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Abstract: Crop evapotranspiration (ETc) estimates, on a regional scale, hold enormous potential in 
managing surface and groundwater resources. This is particularly important for the headwater state 
of Wyoming, which provides water to found major river basins of the US. In this study, METRIC 
(Mapping evapotranspiration at high resolution with internalized calibration), a satellite-based 
image processing model, was used to map and quantify daily, monthly, and seasonal ETc and other 
energy balance fluxes, i.e., net radiation (Rn), sensible heat (H), and soil heat flux (G) dynamics for 
different land-use classes. Monthly and seasonal ETc estimated were further used to approximate 
regional water consumption patterns for different land-use types for nine irrigation districts in semi-
arid to arid intermountain region of Big Horn Basin (BHB), Wyoming. The validation of METRIC 
retrievals against Bowen ratio energy balance system (BREBS) fluxes measured over three 
vegetative surfaces, viz. sugar beet in 2017, dry bean in 2018, and barley in 2019, indicated high 
accuracy. The pooled correlation observed between estimated (pooled) and measured instantaneous 
fluxes had R2 values of 0.91 (RMSE = 0.08 mm h−1, NSE = 0.91), 0.81 (RMSE = 49.6 Wm−2, NSE = 0.67), 
0.53 (RMSE = 27.1 Wm−2, NSE = 0.53), and 0.86 (RMSE = 59.2 Wm−2, NSE = 0.84) for ETc, Rn, G, and 
H, respectively. The biggest discrepancy between measured and estimated monthly ETc values was 
observed during times when BREBS flux tower footprint was devoid of any crops or the crops at 
footprint were not actively transpiring. Validation results improved when comparisons were made 
on monthly scales with METRIC underestimating growing season ETc in the range between 3.2% to 
6.0%. Seasonal ETc by land-use type showed significant variation over the study area where crop 
ETc was 52% higher than natural vegetation ETc. Furthermore, it was found that, in the arid to semi-
arid intermountain region of Wyoming, the contribution of irrigation to total seasonal ETc varied in 
the range of 73–81% in nine irrigation districts that fall within the study area. The high relative 
contribution of irrigation highlights the importance of identifying and quantifying ETc for 
improved management in irrigation system design and water allocation. 

Keywords: crop evapotranspiration; surface energy balance flux; METRIC; Landsat; mountain 
region 

 

1. Introduction 

The availability of freshwater resources for agroecosystems has been an important issue for the 
sustainability of agricultural production in the U.S. and around the world. This is particularly 
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important to the arid to semi-arid regions of the western U.S.A, including Wyoming, where climatic 
variability, drought, and water scarcity are becoming a persistent challenge [1]. In the inter-mountain 
region of Wyoming, irrigated agriculture is the backbone of the state’s economy, representing an 
annual income of approximately $1.8 billion [2]. Irrigated agriculture accounts for 80–85% of total 
consumptive water use, with the state irrigating approximately 0.60–0.65 million hectares annually 
depending upon the surface and groundwater supplies. As Wyoming’s agricultural, municipal, 
industrial, and recreational/environmental water uses increase, the state’s limited water supplies 
have come under increased scrutiny. This has led to the scrutiny of surface and groundwater by the 
state and local governments, leading to the development of new regulatory approaches and 
groundwater policies. Although the Wyoming State Constitution decrees that all water inside its 
boundaries is the property of the state, several interstate water compacts and court decrees limit the 
amount of outgoing streamflow that Wyoming can deplete [3]. Wyoming is also a headwater state 
and provides water to four major river basins of the US. Wyoming’s land area drains into the 
Missouri-Mississippi River basin (approximately 72%), Green-Colorado River Basin (approximately 
17%), Snake-Columbia River Basin (approximately 5%), and Great Salt Lake Basin (approximately 
2%) [4]. Interstate compacts and decrees between upstream and downstream user states have placed 
some restrictions on the amount of streamflow Wyoming users can deplete. Under these 
circumstances, the management of water resources at the field, watershed, and regional scales is 
critical to sustained crop production and economic vitality in the region’s agro-ecosystem. 

The efficient use of water resources in agriculture and to understand the response of agro-
ecosystems to changing environment require the adequate quantification of crop evapotranspiration 
(ETc; latent heat flux) and other surface energy balance fluxes (net radiation (Rn), soil heat flux (G), 
and sensible heat flux (H)) on both point and regional scales. ETc, a combination of evaporation and 
transpiration fluxes, is an important component of the agro-ecosystem and plays a significant role in 
determining the mass and energy transfer between the hydrosphere, atmosphere, and biosphere by 
impacting the relationships between land-use/land cover change and microclimate/climate energy 
balance in the hydrologic cycle [5–8]. In agricultural settings, ETc is directly related to plant biomass 
and contributes to the determination of crop irrigation water requirements, groundwater 
consumption, water allocation in a river basin, irrigation reservoirs, storage and conveyance system 
capacities, and water rights [9,10].  

Although highly established and localized techniques, such as eddy covariance [11], Bowen ratio 
energy balance [5], lysimeter [12], etc., have been widely used for the continuous measurement of 
ETc, their application beyond the local scale (watershed/regional scale) has become challenging 
because of the high cost of instrumentation, complexity, and effectiveness of the measurement. In 
general, the footprint of ETc measurement by these methods is relatively smaller, which creates a 
significant bias at watershed/regional scales due to heterogeneity of the land surface and the complex 
nature of the heat transfer process governing the ETc [13,14]. Another popular and easy method used 
to quantify crop ETc is by adjusting the reference (potential) evapotranspiration (ETr) with crop 
coefficients (Kc) using the Food and Agricultural Organisation (FAO) Irrigation and Drainage paper 
number 56 approach [10]. However, this approach over a regional scale does not consider the within-
season spatial variation in crop growth stages (even for the same crop), management practices 
(irrigation, fertilization, etc), soil type, local climate variation, etc. increasing uncertainties in results 
[8]. Remote sensing-based estimation of ETc using freely available satellite data in conjunction with 
meteorological data via surface energy balance techniques can provide the viable means to map-
regional patterns of surface energy balance fluxes both spatially and temporally in a consistent and 
economically practical manner. Over time, different surface energy balance-based algorithms with 
varying complexities have been developed to quantify spatial and temporal dynamics of energy 
balance fluxes, e.g., surface energy balance algorithm for land (SEBAL) model [15], surface energy 
balance system (SEBS) model [14], surface energy balance index (SEBI) model [16], simplified surface 
energy balance index (S-SEBI) model [17], operational simplified surface energy balance (SSEBop) 
model [18], mapping evapotranspiration at a high-resolution with internalized calibration (METRIC) 
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model [19], etc. All these models utilize multispectral data from visible and thermal sensors onboard 
different satellites to identify the differences in land surface characteristics and to estimate ETc.  

In this study, METRIC (mapping evapotranspiration at high resolution using internalized 
calibration), a satellite-based surface energy balance algorithm formulated by Allen et al. [19,20], 
based on the (surface energy balance algorithm for land) SEBAL model [15,21–24], was used to 
evaluate ETc and other energy balance flux, viz. Rn, H, and G. Allen et al. [19] report the accuracy of 
METRIC to be heavily dependent upon choosing appropriate hot and cold pixel points (anchor 
pixels) within a given image during the calibration process, also know as calibration using inverse 
modeling at extreme conditions (CIMES). In this process, it uses an internal calibration procedure to 
estimate the near-surface temperature gradient (dT function) as an indexed function of radiometric 
surface temperature (Ts) for estimating the H component of the surface energy balance. This 
procedure further eliminates the need for atmospheric correction of Ts and albedo. Generally, a cold 
pixel is a well-irrigated field with full crop cover, transpiring actively and a dry pixel is a dry field 
with approximately zero ETc. The selection of these extreme pixels is extremely important and 
requires careful consideration of maps of Ts, normalized difference vegetative index (NDVI), leaf ares 
index (LAI), surface albedo, land use, and image in true and false colors. Moreover, this procedure 
uses the hourly reference evapotranspiration (ETr) to auto-calibrate the H calculation for each satellite 
image, which makes ETc estimates more robust [20,25].  

Since its introduction, METRIC has been applied worldwide to evaluate and estimate spatial 
and temporal variability of ETc under different vegetative and climatic conditions at different spatial 
and temporal scales. In the US, METRIC has been extensively used to manage water use in cropland, 
riparian and forest vegetation [19,26–30], regulate water allocation in a river basin and water rights 
[9], and regulate groundwater withdrawal [31]. Outside the U.S., METRIC has been applied to several 
regions of the world [26,29,32,33]. For example, Allen et.al. [19] applied METRIC with Landsat images 
in Idaho, US to predict monthly and season ETc and reported the difference between METRIC 
estimated and lysimeter measured growing season ETc to be less than 5%. They further used METRIC 
monthly and seasonal regional ETc estimates to quantify the net ground-water pumpage and total 
depletion of water from Bear River systems and Snake River aquifer systems to regulate water rights 
[9]. Likewise, Singh & Senay [34] tested the METRIC model using Landsat images over three 
Ameriflux cropland sites in the Mid-western United States. The daily ETc from three flux sites had an 
average R2 of 0.92 and an average RMSE of 0.93 mm d−1. Singh et al. [35] used the METRIC model in 
conjunction with the wet METRIC (a modified version of METRIC) model for analyzing Landsat 
images in the mid-western United States. They reported that the model-estimated daily ETc was in 
good agreement with eddy covariance measurements with an average R2 of 0.91 and a standard error 
of 0.6 mm day−1. Furthermore, Mokhtari et al. [36] reported that monthly ETc estimated using the 
METRIC model falls within ±10% of the actual ETc. Tang et al. [37] concluded that METRIC estimated 
instantaneous and daily ETc values fall within 10–15% of the actual ETc. They also mentioned that 
METRIC estimated seasonal ETc was overestimated as compared to that of flux measurements. The 
METRIC model also showed a promising result in the study conducted on apple and olive orchards 
[38–40].  

