table 3 and Figure 4b). For the dataset that combined data from all sites, the precision was
moderate to high with R2 of 0.94 and RMSE of 0.48 m (18.5%) (Table 3). Using this method, there was
underprediction of height as shown by the MBE of 0.38 and this bias was also evident in Figure 4b.

There was little variation in model precision for the five sites with the tallest trees, with R2 ranging
from 0.76 to 0.87 (Table 3). However, the model precision diminished greatly for Scion West, which had
an R2 of 0.05 and RMSE of 75.9% (Table 3). At all sites, SfM underpredicted tree height (Figure 6;
Table 3) with the extent of this bias greatest for Scion West (Figure 6f).
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Compared to the use of SfM data alone, there were slight gains in precision and bias when SfMUTM

was used to predict height (Table 3). Using the SfMUTM dataset, predictions across all sites had an R2

of 0.95 and RMSE of 0.43 m (16.5%) (Table 3). Using this method, there was underprediction of height,
as shown by the MBE of 0.32, and this bias was also evident in Figure 4c.

Height predictions made using the SfMUTM data showed little variation in model precision for the
five sites with the tallest trees, with R2 ranging from 0.75 to 0.88 (Table 3). Again, the model precision
diminished significantly for Scion West, which had an R2 of 0.02 and RMSE of 91.0% (Table 3). At all
sites, SfMUTM underpredicted tree height with the extent of this bias greatest for Scion West (Table 3).

Using the ULS dataset, pooled across all six sites, the absolute height errors declined gradually
from the smallest two categories of trees to the taller trees (Figure 7a). Values of the percentage error
declined sharply from 87.2% and 63.7%, respectively, for the 0–0.5 and 0.5–1.0 m categories to 8.1% for



Remote Sens. 2020, 12, 4039 12 of 20

trees that had a height of 1–1.5 m (Figure 7c). The percentage error reached a minimum of 0.9% for the
tallest group with heights of 6–6.5 m (Figure 7c).
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In contrast to ULS, there were increases in the mean absolute error of SfM predictions with
increasing height (Figure 7b), with values reaching a maximum mean error of ca. 0.5 m at heights
exceeding 3.5 m (Figure 7b). There were very steep reductions in percentage error from mean values of
71.7 and 64.1%, respectively, for the two smallest height categories to 25.1% for trees that were between
1 and 1.5 m (Figure 7d). More gradual reductions in percentage error occurred above this height,
reaching values as low as 7.7% for trees within the 5–5.5 m and 5.5–6 m height classes.

4. Discussion

This study highlights the utility of point cloud data collected from UAVs for estimating tree height
in young forestry trials. Although predictions made by ULS and SfM were both strongly related to
measured height (R2 = 0.99, and R2 = 0.94, respectively), there was a three-fold difference in RMSE
between the two methods which is a more sensitive indicator of precision (RMSE = 0.15 vs. 0.48 m).
The substitution of the ULS DTM into the SfM dataset resulted in very little improvement in precision
over the use of only SfM data. Tree heights that were less than 1 m could not be accurately estimated
using SfM or ULS.

Our predictions of height using ULS had RMSE of 5.91%, which is consistent with previous
literature. Similar levels of precision and accuracy were observed in mixed boreal forests by
Jaakkola et al. [52] who reported a coefficient of determination of 0.95 and relative RMSE of 6.8%
between ULS and field measurements. Wallace et al. [57] observed a relative RMSE of 6.8% when
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comparing individual ULS-derived tree heights to field-measured heights in stands of Eucalyptus
globulus Labill. Dash et al. [101] also found an equivalent level of accuracy to this study in a mature
stand of P. radiata with an RMSE of 6.8%.

Our results show that ULS slightly underestimates tree height and that this bias is highest for
the smallest trees. The underestimation of tree height is a well-documented issue for single tree and
area-based predictions from lidar [102–105]. This underestimation could be attributable to inadequate
pulse density, use of a beam footprint that exceeds the width of the tree canopy [106], imperfections
in the algorithms used in creating the DTM, DSM and CHM, pulse penetration through the canopy
to the ground, and a lack of comprehensive pulse coverage [8]. Due to the very high pulse density,
the open canopy of our study sites and efforts to minimise error in the DTM, errors were most likely to
be attributable to imperfections in the algorithms used to create, DSM or CHM but could also result
from a higher angle of incidence of the laser pulse or a larger beam footprint.

In our results, we observed a higher level of error in tree height accuracy (RMSE = 0.15 m at
45 m) than the reported accuracy of the MiniVUX-1UAV scanner (0.015 m at 50 m range, under Riegl
test conditions [107]). Liang et al. [47], linked this to the influence of greater beam divergence under
field conditions having a negative effect on positioning accuracy of points. A large footprint size,
attributable to greater beam divergence, has been attributed to the creation of random error in the
point cloud through differences in the incidence angle [52]. With an increased angle of incidence from
the nadir, the beam footprint increases and, therefore, the strength of the return is averaged across a
greater area introducing error into the point [108]. This same explanation would apply to a nadir pulse
with a beam footprint wider than the target, such as a tree tip, or a small tree. The high overlap and
minimal filtering of incidence angle in this study could explain some of the height error in our results.
Increasing the overlap has been demonstrated to introduce error into the point cloud and could remove
the benefits of the additional point coverage over the target [47]. Further work to quantify the error
introduced with various angles of incidence should be carried out to establish optimal overlap settings
for forestry applications.