Unlike its applications over flat cropland areas, only limited studies have been focused on its 
application to mountainous terrain where there is significant relief and a wide range of slopes and 
aspects. Thus, a local modification of the algorithms is required. This includes the adjustment of the 
solar and thermal radiation estimates for slope, aspect, and elevation. Moreover, wind speed and 
aerodynamic roughness are adjusted to account for the impacts of drag due to undulating 
topography [19,33,41]. Therefore, the main goals of this study were: to (i) assess the performance of 
the METRIC algorithm to estimate ETc and other energy balance fluxes using Landsat imagery with 
respect to measured surface energy balance variables from Bowen ratio energy balance system for 
the different vegetative surface in the intermountain region of Wyoming; (ii) quantify, map, and 
evaluate spatial and temporal distribution (daily, monthly and seasonal) of ETc and other energy 
balance fluxes over the study region; and (iii) quantify the seasonal crop water use and percent 
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contribution of irrigation toward ETc for different vegetative surfaces and different irrigation districts 
within the study area. 

2. Materials and Methods 

2.1. Study Area 

The study area covers the arid to semi-arid region of the Big Horn Basin (BHB), Wyoming which 
lies in the coverage of Landsat Path: 37 and Row: 29 centered at 44.40°N, 108.52°W (Figure 1). Situated 
in the Rocky Mountain region of the Western United States, the BHB is dominated by mountain 
ranges and high elevation plains and covers the highly developed irrigation-based agricultural 
system within nine irrigation districts which are fed by three major rivers in the regions, namely the 
Shoshone River, Big Horn River, and Greybull River (Figure 1). The surface elevation of the study 
region varies from 1110 m to 3254 m above mean sea level. The major soil type in the study area is 
sandy loam, with a total study area of 7930 km2. Annual average P over the study region can vary 
from over 639 mm in the high elevation mountainous regions to as low as 142 mm in the lower 
elevation agricultural plains, with an average of 235 mm compared to the state and national average 
(Contiguous US) of 406 and 762 mm, respectively [42].  

In the inter-mountain region of Wyoming, the growing season is generally short due to a limited 
number of frost-free days in the year. Despite the limited season, the region provides an ideal 
environment to grow high-yielding and high-quality crops. Natural vegetation covers about 83% of 
our study area whereas the cropland area is limited to about 14%. Alfalfa is the major crop grown in 
terms of total acreage, followed by barley, sugar beet, dry bean, and maize, primarily under furrow 
irrigation with many growers switching to center pivot irrigation [43]. The growing season in the 
study area starts with the sowing of barley beginning mid-March, sugar beet in Mid April, maize and 
dry bean in mid to late May, and ends with harvesting that usually starts from August for barley, 
early September for dry bean, mid to late September for sugar beet until mid-November for Maize. 
Because of relatively low growing season precipitation (P) and low relative humidity (RH), disease 
incidence is minimal, and cool winter temperatures suppress insect and disease cycles and much 
acreage of the region is dedicated to producing certified seed, including dry beans. The natural 
vegetation comprises evergreen and deciduous forest, grassland, shrubland, and woody and 
herbaceous wetlands (Figure 1).  
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Figure 1. Location map of the study area within the Big Horn Basin (BHB) Wyoming (a) Landsat Path 
37 Row 29 footprint along with county map and location of Bowen Ratio Energy Balance System 
(BREBS) (b) Land use map with irrigation district boundaries of nine irrigation districts within the 
study area (c) elevation (meters) with hill shade effect underneath (meters). 

High-quality hourly and daily weather data including maximum and minimum air temperature 
(Tmax and Tmin), maximum and minimum relative humidity (RHmax and RHmin), wind speed at 2-m 
height (u2), incoming solar radiation (Rs), and precipitation (P) were collected from the Wyoming 
Agricultural Climate Network (WACNet) weather station at the University of Wyoming Powell 
Research and Extension Center (PREC), located within the Landsat scene footprint [43]. The 
measured weather data were used to estimate alfalfa reference ET (ETr), which is utilized in METRIC 
algorithm to internally calibrate (hourly ETr) and upscale (daily ETr) instantaneous ETc to daily and 
periodic ETc. Daily precipitation data are helpful to estimate bare soil evaporation and evaluate prior 
Landsat image-acquisition date precipitation. The ground-based windspeed values are used to 
calculate wind speed at blending height (200 m) needed during H calculation. Air temperature and 
RH values are utilized to calculate dew point temperature (Tdew) and vapor pressure which is then 
used to compute atmospheric transmissivity. Atmospheric transmissivity signifies the ability of 
Earth’s atmosphere to allow/pass incoming radiation from the sun and is required during calculation 
of Rn. Table 1 outlines the average meteorological conditions at PREC on the Landsat image 
acquisition date. 
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Table 1. Image acquisition date, spacecraft ID, and daily weather parameters measured at BREBS 
station, Powell Research and Extension Center, Wyoming. Daily weather parameters include 
minimum air temperature (Tmin), maximum air temperature (Tmax), minimum relative humidity 
(RHmin), maximum relative humidity (RHmax), wind speed (u2), solar radiation (Rs), precipitation (P), 
and ASCE PM alfalfa-reference evapotranspiration (ETr). 

Date 
ID 

 
Julian 
Date 

Tmin 
(0C) 

Tmax 
(0C) 

RHmin 
(%) 

RHmax 
(%) 

u2 
(ms−1) 

Rs 
(W m−2) 

P 
(mm) 

ETr 
(mm d−1) 

5/4/2017 L07 124 1.4 17.7 22.9 84.8 2.0 324.0 0 5.47 
6/5/2017 L07 156 12.2 32.7 11.2 65.3 2.0 336.0 0 9.23 

6/21/2017 L07 172 10.8 31.4 19.0 80.0 2.1 268.4 0.254 7.95 
7/15/2017 L08 196 15.9 36.8 13.0 66.2 1.2 280.1 0 7.28 
7/31/2017 L08 212 10.8 33.3 12.4 84.3 0.9 306.0 0 6.3 
8/16/2017 L08 228 9.7 25.3 22.6 82.6 0.8 217.8 0 4.14 
9/1/2017 L08 244 15.0 31.4 17.6 68.4 1.2 178.3 0 5.15 
9/9/2017 L07 252 8.1 30.2 11.6 65.6 0.8 198.2 0 4.25 

5/15/2018 L08 135 6.2 19.9 33.8 100 1.4 235.9 0 4.33 
6/8/2018 L07 159 10.7 27.0 24.6 82.1 1.4 230.4 0 5.55 
7/2/2018 L08 183 10.4 27.8 16.2 81.7 0.8 300.0 0 5.55 

7/18/2018 L08 199 11.8 29.5 23.6 84.0 0.7 210.6 0.254 4.55 
7/26/2018 L07 207 14.6 28.8 26.8 69.6 1.5 262.7 0 6.36 
8/11/2018 L07 223 12.4 36.4 9.0 68.2 0.7 302.5 0 5.95 
9/4/2018 L08 247 6.8 30.7 11.6 77.8 1.3 261.8 0 6.03 

9/12/2018 L07 255 8.7 24.7 18.1 69.6 1.0 207.3 0 4.12 
10/22/2018 L08 295 -0.2 21.6 16.8 74.0 0.9 151.5 0 2.49 

6/3/2019 L08 154 8.9 27.3 20.3 84.4 1.1 301.2 0 5.97 
7/13/2019 L07 194 13.3 33.4 20.8 82.5 0.9 300.5 0 6.26 
7/21/2019 L08 202 12.0 27.5 21.8 57 1.9 332.8 0 7.63 
8/14/2019 L07 226 9.5 28.3 19.4 77.8 1.2 298.5 0 6.01 
9/15/2019 L07 258 8.6 29.1 13.9 80.7 1.9 192.3 0 5.99 

Assessing the uncertainties in satellite estimated ETc using a ground-based measured ETc is an 
important and challenging task. While the objective of this study is to assess the performance of 
METRIC estimated ETc for the complex mountainous terrain, however, no ground-measured fluxes 
were available for those areas. In this study, the accuracy of METRIC estimated surface energy 
balance fluxes were assessed using the field measured dataset for different vegetation from Bowen 
ratio energy balance system (BREBS) located at the center of the study area at PREC (44.46°N, 
108.45°W) in a large center pivot irrigation production field (14 ha) with a fetch distance of 180 m, 
230 m, 223 m, and 160 m in the north, east, south, and west directions, respectively (Figure 2). The 
BREBS station was installed on a center-pivot field in June 2017 and continuously sampled the energy 
flux components and other microclimate variables every 60 s and averaged over 15-mi scales during 
both crop growing and non-growing seasons using a CR10X datalogger and AM416 relay multiplexer 
(Campbell Scientific, Inc., Logan, Utah). The BREBS measures ET as latent heat (LE; also known as 
ETc) based on the energy balance equation as: 

LE =  
Rn − G
1 + β

 

 

(1) 

where β a is the Bowen ratio, which is defined as the ratio of sensible heat flux to latent heat flux [44]. 
The Bowen ratio is calculated from the differences in air temperature (Tair) and vapor pressure 
measured at two heights above the crop canopy. The systems measure Tair and RH using two 
platinum resistance thermometers and monolithic capacitive humidity sensors (REBS models 
THP04015 and THP04016, respectively) with resolutions of 0.0055 °C for temperature and 0.033% for 
relative humidity. The Tair and RH sensors are located at the center of two coaxial anodized aluminum 
radiation shield at two heights. It is important to note that a small bias in temperature and relative 
humidity measurements can cause incorrect estimation of gradients which can cause significant error 
in β and LE. Therefore, to minimize the impact of any bias, the system automatically exchanges the 
temperature and humidity sensors every 15 min at two heights above the canopy. Additionally, 
aluminum housing units for Tair and RH sensors face the north direction to avoid any impact of direct 
sunlight on Tair and RH measurements. The system is designed to measure all the components of 
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radiation balance, i.e., incoming and outgoing shortwave and longwave radiation, from which Rn is 
calculated. The Rn is measured using a REBS Q*7.1 net radiometer that is installed 3 m above the crop 
canopy using the tripod assembly. To eliminate the effect of reflection of heat and radiation other 
instruments installed on the tripod and to capture the Rn at the vegetation surface all the Rn 
measurements are taken away from the tripod station. Other radiation balance components, i.e., 
incoming and outgoing shortwave and longwave radiation are measured using the REBS models 
THRDS7.1 double-sided total hemispherical radiometer. The P is recorded using a model TR‐525 
tipping bucket rain gauge with 0.1 mm resolution. Wind speed and direction above the canopy at 3 
m height are measured using a model 034B cup anemometer. The G is measured using three REBS 
HFT‐3.1 heat flux plates and three soil thermocouples installed in close proximity, 0.06 m below the 
soil surface under the net radiometer assembly. One soil temperature and one SMP1R surface soil 
moisture sensor were also installed nearby of heat flux plated to G correction. Detailed information 
on BREBS functioning and instrumentation is provided by Irmak [5]. In this study, the estimated 
fluxes from METRIC model were validated for three irrigated vegetative surfaces i.e., sugar beet in 
2017, dry bean in 2018, and barley in 2019. These crops were selected based on their high acreage, 
high economic value, and high irrigation demand in the intermountain region of Wyoming. In 2017, 
sugar beet cultivar 9418RR was planted on May 08 at 0.3 m plating depth with a planting density of 
118,600 seeds per hectare and harvested on October 13. In 2018, dry bean cultivar La Paz was planted 
on June 05 at 0.05 m soil depth and 0.56 row spacing at a seeding rate of 222,395 seeds per hectare 
and harvested on September 10. In 2019, barley was planted on April 05 at a target planting density 
of 850,000 plants per hectare on 0.19-row spacing and harvested on August 14. 

 
Figure 2. Bowen Ratio Energy Balance System (BREBS) installed in center pivot irrigated (a) sugar 
beet, (b) dry bean, and (c) barley field at Powell Research and Extension Center in Powell, Wyoming. 

2.2. Satellite Datasets and Image Processing 

A total of 22 cloud-free and geo-rectified Landsat 7-Enhanced Thematic Mapper Plus (ETM+) 
and Landsat 8-Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS) images (Path: 37 

(a) Sugarbeet (b) Dry bean 

(c) Barley 
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and Row: 29) were obtained from the US Geological Survey (USGS) (https://earthexplorer.usgs.gov/) 
for 2017, 2018, and 2019 growing seasons (Table 1). Landsat satellite imagery was preferred over other 
contemporary satellites because it collects thermal data and has a temporal and spatial resolution of 
16 days and 30 m by 30 m, respectively making it easier to map individual agricultural fields. The 
scan line correction for Landsat 7 was carried out on final instantaneous images using the natural 
neighborhood interpolation tool of ArcGIS 10.6.1. This tool finds the closest subsets of missing pixels 
from the pixels surrounding the query point to interpolate a value. It is important to note that the 
pixels corresponding to the BREBS station location did not have any scan line error. The land use 
map/cropland data layer (CDL) of the study area for 2017, 2018, and 2019 were obtained from the 
USDA National Agriculture Statistical Service (NASS). The CDL is a georeferenced raster layer 
created using moderate resolution satellite imagery and extensive agricultural ground truth. METRIC 
optionally uses a land-use map to improve the parameterization and estimation of the roughness 
length for momentum transfer [19,20]. Roughness length for momentum transfer is the height above 
the plant canopy at which windspeed extrapolates to zero because of form drag of air as well as skin 
layer friction in between air molecules and surface terrain. The CDL layers were also used to extract 
water use information of different vegetative surfaces for different irrigation districts in the study 
regions. Irrigation district boundaries shapefiles were collected from the Wyoming Water Resources 
Data System (WRDS) and State Climate Office (SCO). The digital elevation model (DEM) provides 
data on the relief of the earth’s surface in the form of points of elevation. METRIC requires DEM in 
mountainous terrain where parameters like temperature, pressure, and solar elevation angle vary by 
slope and aspect. These data were acquired from USDA geospatial data gateway with spatial 
resolution same as that of Landsat image. 

ERDAS imagine (Leica Geosystems Geospatial Imaging, LLC, Englewood, CO, USA) graphical 
model maker tool was used for geospatial processing of Landsat images. Firstly, the digital numbers 
(DN) of the images were converted to top of atmosphere radiance and reflectance values using the 
procedure outline in Landsat 7 and 8 data users’ handbook. Normalized difference vegetation index 
(NDVI) and soil adjusted vegetation index (SAVI) were computed using reflectance from red and 
near-infrared bands [45,46]. Leaf area index (LAI) was computed using the empirical equation 
provided by Bastiaanssen [15], which utilizes SAVI value. Likewise, the solar incidence angle was 
computed for each pixel of the image using Duffie and Beckman [47] model that considers slope and 
aspect for each pixel. The slope and aspect of each pixel were computed using DEM. Surface albedo 
was calculated by integrating the at-surface band reflectance using weighting coefficients [48–50]. 
Surface temperature (Ts) was computed using a modified Planck equation with atmospheric and 
surface emissivity correction [20]. A neutral-stability-condition atmosphere lapse rate at 6.5 K km−1 
in flat terrain and 10 K km−1 in mountainous terrain was considered while calculating DEM corrected 
Surface temperature (Ts-dem). Likewise, lapse rate change of 2000 m was considered keeping in mind 
the elevation data of the study area. Moreover, momentum roughness (Zom), wind speed, and 
atmospheric pressure were adjusted as mentioned by Allen et al. [20] for use in the mountain model 
of METRIC.  

2.3. METRIC Model 

METRIC utilizes multispectral raster images to estimate the energy balance at each pixel of an 
image and is primarily based upon the principle of energy conservation, i.e., energy arriving at the 
surface must equal the energy leaving the surface for the same period. 

Rn = LE + G + H 

 

(2) 

where net radiation (Rn) is the total energy available at the earth surface, soil heat flux (G) is the rate 
of conductive heat exchange between soil and vegetation, sensible heat flux (H) is the rate of 
convective and conductive heat exchange between plant canopy and the surrounding air due to 
temperature difference, and Latent heat (LE) is the instantaneous residual energy available for 
evapotranspiration which is computed by subtracting G and H from Rn. Figure 3 shows the flowchart 
of energy balance components and other intermediate parameters estimation by METRIC. 
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2.3.1. Net Radiation (Rn) 

Rn is calculated by subtracting incoming and outgoing radiant fluxes at the top-of-the-
atmosphere as: 

Rn = Rs↓ − αRs↓ + RL↓ − RL↑ − (1 − εo) RL↓ (3) 

where Rs↓ is the incoming shortwave radiation (W m−2), RL↓ is the incoming longwave radiation (W 
m−2), RL↑ is the emitted outgoing longwave radiation (W m−2), α is surface albedo (dimensionless) 
and εo is the surface thermal emissivity (dimensionless). The term ((1 − εo) RL↓) in Equation (3) 
represents a fraction of incoming longwave radiation that is reflected from the earth’s surface. These 
intermediate parameters of long and short-wave radiation are computed as per Allen et al. [20] and 
are a function of satellite images, albedo, atmospheric transmissivity, DEM, ground-based weather 
data, and satellite estimated surface temperature. Surface emissivity (εo) was computed using LAI in 
an empirical equation formulated by Tasumi [51]. 

 

Figure 3. Flowchart illustrating the computation of surface energy balance fluxes using METRIC 
algorithm. 

2.3.2. Soil Heat Flux (G) 

G was empirically calculated as a G/Rn fraction using vegetation indices and surface temperature 
[51]. 

G
Rn

 = 0.05 + 0.18 × e−0.521LAI (LAI ≥ 0.5) (4) 

G
Rn

 = 1.80 × ( Ts – 273.15)
Rn

+ 0.084 (LAI < 0.5)  (5) 

where Ts is the surface temperature in Kelvin and LAI (dimensionless) is the leaf area index. 

2.3.3. Sensible Heat Flux (H) 

H is a function of aerodynamic observations such as u2, vegetation type and roughness, and 
surface to air temperature differences (Ts − Ta) . H is determined using an one-dimensional 
aerodynamic function within METRIC [15,20] as: 

H = ρ × Cp × dT
rah

=  ρ × Cp × (Ts − Ta)
rah

 (6) 
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where ρ is the air density (kg m−3), Cp is the specific heat of the air (1004 J kg−1 K−1), dT is the near-
surface air temperature difference (Ts − Ta)  between two reference heights Z1 and Z2, Ts  is the 
surface temperature (K), Ta is the air temperature (K), and rah is the aerodynamic resistance to heat 
transfer (s m−1) over the vertical distance. METRIC utilizes the internal calibration procedure at 
extreme conditions following surface energy balance algorithms for land (SEBAL) to estimate the dT 
function. The radiometric temperature available in Landsat thermal band is generally different from 
the aerodynamic temperature of the surface because of the difference in thermal sensor view angle, 
land use type and cover fraction, and the surface roughness length of heat and momentum [19]. 
Therefore, to compensate for uncertainties in the estimation of Ts from satellite, dT function is 
established for two extreme conditions present in the image viz: cold and hot anchor pixels and is 
estimated assuming a linear relationship between dT and Ts-dem [15,19,20,24]. 

dT = b + aTs-dem (7) 

where Ts-dem is DEM adjusted surface temperature (Ts), a is the slope, and b is the intercept of the plot 
between dT and Ts-dem for a given satellite image.  

Generally, a cold pixel is a well-irrigated field with full crop cover transpiring at potential 
evapotranspiration rate and a dry pixel is a dry field with approximately zero ETc. Hot and cold 
pixels are the evaporative extremes of the Landsat scene being analyzed and selection of these 
extreme pixels is extremely important in the METRIC processing. Therefore, to select the appropriate 
hot and cold anchor pixels, the maps of NDVI, surface albedo, LAI, Ts, land use, and maps of the 
image in true and false colors were taken into consideration. 