Although predictions of height using SfM data were relatively precise, these predictions
had greater bias and a lower level of accuracy than the ULS, which is consistent with previous
research [51,90]. Compared to ULS, the use of SfM point clouds resulted in a threefold increase
in the RMSE (0.15 vs. 0.48 m) and RMSE% (5.91 vs. 18.5%). Previous research, that has used SfM
point clouds for the measurement of tree heights, demonstrates a wide range of precision between
studies, with RMSE% ranging from 1.89 to 19.4% and the coefficient of determination ranging from
0.21 to 0.99 [59,60,62–65,69,71,74–78,80,83–88,109–111]. Although our overall results were at the less
precise end of the RMSE% range, this was attributable to the inclusion of small trees within the study,
which resulted in increases in the percentage error. When height error was expressed in absolute
terms, our results are consistent with other studies that have found SfM to be capable of measuring
tree heights to within 0.5 m of field-measured heights [59,62,63,65,85,88].

It is well known that SfM cannot describe the DTM as accurately as ULS [60] and the lower
precision of the DTM could introduce error into tree height estimates from SfM. We tested the impacts
of this factor on height predictions through integrating the actively sensed ULS DTM with the SfM
data (SfMUTM). The results showed a very modest increase in the correlation coefficient of 0.01
(R2 = 0.95 vs. 0.94), a slight decrease in RMSE of 0.05 m (0.43 vs. 0.48 m), and a corresponding small
reduction in RMSE% of 2% (16.5 vs. 18.5%). This supports previous findings [74] and is consistent
with Hentz et al. [63] who hypothesised that it is possible to generate an accurate DTM from SfM when
the canopy is sufficiently open. It was interesting to note that height predictions from ULS still had a
significantly higher accuracy than those predicted from SfMUTM, which suggests these precision gains
were attributable to other factors.

Further research should be undertaken to optimise settings and parameters for SfM acquisition.
In this study, the flight parameters were carefully planned to reflect findings from Dandois et al. [75]
and Frey et al. [61] in order to minimise the errors caused by image overlap, wind and weather.
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The camera parameters that optimise image quality in aerial photography and photogrammetry are
a large sensor, a focal length of between 24 and 35 mm, and an ISO setting optimised to ensure a
shutter speed fast enough to minimise motion blur [112,113]. The focal length of the Phantom 4 Pro is
8.8 mm [114], which is considerably smaller than the suggested optimal focal length. A smaller focal
length will introduce a greater level of lens distortion and could cause some error in the reproduction
of the point cloud [112]. The focal length of the Phantom 4 Pro is fivefold smaller than the focal length
of the camera that achieved the lowest RMSE from the literature [88]. The sensor size of the Phantom
4 Pro is almost three times smaller than the camera that achieved the lowest RMSE, which would
result in reduced sensitivity [88]. For future study, a direct comparison between multiple cameras is
suggested, so that the effect of camera parameters on tree height measurement can be explored in
greater depth.

Within this study, Pix4D was used to process point cloud data as this is one of the most widely used
software programmes for this purpose [65,68,74,79,83,86,87,115]. The SfM software could potentially
introduce errors in the point cloud, notably in the creation of the DTM [62]. Studies that have trialled
more than one SfM software to predict tree height have found significant differences in precision [68,116]
and further research is required to compare the impact of this factor on the predictive precision of tree
heights. As well as the SfM process itself, a number of studies have suggested that the algorithms used
to create the CHM and individual tree crown delineation could have a possible smoothing effect on the
SfM heights [62,63,117]. The methodology followed in this study to analyse tree heights did not create
a CHM, and the negative bias was still observed. This is an interesting finding, as it means that the
CHM creation phase can be ruled out as the sole cause of the bias, although it cannot be excluded as a
contributing factor.

Similarly, there are many factors involved in ULS acquisition that could be refined to improve
height predictions. Error from ULS acquisition is influenced by beam divergence (and consequently
beam footprint), range accuracy, maximum range and the height that the scanner is flown above the
target. There is now a range of UAV laser scanners on the market, and all have different attributes that
could affect the accuracy of forestry measurements [118]. The interaction between these variables has
not been well studied for forestry applications, and we echo the conclusion of Liang et al. [47] that
further study in this area is required to optimise data collection and predictions of key metrics such
as height.

5. Conclusions

This study has shown that point cloud data acquired from a UAV can be used to accurately predict
tree heights. Our results extend previous research by demonstrating that tree height can be accurately
quantified down to a threshold of 1 m. Below this height, error increases significantly. Although SfM
was not as accurate as ULS for prediction of tree height, this method could provide a more cost-effective
alternative to ULS. Further research should be undertaken to refine collection and data processing
methods for both ULS and SfM.
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