Figure 4 provides a general overview of the hot and cold pixel selection procedure in the study. Cold 
pixel candidates were selected from the well-irrigated densely vegetated area with NDVI between 0.76 
and 0.84, mid season LAI greater than 3 or 4 m2 m−2, surface albedo between 0.18 to 0.24, and a lower 
surface temperature. Similarly, the hot pixel candidates were selected from the bare agricultural field with 
NDVI less than 0.20, surface albedo between 0.17 to 0.23, and relatively higher surface temperature. Final 
selection of the anchor hot and cold pixel for each image was made using the candidate pixels already 
selected. Tasumi [51] and Tasumi et al. [52] estimated cold pixels to have ETc rates of about 1.05 times the 
reference evapotranspiration of alfalfa crop (ETr) except during early and late growing season. To account 
for any residual evaporation and wetting events before image acquisition, METRIC approximates LE at 
the hot pixel to be 0.1 [20]. A bare soil evaporation model on a daily time step was used to adjust LEhot-pixel 
h.igher than 0.1 in situations with residual soil evaporation from antecedent rainfall. Moreover, the cold 
and hot pixels were selected within a 20–25 km radius of the meteorological station to counter 
heterogeneity in weather variables over the Landsat image. 

 

Figure 4. A plot of Surface temperature vs (a) NDVI, (b) LAI, and (c) albedo to depict the hot and cold 
pixel selection procedure. 
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Sensible heat is estimated for both the selected hot and cold pixel using the energy balance 
equation in respective pixels.  

Hhot = (Rn − G)hot − LEhot (8) 
Hcold = (Rn − G)cold − 1.05 × λ × ETr (9) 

where λ in Hcold computation refers to latent heat of vaporization (JKg−1). The temperature gradient 
(dT) is computed for both cold and hot pixels before the final H is calculated. 

At cold pixel, dTcold = Hcold × rah−cold
ρcold × Cp

 (10) 

At hot pixel, dThot = Hhot × rah−hot
ρhot × Cp

 (11) 

The aerodynamic resistance to the transfer of the heat from the evaporating surface to the air 
above the canopy is calculated as given by Bastiaanssen et al. [15]. 

rah = 1
k × u∗

 ln (Z2
Z1

) (12) 

where z1 and z2 are lower and upper reference heights (m) above zero plane displacement (d) of the 
vegetation and are assigned to be 0.1 m and 2 m respectively [15]. u∗ is the friction velocity (m s−1) 
computed during the first iteration of H and k is the Von Karman’s constant (0.41). The u∗ at the first 
iteration, is defined by the relation: 

u∗ = K × U200
ln ( 200Zom

)
 (13) 

where U200 is the wind speed at the blending height (200 m) above the weather station, zom (m) is the 
momentum roughness length calculated using a land-use map for each image pixel. zom is calculated 
as a function of LAI [51]. 

zom = 0.018 × LAI (14) 

The sensible heat flux (H) is then calculated for each pixel using Equation (6). However, this 
event is the first estimation of H and is calculated assuming neutral atmospheric conditions. To 
counter unstable atmospheric conditions, H is computed through the number of iterations until rah is 
stabilized. At each iteration, values for dTcold, dThot, air temperature, air density, rah, U*, and H is 
corrected and is continued until successive values for dThot and rah at the hot pixel have stabilized. 
Usually, stability is achieved after 4–5 iterations. The Monin–Obukhov length (L) is used to stabilize 
the atmosphere (boundary layer) where turbulence is generated by the buoyancy effect of surface 
heating. The value of L is zero for neutral, positive for stable, and negative for unstable atmospheric 
conditions. 

L = ρ ×Cp× u∗3× Ts
K×g×H

 (15) 

where g is the gravitational constant (9.8 ms−2) 

2.3.4. Estimation of Instantaneous, Daily, Monthly and Seasonal Crop Evapotranspiration (ETc) 

Instantaneous ET (ETinst) at the time of Landsat overpass is computed as residual of the surface 
energy balance by subtracting instantaneous G and H are from Rn as: 

ETinst = 3600 × (Rn−G−H)
λ × ρw

 (16) 

where ρw  is the density of water (~1000 kgm−3). METRIC utilizes reference ET fraction (ETrF) value 
to compute daily and periodic ETc [20]. ETrF (dimensionless) is calculated for each pixel as a ratio of 
ETinst to the reference ET values at the time of image acquisition. 

ETrF = ETinst
ETr

 (17) 



Remote Sens. 2020, 12, 4019 12 of 30 

 

where ETr is the alfalfa reference evapotranspiration calculated using the standardized ASCE 
Penman–Monteith equation [53] on an hourly basis. It is assumed that ETrF (equivalent to crop 
coefficient) values remain constant throughout the day and the use of it minimizes the impact of 
advective heat on ETc [54]. The daily evapotranspiration (ET24) rate (mm d−1) for each image pixel is 
then computed as: 

ET24 = ETrF × ETr-24 (18) 

where ETr-24 is 24-h ETr and is calculated by summing hourly ETr values over the day of image. To 
estimate periodic ETc values, both linear and cubic spline methods of interpolation were employed. 
Linear interpolation [55] was done by interpolating ETrF between successive image dates. The 
interpolated values were then multiplied by ETr-24 to obtain ET24, which is then summed up on 
monthly and seasonal baisis. On the other hand, cubic spline [19] is reported to get a smooth and 
curvilinear bend as of the typical crop coefficient curve of annual crops [56]. Rather than taking all 
the data points at once to fit one polynomial, spline interpolation fits a polynomial function between 
two adjacent data points. For example, 4 images (data points) will have three polynomials fitted in 
between. A third-degree polynomial (cubic polynomial) is used to get a smooth fit between each 
spline. Thus, cubic spline interpolation requires two images on either side of the month and at least 
one ETrF image per month in a growing season. As such, it requires at least 5 images to interpolate 
for a month. Likewise, synthetic points (ETrFsynthetic) were computed for the beginning and end of the 
growing season (ETc is dominated by evaporation) to be able to start and end the interpolation. Daily 
actual evaporation (Ea), estimated using the soil water balance method [10], and ETr were used to 
calculate the synthetic points. 

ETrFsynthetic = � �Ea
ETr
�

last day of summation

1st day of summation
 (19) 

ETmonth = � �(ETrFi) × (ETr24i)�
last day of month
1st day of month  (20) 

where ETmonth (mm) is the monthly cumulative ETc from day 1st to last day of the month, ETrFi is the 
interpolated ETrF for a month and ETr24i is the 24-h ETr for a month. Seasonal estimates of ETc were 
then obtained by summing up the monthly ETc values. The METRIC estimated instantaneous and 
periodic fluxes were compared with BREBS measured fluxes. Root mean square error (RMSE) and 
Nash–Sutcliffe’s efficiency (NSE) were used as the main criterion to judge the accuracy and reliability 
of the METRIC model for estimating ETc and other surface energy fluxes. 

RMSE =  �∑ (O−P)2n
i=1

n
  (21) 

NSE = 1 − ( 
∑ (O − P)2n
i=1

∑ (O − Omean)2n
i=1

) (22) 

where O and P is the observed and METRIC predicted surface energy balance fluxes, Omean is the 
mean of observed energy balance fluxes, and n is the number of observations.  

3. Result and Discussions 

3.1. Weather Conditions 

Figure 5 represents daily and cumulative P and ETr during 2017, 2018, and 2019 growing seasons 
(May to September). Substantial variations were observed in weather variables during each of the 
three years. Compared to long-term average values, 2017 had below normal precipitation and higher 
ETr. A total of 32 and 30 precipitation events occurred in 2017 and 2018, respectively, compared to 56 
events in 2019. The total seasonal P of 94 mm, 128 mm, and 20817 mm was observed in 2017 , 2018, 
and 2019, respectively. Likewise, September 2017 (40 mm), June 2018 (48 mm), and May 2019 (58 mm) 
were the months receiving highest cumulative precipitation in their respective years. Greater 
evaporative demand existed in 2017 and 2018 compared to 2019. The ETr ranged from 0.84 to 10.01 
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mmd−1, 1.23 to 9.94 mmd−1, and 0.70 to 8.9 mmd−1, with an average of 5.7 mmd−1, 5.4 mmd−1, and 5.2 
mmd−1 for 2017, 2018, and 2019, respectively. Cumulative ETr was highest in 2017 (883 mm) followed 
by 2018 (820 mm), and 2019 (794 mm) growing season. The month of July observed highest ETr (224 
mm in 2017, 196 mm in 2018, and 198 mm in 2019) in each of the growing season. Likewise, the month 
of May witnessed some days with relatively higher ETr (Figure 5b).  

 

Figure 5. Daily and cumulative seasonal (May to September) (a) precipitation (P) and (b) reference 
evapotranspiration (ETr) during 2017, 2018, and 2019 at Powell Research and Extension Center, 
Powell, WY. 

3.2. Comparison of METRIC Estimated and Measured Surface Energy Balance Fluxes 

Several uncertainties may be associated with the satellite retrievals of energy balance systems 
including sensor pixel scale, sensor accuracy, etc. Thus, a comparison of satellite retrievals with 
ground-based measurements becomes inevitable to garner confidence on the final output being 
accurately estimated. Figure 6 reflects the evaluation of estimated vs. measured instantaneous surface 
energy balance fluxes at the BREBS flux tower footprint in Powell Research and Extension Center, 
Powell, WY. The BREBS values were retrieved at satellite overpass time (11:00 A.M. MST) to compare 
with corresponding METRIC determined energy balance components. A total of five different data 
points from the 2017 growing season (July–September), nine different data points from the 2018 
growing season (May–October), and five different data points from the 2019 growing season (June–
September) along with the pooled data from all the growing seasons were used in the analyses. 
Similarly, Table 2 provides a statistical comparison between METRIC estimated and BREBS 
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measured energy balance components. The R2, RMSE, and NSE were used to assess the error 
associated with each component. The following section discusses the comparison of METRIC 
estimated instantaneous energy balance fluxes (Rn, G, H, and ETc) of the pixel corresponding to the 
geographic location of the BREBS towers. 

3.2.1. Instantaneous ETc (ETinst) 

Figure 6a indicates a good correlation between METRIC estimated and BREBS measured ETinst 
with R2 values ranging between 0.21 to 0.95 and slopes between 0.2 to 1.13. For pooled data points, 
the linear regression model explains 91% of all the variance in the estimated ETinst values. The slope 
of the regression coefficient of pooled data (0.91) close to unity (p-value < 0.05) indicates a strong fit 
and low systematic error between modeled and measured ETinst. The average ETinst for all data points 
over three vegetative surfaces was 0.52 mm h−1 (355 W m−2) as compared to the BREBS measurement 
of 0.49 mm h−1 (336 W m−2), with pooled RMSE of 0.08 mm h−1 and NSE of  0.90. Table 2 represents a 
comparison of METRIC estimate ETinst with BREBS measurement for individual surfaces. Overall, a 
good correlation was observed between measured and estimated ETc for all three vegetative surfaces, 
with R2 ranging from 0.21 for sugar beet in 2017 to 0.95 for dry bean in 2018. A relatively lower R2 
(0.21), slope (0.20) and NSE (0.21) for 2017 ETinst indicate low performance of the model (Table 2). The 
regression analysis showed that the correlation is not significant and slope of the regression line was 
significantly different from unity (p-value > 0.05). The BREBS tower was installed on June 2017 which 
resulted only handful of images (5) in mid to late growing season for analysis in 2017. This resulted 
in a skewness of data and errors in one direction causing lower NSE, R2, and slope values. On the 
other hand, 2018 and 2019 had images spread across the growing season. A comparison of the 
individual vegetation surfaces revealed that the METRIC model overestimated ETinst by 1.4%, 15.8%, 
and 0.4% for 2017, 2018, and 2019, respectively, as compared to BREBS measurements (Table 2). 
Higher overestimation in 2018 is due to the fact that three out of the nine images were analyzed before 
planting and after harvest when only crop residue was available at the surface. For example, the 
combined overestimation of 41% was observed for the three images when only crop residue was 
available at the surface compared to 9.8% when the image was analyzed within the growing season. 
Variation in crop residue at the surface can alter the surface temperature which may result in more 
variation in ETc available at the surface [13,57]. A similar improvement in results was reported by 
Allen et al. [19]. They compared METRIC estimated ETc with lysimeter measured ETc using eight 
Landsat images acquired from April to September and reported 30% averaged absolute differences 
for sugar beet crop (R2 = 0.82). When they omitted one image date of drying bare soil following P, the 
average absolute difference was only 14%. The maximum difference in ETinst of 0.13 mm h−1 was 
observed in 2019 on July 21, which could attribute to the continuous P events from July 14 to July 17 
which resulted in increased soil surface moisture and decreased surface temperature, thus resulting 
in higher bias from the measured data [58]. 

3.2.2. Net Radiation (Rn) 

METRIC estimated Rn had an R2 value of 0.83 to 0.96 and a slope of 0.62 to 0.97 when compared 
with corresponding BREBS fluxes (Figure 6b). The average METRIC estimated Rn for the pooled 
dataset was 507 W m−2 (SD = 88 W m−2) compared to BREBS measured Rn of 537 W m−2 (SD = 67 W 
m−2). The RMSE value for Rn was found to be ranging from 36.2 to 55.3 W m−2 and NSE between 0.70 
to 0.95 (Table 2). Pooled data points had R2 of 0.81, slope of 0.68, RMSE value of 49.6 W m−2, and NSE 
of 0.67 (Figure 6b). Table 2 indicates the average Rn to be overestimated by 10.5%, 3%, 6.5%, and 5.8% 
for 2017, 2018, 2019, and pooled data points, respectively. Similar observations were made by Singh 
et al. [35], who used METRIC model in conjunction with wet-METRIC (a modified version of 
METRIC) model for analyzing Landsat images in the three sites of Mid-western United States. They 
reported model-estimated net radiation (Rn) to be within −12%, −11.4%, and −6.3% of the eddy 
covariance measurement for three different study sites with R2 of 0.95. Rn is a very complex variable 
and varies with the complexity of the underlying surface heterogeneity. For example, a 
heterogeneous surface influences the surface radiation properties, e.g., surface albedo and emissivity, 
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and thereby impacts the fraction of photosynthetically active radiation absorbed crop transpiration 
rate and surface energy budgets. For example, as observed from Figure 6b, the maximum variation 
in Rn was observed on September 12 and October 22, 2018, when only crop residue was available at 
the surface. Horton et al. [57] reported that crop residue that alters surface evaporation and soil 
moisture content can affect both the shortwave albedo and longwave emissivity, and hence Rn. 

 

Figure 6. METRIC—estimated and BREBS—measured instantaneous surface energy balance fluxes 
(a) crop evapotranspiration (ETc), (b) net radiation (Rn), (c) sensible heat (H), and (d) soil heat (G) for 
2017, 2018, and 2019 growing season as well as a combined pooled data at the BREBS flux-tower 
footprint located in Powell Research and Extension Center, Powell, WY. 

3.2.3. Sensible Heat Flux (H) 

Figure 6c and Table 2 represent the comparison of METRIC derived H with BREBS measured H 
along with statistical analysis. Overall good correlation was observed between METRIC estimated H 
and BREBS measured instantaneous H values with R2 between 0.21 to 0.9 while the value for slope 
was between 0.19 to 0.75 (Figure 6c). When pooled data were taken into consideration, R2 value was 
0.86 with a slope of 0.71. Lower RMSE value was observed in 2018 (46.8 W m−2) as compared to 2017 
(72.5 W m−2) and 2019 (64 W m−2) image dates (Table 2). However, when pooled data points were 
considered, the average METRIC estimated H was 121 W m−2 which is 12.6% higher than field 
measurements (average H = 107 W m−2) with RMSE 59.2 W m−2 and NSE of 0.82 (Table 2). A negative 
NSE during 2017 (−0.15) and 2019 (−0.87) indicates the model had less predictive skill during those 
periods. The partitioning of available energy (Rn-G) to LE for each satellite date revealed some image 
dates where advection is prominent (LE/(Rn-G) > 1) (data not shown). For example, negative values 
of Hwere observed for both METRIC estimated H and BREBS H, especially in 2017 on July 15, July 
31, September 01, and September 09 (Figure 6c). This indicates the movement of energy from the air 
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to the plant canopy and additional energy being used by the crop to meet the high ET demand on 
that day. This may be due to the already harvested barley field surrounding the BREBS sugar beet 
field that acted as a source for advective heat. In addition, natural vegetation covers about 83% of our 
study area surrounding the cropland which also acted as a source of advective heat. However, 
compared to 2017, in 2018 and 2019, the ratio of LE/(Rn-G) was observed to be less than 1 on most 
image dates; this may be due to higher P and lower Tair in 2018 and 2019, where the average P was 19 
mm and 81 mm higher than 2017 and average Tair was 0.50 °C and 0.74 °C lower than 2017, which 
reduce the effect of advective heat from surrounding areas. On average, H was better estimated 
during 2018 image dates where average METRIC estimated H differed from BREBS H by −9.1% as 
compared to 2017 (−86.4%) and 2019 (50.8%) image dates (Table 2). Poor estimation of H in 2017 and 
2019 can be associated with the irrigation and P events that occurred before Landsat overpass time. 
This created difficulty in choosing a suitable hot pixel candidate having LE approximately zero 
[35,59]. Similar observations were made by Singh et al. [35] who reported estimated and measured 
sensible heat had predictive error and R2 value of 48.3% (R2 = 0.73), 15.2% (R2 = 0.71), and −2.4% (R2 = 
0.03) for three different sites in the Mid-western United States. Kilic et al. [60] reported RMSE of 46.5 
W m−2 and 31.5 W m−2 in H during the 2005 and 2006 growing seasons in Southeast Nebraska, similar 
to the RSME in this study in 2017.  

3.2.4. Soil Heat Flux (G) 

G is one of the key components in the surface energy budget used to estimate the available 
energy to be partitioned into H and LE. A moderate correlation was observed between METRIC 
estimated G and BREBS measured G with R2 in between 0.23 to 0.72 and slope in between 0.24 to 0.46 
(Figure 6d). Pooled G data points had R2 of 0.53 and a slope of 0.5 (Figure 6d). METRIC estimated 
average G differed by 23.9%, 0.75%, −16.1%, and −0.8% for 2017, 2018, 2019, and pooled data, 
respectively, when compared with BREBS fluxes (Table 2). The RMSE value for the growing seasons 
ranged between 15.7 to 30.8 W m−2 while pooled data points had RMSE of 27.1 W m−2 (Table 2). 
Likewise, NSE value for the growing seasons considered ranged between 0.1 to 0.46 while pooled 
data points had NSE of 0.53 (Table 2). In general, G is a relatively small component in energy balance, 
and its estimation via model is usually difficult because of changes occurring in soil properties such 
as in conductivity, temperature, and heat capacity with a change in moisture and vegetation of soil. 
Singh et al. [35], in their study in mid-west USA, reported estimated and measured soil heat flux (G) 
differing by 16.5%, −6.6%, and −30.3% for three different sites. The same study showed a low R2 value 
of 0.03, 0.36, and 0.33 for soil heat flux. Similar results were found by Irmak et al. [61], who reported 
a higher RMSD of 48.6 W m−2 in 2005 on irrigated continuous maize at three sites near Mead, 
Nebraska. They used a different remote sensing model to predict G at the Mead and Clay Center 
locations, and the reported difference in G ranged from 36.3 to 62.6 W m−2 due to differences in soil 
properties, measurement of G (sensor depth and distance between sensors), and surface conditions 
at the different locations. 

It is important to note that there are many sources of uncertainties associated with the 
comparison of BREBS measured and modeled fluxes including model algorithm (model 
assumptions), tower observations (systematic and unsystematic bias), scaling issues (flux footprint), 
and management practices. For example, BREBS assumes the eddy diffusivities of heat and water 
vapor to be equal. Studies [62,63] have revealed that these diffusitives may not be equal in some cases 
resulting a force closure of surface energy budget. Likewise, Barr et al. [62] reported that BREBS 
favoured prediction of LE as compared to H. The potential effect of condensation in the surface 
energy balance fluxes is small and has not been considered in this research. Condensation is more 
pronounced during the night time when RH is at 91–99% and the leaves are cooler than the 
surrounding air and approaches dew point temperature [64]. Careful analysis of average hourly RH 
data from BREBS indicated RH barely goes above 90% in the actice growing season where most of 
the staelite images were collected (data not shown). A similar oberevation was made by Sharma [65] 
in the semi-arid grass land region of New South Wales, Australia where it was reported that dew fall 
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amounted to 8.7% of ETc in winter, 4.7% of ETc in autumn, 1.6% of ETc in spring season, and as low 
as 1% of actual or pan evaporation in warmer months.  

Table 2. Statistical comparison between METRIC estimated and BREBS measured crop 
evapotranspiration (ETc, mm h−1), net radiation (Rn, Wm−2), soil heat (G, Wm−2), and sensible heat (H, 
Wm−2) for 2017, 2018, 2019, and pooled data from all the growing seasons (N = number of data points, 
R2 = coefficient of determination, SD = standard deviation, S = slope, RMSE = root mean square error, 
NSE = Nash-Sutcliffe’s efficiency). 

Flux Year Surface N R2 
Avg. 

BREBS  
Avg. 

METRIC  
SD 

BREBS 
SD 

METRIC 
S RMSE NSE 

ETc 

2017 Sugarbeet 5 0.21 0.75 0.76 0.11 0.05 0.20 0.09 0.20 
2018 Dry Bean 9 0.95 * 0.33 0.38 0.23 0.23 0.99 * 0.07 0.89 
2019 Barley 5 0.80 * 0.54 0.54 0.15 0.18 1.1 * 0.08 0.67 

Pooled  19 0.91 * 0.49 0.52 0.25 0.24 0.91 * 0.08 0.90 

Rn 

2017 Sugarbeet 5 0.94 * 492.8 544.3 58.8 40 0.66 * 55.3 0.95 
2018 Dry Bean 9 0.83 * 506.9 522 113.2 77.9 0.62 * 52.7 0.76 
2019 Barley 5 0.96 * 520.5 554.5 74.7 73.8 0.97 * 36.2 0.70 

Pooled  19 0.81 * 506.8 536.4 88.4 66.9 0.68 * 49.6 0.67 

G 

2017 Sugarbeet 5 0.72 32.2 39.9 23.4 11 0.4 15.7 0.44 
2018 Dry Bean 9 0.46 * 78.3 78.8 44.2 29.9 0.46 * 30.8 0.46 
2019 Barley 5 0.23 66.5 55.8 34.3 17.6 0.24 29.1 0.1 

Pooled  19 0.53 * 63.04 62.5 40.5 28 0.50 27.1 0.53 

H 

2017 Sugarbeet 5 0.21 −46.9 −6.4 75.4 30.5 0.19 72.5 −0.15 
2018 Dry Bean 9 0.90 * 205.1 186.4 127.9 102 0.75 46.8 0.85 
2019 Barley 5 0.24 87.6 132 52.3 50 0.47 64 −0.87 

Pooled  19 0.86 * 107.8 121.4 143.7 109.9 0.71 * 59.2 0.82 

* The correlation between measured and estimated flux is significant and slope of the regression line 
was significantly different from zero (p = 0.05). 

3.3. Comparison of METRIC Estimated and BREBS Measured Monthly ETc 

METRIC estimated monthly ETc values during 2017 (3 data points), 2018 (6 data points), and 
2019 (4 data points) growing seasons were obtained employing linear and cubic spline interpolation 
method. Cubic spline interpolation observed a better correlation between estimated and measured 
monthly values with high R2 ranging from 0.82 to 0.9, slope between 0.83 to 1.32, and RMSE in 
between 16.8 to 20.8 mm (Figure 7b). On the other hand, linear interpolation had moderate R2 in 
between 0.7 to 0.85, slope between 0.68 to 1.1, and RMSE in between 17 to 28.5 mm (Figure 7a). Pooled 
data (13 data points) for cubic spline had R2 and slope at 0.9 and RMSE at 18.2 mm, whereas for linear 
interpolation the values were at 0.84, 0.85 and 23.6 mm for R2, slope and RMSE respectively (Figure 
7a,b). Cubic spline interpolation underestimated seasonal ETc by 6%, 5.4%, and 3.2%, while linear 
interpolation underestimated seasonal ETc by 4%, 12%, and 2% during 2017, 2018, and 2019 growing 
seasons (Table 3). The biggest discrepancy between measured and estimated monthly ETc values was 
observed during times when the BREBS flux tower footprint was devoid of any crops or the crops at 
footprint were not actively transpiring (Table 3). During the 2018 growing season, METRIC 
estimation of monthly ETc values ranged between −49% (underestimation) in June (dry bean at BREBS 
footprint planted on June 05) to 75% (overestimation) in October (dry bean at BREBS footprint 
harvested on September 10) (Table 3). Allen et al. [19], in a study regarding sugar beet, observed 
estimated periodic ETc differing by −28% on July 7th to 107% on May 4th as compared to lysimeter 
measured ETc. However, this difference in data decreased to less than 1% when cumulative ETc values 
for the growing season were compared. Similarly, Allen et al. [19], considering an irrigated meadow, 
observed METRIC estimated monthly ETc to be ±16% of the lysimeter measurement. However, in the 
same study, the difference was reduced to 4% when METRIC estimated and lysimeter measured 
growing season ETc (July to October) was considered. This decrease in the difference between 
estimated and measured growing season ETc values can be linked with the error associated being 
randomly distributed (monthly ETc values being both over and underestimated) tending to cancel 
while computing a cumulative growing season value [19]. However, both interpolation methods 
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performed well, with cubic interpolation performing slightly better than linear interpolation, owing 
to its lower and consistent RMSE and % error. Therefore, in this study, cubic interpolation estimated 
ETc values were used to quantify and map the seasonal ETc and for other analysis. Further 
quantification and mapping of periodic ETc in this study was done using cubic spline interpolated images. 

  Figure 7. Comparison of METRIC estimated and BREBS station measured monthly ETc (mm) during 
2017, 2018, 2019, and pooled data from all the growing seasons. (a) Linear Interpolation, (b) Cubic 
spline interpolation. 

Table 3. Statistical comparison between METRIC estimated (via linear and cubic spline interpolation) 
and BREBS derived monthly and seasonal ETc during 2017, 2018, and 2019 growing seasons. 

Year Month Surface BREBS ETc 
METRIC ETc 

(C. Spline) 
METRIC ETc 

(Linear) 
% Error 

(C. Spline) 
% Error 
(Linear) 

2017 Jul Sugarbeet 179 195.1 193.7 9 8.2 
2017 Aug Sugarbeet 184 162 161.7 −12 −12.1 
2017 Sep Sugarbeet 125 101.5 112.5 −18.8 −10 
2017 (Jul–Sep) Sugarbeet 488 459 468 −6 −4 
2018 May Dry bean 47 43 55.4 −8.5 18 
2018 Jun Dry bean 81 50 41.3 −38.3 −49 
2018 Jul Dry bean 137 132 107.7 −3.6 −21.4 
2018 Aug Dry bean 168 151 147 −10.1 −12.5 
2018 Sep Dry bean 87 103 98.1 18.4 12.8 
2018 Oct Dry bean 16 28 21.4 75 33.4 
2018 (May–Oct) Dry bean 536 507 471 −5.4 −12 
2019 June Barley 161.7 137.4 131.3 −15.1 −19 
2019 Jul Barley 187.6 185.1 180.7 −1.3 −3.9 
2019 Aug Barley 68.4 92.3 112.2 34.9 65 
2019 Sep Barley 79.7 66.7 62.8 −16.4 −21 
2019 (Jun–Sep) Barley 497.5 481.5 487 −3.2 −2 

3.4. Mapping Spatio-Temporal Variation of Surface Energy Balance Components 

Satellite images, unlike traditional and conventional methods of measurement, provide an 
excellent means to determine and map the spatial and temporal variation of surface energy balance 
fluxes and vegetative indices. The spatial (space) and temporal (time) variability on a regional scale 
is a function of topography, weather parameters, climate, soil characteristics, land-use type, and 
management practices.  
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3.4.1. Spatio-Temporal Variation of Net Radiation (Rn), Sensible Heat (H), and Soil Heat (G) Flux 

Figure 8 depicts the early, mid, and late-season Spatio-temporal variability of Rn, H, and G for 
2018 crop growing season. In general, the intensity of Rs and thus the Rn increases gradually after the 
March equinox and starts decreasing when the September equinox is reached [66]. A similar pattern 
is observed in our case where a higher Rn value is observed from May to August. Clouded parts in 
the images over estimates Rn value as evidenced in the June 08 image where the Rn climbed up to 
980 W m−2. As more and more energy gets partitioned into ETc, the H value decreases (occasionally 
negative) as the growing season moves forward. Negative sensible heat estimation occurred 
occasionally when the temperature and vapor pressure of surrounding air were higher as compared 
to plant surface temperature and air vapor pressure surrounding the plant, resulting in a flow of heat 
from surrounding air to the plant. Clouded parts in the image can cause a drastic reduction in the 
value of H, obvious in June 08 image in Figure 8f, where the H value hovered around −125 W m−2. 
Similarly, lower soil heat value was estimated for cropland during mid-season because of higher LAI 
and NDVI during this time. High ground cover decreases the conduction of Rn to the soil surface. The 
opposite happens during the early season when crops have less effective ground cover. Similarly, a 
lower soil heat value at the end of the growing season indicated less availability of net radiant energy. 
The overestimation of G value can be apparent in clouded parts of the images. A higher G value 
reaching up to 500 W m−2 is from the open water area of the image. Unlike land surface, G is a larger 
and more important component for water bodies [67]. 

 
Figure 8. Spatio-temporal distribution of METRIC estimated instantaneous net Radiation (Rn, W m−2) 
(a–d), sensible heat (H, W m−2) (e–h) and soil heat (G, W m−2) (i–l) on 15 May 2018, 2 July 2018, 11 
August 2018 and 12 September 2018. The Black circled portion in some images represent the cloud 
coverage. 
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3.4.2. Spatio-Temporal Variation of Evapotranspiration (ETc) 

In METRIC, ETc is estimated as a residual of the surface energy balance fluxes and occurs 
through energy exchange at vegetation surface via H or Rn. In general, ETc is a function of weather 
parameters, crop characteristics, soil properties, and crop cultivation and management practices. 
Figure 9 shows the spatial distribution of daily ETc for Landsat overpasses at scattered times in the 
2017 and 2018 growing seasons. Over the production crop areas, the ETc rate was low during the 
beginning of the crop season and increased as the season moved forward. During the late season, as 
plants approached physiological maturity, the ETc rate declined. On the contrary, higher ETc was 
observed over the natural vegetation early in the season (May and June) and strats decrasing as the 
season progressed. During the early season, evaporation dominates the ETc while as the season 
progresses, transpiration forms the major part of ETc. Most of the variability in ETc was due to the 
diverse cropping systems and agronomic practices across the study area. Clouded parts of the image, 
depending upon the cloud thickness, will experience an overestimated ET values, reaching up to 14.8 
mm (5 June 2017) in this study. 

  

 

Figure 9. Spatio-temporal distribution of METRIC estimated daily Evapotranspiration (ETc, mm d−1) 
during 2017 and 2018 growing season. (a) 4 May 2017, (b) 5 June 2017, (c) 21 June 2017, (d) 15 July 
2017, (e) 31 July 2017, (f) 16 August 2017, (g) 1 September 2017, (h) 9 September 2017, (i) 15 May 2018, 
(j) 8 June 2018, (k) 2 July 2018, (l) 18 July 2018, (m) 26 July 2018, (n) 11 August 2018, (o) 4 September 
2018, and (p) 12 September 2018. The Black circled portion in some images represent the cloud 
coverage. 
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3.5. Mapping Spatio-Temporal Variation of Cumulative Seasonal Evapotranspiration 

Figure 10 reflects the spatio-temporal variation of cumulative seasonal ETc during the 2017 and 
2018 (May–September) growing season periods. The METRIC estimated average growing season ETc 
for cropland was 644 mm and 575 mm for 2017 and 2018, respectively. Similarly, the METRIC 
estimated average growing season ETc for natural vegetation was 311 mm and 275 mm for 2017 and 
2018, respectively. Natural vegetation suffers from water scarcity during the majority of the growing 
season which leads to a lower ETc rate. On the other hand, P is accompanied by frequent irrigation in 
the cropland which causes crops to transpire more. A Higher ETc rate was observed in 2017 because 
of the even distribution of the total P amount (144 mm from March–September) during the growing 
season. On the other hand, the 2018 growing season experienced uneven distribution of total P 
amount (158 mm from March to September) where most of the P was observed during May (49 mm) 
and June (49 mm). A higher cumulative ETc is evident on the conifer forested part (top right and 
bottom left) of the image. Brown patches (a higher ETc estimation as compared to surrounding 
vegetation) seen in the naturally vegetated area are due to cloud masses present in some images. 
However, cloud masking was performed to estimate seasonal ETc for natural vegetation. 
 

 
Figure 10. Spatio-temporal distribution of METRIC estimated seasonal ETc (mm) during (a) 2017 and 
(b) 2018 growing season (May–September). 

3.6. Comparison of METRIC Estimated Mean Monthly Evapotranspiration for Different Land Cover Type 

Monthly ETc is the summation of the amount of water lost from a cropped surface during each 
day of the month. Monthly and seasonal ETc estimates are valuable in determining the irrigation, 
storage, and conveyance capacities of an irrigation system. Figure 11 shows the METRIC estimated 
mean monthly ETc rate for sixteen different land cover type viz. alfalfa, dry bean, sugar beet, barley, 
Maize, Oats, other hay/non-alfalfa, sod/grass seed, spring wheat, fallow/idle crop, barren, open 
water, shrubland, grassland, woody wetlands, and herbaceous wetlands during 2018 growing season 
(May–September). While estimating periodic ETc rate for each landcover type, the clouded part seen 
on some of the images were cropped out. The monthly ETc estimates for crops exhibited a bell-shaped 
ETc curve. This implies monthly ETc rate will be lower during the beginning and end of the growing 
season and higher during mid-season when plants have good canopy cover to transpire at their 
potential rates. Early planting date (starts mid-March) for barley means it reached its peak growth 
during the period from June to July resulting in a higher ETc rate during those months. The monthly 
ETc values from the barley field start decreasing by August as the crop reaches physiological 

(a) (b) 
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maturity. The harvesting of barley starts from early August and can last until Mid-August. Monthly 
ETc values observed from barley fields after harvesting accounts to surface residue ETc and soil 
evaporation. Dry bean, sugar beet, and maize had the highest ETc rate during July and August which 
coincides with the peak growth and flowering stage of these crops. Dry bean fields experienced lower 
monthly ETc values as compared to fields of Maize and sugar beet (Figure 11). Dry bean tends to have 
less dense vegetation and a shorter growing span, resulting in a lower rate of cumulative ETc. Unlike 
dry bean, sugar beet and maize field had considerably higher ETc values until September. Maize and 
sugar beet have fair vegetation cover until September and subsequently senesce prior to harvest in 
October. In Wyoming, alfalfa is grown primarily for hay under irrigation. Alfalfa fields have higher 
ETc values in May as compared to other crops as it is planted by early-August of the previous year 
and is already established by winter. Likewise, alfalfa has a longer growing season, a deep root 
system, and a dense canopy of vegetation that results in higher cumulative seasonal ETc values as 
compared to other crops. Alfalfa is normally harvested 2–3 times a year with the most active 
harvesting period between June to September that results in fluctuation of monthly ETc values during 
this period. As expected, the naturally vegetated areas had lower average monthly ETc values as 
compared to those of crop fields. 

 

Figure 11. METRIC estimated mean monthly crop evapotranspiration (ETc, mm) across the study area 
during the 2018 growing season (May to September) for different land cover types. 

Similarly, Figure 11 indicates open water evaporation (Ewater) to be greater than wetland ET 

(ETwetland) in the study area. Ewater − ETwetland was less during early (May) and late growing season 
(October). However, the difference increased considerably during the mid-season summer and fall 
images (June, July, August, and September). This increase in the difference in mid-season can be 
associated with vegetation senescence (resulting in low ETwetland) in the wetland region. On the other 
hand, water has high specific heat and heat capacity that induces it to absorb and store thermal 
energy. The storage of thermal energy in the water body is greater in summer and fall as more radiant 
energy is available. The greater release of stored heat in summer and fall from open water increases 
the net energy available for evaporation. The Ewater − ETwetland value was much higher for herbaceous 
wetlands (Ewater − ET herbaceous-wetland = 33.7%) as compared to woody wetlands (Ewater − ETwoody-wetland = 
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15%). Stannard et al. [68] used eddy covariance to measure ETwetland rates from two wetland sites and 
BREBS to measure Ewater rate from two open water sites for three years and reported overall Ewater to 
be 20% greater than overall ETwetland. Their study also reported Ewater − ETwetland to have a lower 
difference from late June to early August, while the difference increased during late summer. 

The majority of the study area in this study is under natural vegetation (about 83%). A 
comparison was done to assess METRIC estimated surface energy balance fluxes between cropland 
and natural vegetation (Figure 12). For that, average flux across the study area on five different image 
acquisition dates comprising early (15-May), mid (08-June, 18-July, and 11-August), and late-season 
(12-September) during the 2018 growing season were considered. Natural vegetation had 
comparatively lower Rn values (up to 15% lower) as compared to cropland as the growing season 
progressed. The difference in the net radiation values can be associated with the variation in surface 
albedo value. As the growing season progresses, the bare soil in the naturally vegetated area is dry 
(because of water stress) and has higher albedo values (dry soil albedo was reported to be around 
0.31 by Idso et al. [69]) causing a decline in Rn. However, during the early season, the soil in the 
natural vegetation area is wet (because of possible precipitation and snow cover) with lower albedo 
values (wet soil albedo was reported to be be around 0.14 by Idso et al. [69]) causing the Rn to be 
similar or sometimes greater than that of cropland, as evidenced in May in our study area. Natural 
vegetation can also have lower albedo value due to the effect of shading that might happen in taller 
vegetation like forest and woody wetlands. As compared to cropland, naturally vegetated areas had 
higher H value (up to 94% higher in mid-season). A huge proportion of Rn energy is used up by crops 
in the ETc process, thus lowering the H and G estimates in cropland. Natural vegetation, on the other 
hand, have a lower ETc rate, and the net available energy is partitioned more into H and G. Lower H 
values in cropland during mid-season indicate crops transpiring at a higher rate whereas higher 
sensible heat values for crops at the end and beginning of growing season indicate lowering ETc rate. 
Higher ETc rate in the early season lowered the H value whereas lower ETc rate during the mid-
season resulted in a higher H. Lower H values at the end of the growing season is caused by the 
decline in net available radiant energy [58]. G has a reciprocal relationship with high ground cover 
(shading or insulation effect) and leaf area index and a direct proportional relationship with albedo. 
These factors cause a significant difference between crop land and natural vegetation G. The 
decreasing G value at the end of the growing season in the natural vegetation area reflects less 
availability of Rn energy. During the early season, the ETc rate from the cropland can be similar or in 
some cases less than that of natural vegetation as evidenced during the month of May in this study. 
The precipitation received early in the growing season helps natural vegetation induce new growth 
and thus transpire more. However, as the season progresses, the natural vegetation could suffer from 
water stress, resulting in a lower ETc rate as compared to that of cropland, where P gets accompanied 
by irrigation. 
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Figure 12. Comparison of METRIC estimated surface energy balance fluxes between cropland and 
natural vegetation across the study area during the 2018 growing season. 

3.7. Irrigation District Average Water Consumption 

One of the main objectives of this study is to use satellite estimated ETc to quantify the average 
crop water use and crop water use for different cropping systems for different irrigation districts 
within the study area. Table 4 presents the average ETc, P, and percent of irrigation-based ETc for 
2017 and 2018 crop growing seasons over nine irrigation districts in the study region. For this 
analysis, monthly P values for 2017 and 2018 for each irrigation district were extracted from gridded 
4-km monthly parameter-elevation regression on independent slope model (PRISM) dataset [70] 
obtained from the PRISM Climate Group website. Within the study region, the area of each irrigation 
district varies from 51 Km2 for the Hunt and Godfrey irrigation district to 1284 Km2 for the Greybull 
Valley irrigation district. No significant difference was observed in seasonal crop ETc among the 
irrigation districts, with average ETc (average of two years) ranging from 598 mm in Greybull 
Irrigation District to 689 mm in Heart Mountain irrigation district. The seasonal ETc for 2017 was 
approximately 34 mm greater than 2018, except for the Will Wood irrigation district where greater 
ETc was observed for 2018. This may be due to higher precipitation P and lower Tair in 2018 where 
average precipitation P was 19 mm higher than 2017 and average Tair was 0.50 °C lower than 2017. To 
understand the amount of ET contributed by irrigation, irrigation volumes for each irrigation district 
were calculated by subtracting the average seasonal P from ETc (ETc − P) for each irrigation district, 
assuming other variables such as streamflow and change in soil moisture are negligible. This 
assumption is valid considering the semi-arid to arid intermountain region of Wyoming, where 
seasonal precipitation is generally less than 200 mm. The results indicated that, in 2017, an average 
of 81% (maximum of 83% in Hunt and Godfrey irrigation district and minimum of 79% in Greybull 
irrigation district) and, in 2018, an average of 73% (maximum of 77% and minimum of 69%) of ETc is 
contributed by irrigation only.  

To further understand the dynamics of seasonal ETc from different vegetative surfaces, ETc and 
percent irrigation contribution to ETc for four major crop types within each irrigation district were 
analyzed (refer Supplemental Materials, Tables S1–S9). For both years, higher ETc was observed for 
alfalfa followed by sugar beet, and the lowest ETc was observed for dry bean in all irrigation districts. 
The percent irrigation contribution to ETc (ETc-P) varies from 60% for dry beans in the Heart 
Mountain irrigation district in 2018 to a maximum of 83% for alfalfa in Lovell and Deaver irrigation 
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districts in 2017. This information could be very useful for irrigation district personnel, water 
managers, decision-makers, policymakers, and state and federal water regulatory agencies for 
quantification/re-evaluation of the overall distribution of evaporative losses for a given irrigation 
district relative to available water resources for evaluating various management practices. 

Table 4. Average crop evapotranspiration (ETc), seasonal precipitation (P), and percent of irrigation-
based ETc for 2017 and 2018 crop growing season over nine irrigation districts in the study region. 

 Irrigation 
District 

Year 
Avg. 
ETc 

(mm)  

A 
(Km2) 

Area Wise 
Total ETc 

(Km3) 

P 
(mm) 

Area Wise 
Total P 
(Km3) 

Irrigation 
(ETc-P) 
(Km3) 

% of Irrigation 
Contributing to 

ETc 

1 Cody Canal 
2017 699 157 0.11 158 0.02 0.08 77 
2018 653 157 0.10 204 0.03 0.07 69 

2 Deaver 
2017 666 277 0.18 117 0.03 0.15 82 
2018 610 277 0.17 158 0.04 0.13 74 

3 
Greybull 

Valley 
2017 609 1284 0.78 125 0.16 0.62 79 
2018 587 1284 0.75 162 0.21 0.54 72 

4 
Heart 

Mountain 
2017 713 584 0.42 146 0.09 0.33 80 
2018 665 584 0.39 197 0.11 0.27 70 

5 Hunt & 
Godfrey 

2017 717 51 0.04 124 0.01 0.03 83 
2018 658 51 0.03 177 0.01 0.02 73 

6 Lovell 
2017 678 30 0.02 121 0.00 0.02 82 
2018 658 30 0.02 164 0.00 0.01 75 

7 Shoshone 
2017 620 538 0.33 125 0.07 0.27 80 
2018 606 538 0.33 167 0.09 0.24 72 

8 Sidon 
2017 637 207 0.13 121 0.03 0.11 81 
2018 628 207 0.13 151 0.03 0.10 76 

9 Willwood 
2017 642 196 0.13 124 0.02 0.10 81 
2018 673 196 0.13 153 0.03 0.10 77 

4. Summary and Conclusions 

Estimates of ETc represent a key component of water management in croplands, naturally 
vegetated areas, open water sources, wetlands, and riparian basins. Today, determining short term 
and long term ETc rates to guide water resource-based policy and decision making has become a 
necessity. In the face of population increment and water scarcity around the globe, the importance of 
ETc has grown many folds. A total of 22 cloud-free Landsat 7-ETM+ and Landsat 8–OLI and TIRS 
images were analyzed using a satellite-based energy balance model, namely mapping 
evapotranspiration with internalized calibration (METRIC). The study was carried out for 2017, 2018, 
and 2019 growing season period in the semi-arid to arid intermountain region of Wyoming 
(Path/Row: 37/29). The accuracy check of METRIC estimates was done by comparing estimated 
instantaneous and periodic fluxes with respective Bowen ratio energy balance system (BREBS) 
measured fluxes. The BREBS station was installed on a center pivot irrigation field and had sugar 
beet in 2017, dry beans in 2018, and barley in 2019 growing season. The correlation observed between 
estimated and measured instantaneous energy balance fluxes (pooled data points) had R2 values of 
0.91 (RMSE = 0.08 mm h−1, NSE = 0.91), 0.81 (RMSE = 49.6 W m−2, NSE = 0.67), 0.53 (RMSE = 27.1 W 
m−2, NSE = 0.53), and 0.86 (RMSE = 59.2 W m−2, NSE = 0.84) for ETc, Rn, G, and H respectively. Likewise, 
estimated instantaneous energy balance fluxes (pooled data points considered) differed with BREBS 
fluxes by 5.7%, 5.8%, −0.8%, and 12.6% for ETc, Rn, G, and H, respectively. Cubic spline interpolation 
performed a bit better as compared to linear interpolation, and a comparison of estimated and 
measured monthly ETc values (pooled data) for cubic spline had R2 and slope of 0.9 and RMSE of 18.3 
mm with growing season ETc underestimated in the range between 3.2 to 6.02%. A spatio-temporal 
distribution maps of instantaneous energy balance fluxes and seasonal ETc showed an anticipated 
variation across the study area as the plant growth stage and surface condition changed. In addition, 
mean monthly ETc values estimated across the study area for different land cover types showed a 
substantial variation throughout the growing season as climate and crop growth stages differed. 
Furthermore, it was found that, in the arid to semi-arid intermountain region of Wyoming, the 
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contribution of irrigation varied in the range of 73–81% of the total seasonal ETc in nine irrigation 
districts that fall within the study area. The high relative contribution of irrigation highlights the 
importance of identifying and quantifying ETc for improved management in irrigation system design 
and water allocation. 

In this study, METRIC algorithms performed reasonably well, particularly in estimating 
cumulative ETc for the entire growing season. However, the model performance was poor during the 
early and late growing season when fields had little active leaf area, with METRIC estimated ETc 
values were within 10% of the BREBS measured values. A companion paper to the research compared 
the performance of four surface energy balance models viz. METRIC, SEBAL, SEBS, and S-SEBI in 
estimating the ETc in the intermountain region of Wyoming. The METRIC model can be an important 
tool in quantifying and mapping surface energy balance components especially in places where 
quality hourly weather data are available. Accurate hot and cold pixel selection during sensible heat 
calculation is a defining moment of the METRIC algorithm. A selection error can result in an 
undesired outcome. The selection of hot pixels was an arduous task, especially when P events 
occurred prior to Landsat overpass time, raising the LE value. Similarly, the estimation of negative 
reference ET fraction (ETrF) in some naturally vegetated and deserted areas was observed altering 
ETc estimation for those surfaces. Thus, further research work on securing accurate hot pixels during 
prior P events, controlling wayward estimations during the early and late growing season, and 
minimizing the estimation of negative reference ET fraction in naturally vegetated and deserted areas 
can provide important support for a more accurate estimation of instantaneous and periodic fluxes. 
Furthermore, future research will also focus on multi-sensor data fusion to increase the temporal 
variation and thereby reduce the uncertainties in ETc estimations. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/12/24/4019/s1, Table 
S1: Average seasonal crop evapotranspiration ETc, seasonal precipitation (P), and Irrigation contribution to ETc 
(ETc-P) for four major crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize within Cody Canal Irrigation District 
for 2017 and 2018. Table S2: Average seasonal crop evapotranspiration ETc, seasonal precipitation (P), and 
Irrigation contribution to ETc (ETc-P) for four major crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize within 
Deaver Irrigation District for 2017 and 2018. Table S3: Average seasonal crop evapotranspiration ETc, seasonal 
precipitation (P), and Irrigation contribution to ETc (ETc-P) for four major crops i.e., Sugar beet, Dry bean, Alfalfa, 
and Maize within Greybull Valley Irrigation District for 2017 and 2018. Table S4: Average seasonal crop 
evapotranspiration ETc, seasonal precipitation (P), and Irrigation contribution to ETc (ETc-P) for our major crops 
i.e., Sugar beet, Dry bean, Alfalfa, and Maize within Heart Mountain Irrigation District for 2017 and 2018. Table 
S5: Average seasonal crop evapotranspiration ETc, seasonal precipitation (P), and Irrigation contribution to ETc 
(ETc-P) for four major crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize within Hunt & Godfrey Irrigation 
District for 2017 and 2018. Table S6: Average seasonal crop evapotranspiration ETc, seasonal precipitation (P), 
and Irrigation contribution to ETc (ETc-P) for four major crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize 
within Lovell Irrigation District for 2017 and 2018. Table S7: Average seasonal crop evapotranspiration ETc, 
seasonal precipitation (P), and Irrigation contribution to ETc (ETc-P) for four major crops i.e., Sugar beet, Dry 
bean, Alfalfa, and Maize within Shoshone Irrigation District for 2017 and 2018. Table S8: Average seasonal crop 
evapotranspiration ETc, seasonal precipitation (P), and Irrigation contribution to ETc (ETc-P) for four major crops 
i.e., Sugar beet, Dry bean, Alfalfa, and Maize within Sidon Irrigation District for 2017 and 2018. Table S9: Average 
seasonal crop evapotranspiration ETc, seasonal precipitation (P), and Irrigation contribution to ETc (ETc-P) for 
four major crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize within Will Wood Irrigation District for 2017 and 
2018. 
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