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Abstract: Crop evapotranspiration (ETc) estimates, on a regional scale, hold enormous potential in
managing surface and groundwater resources. This is particularly important for the headwater state
of Wyoming, which provides water to found major river basins of the US. In this study, METRIC
(Mapping evapotranspiration at high resolution with internalized calibration), a satellite-based
image processing model, was used to map and quantify daily, monthly, and seasonal ETc and other
energy balance fluxes, i.e., net radiation (Rn), sensible heat (H), and soil heat flux (G) dynamics for
different land-use classes. Monthly and seasonal ETc estimated were further used to approximate
regional water consumption patterns for different land-use types for nine irrigation districts in
semi-arid to arid intermountain region of Big Horn Basin (BHB), Wyoming. The validation of METRIC
retrievals against Bowen ratio energy balance system (BREBS) fluxes measured over three vegetative
surfaces, viz. sugar beet in 2017, dry bean in 2018, and barley in 2019, indicated high accuracy.
The pooled correlation observed between estimated (pooled) and measured instantaneous fluxes
had R2 values of 0.91 (RMSE = 0.08 mm h−1, NSE = 0.91), 0.81 (RMSE = 49.6 Wm−2, NSE = 0.67),
0.53 (RMSE = 27.1 Wm−2, NSE = 0.53), and 0.86 (RMSE = 59.2 Wm−2, NSE = 0.84) for ETc, Rn, G,
and H, respectively. The biggest discrepancy between measured and estimated monthly ETc values
was observed during times when BREBS flux tower footprint was devoid of any crops or the crops
at footprint were not actively transpiring. Validation results improved when comparisons were
made on monthly scales with METRIC underestimating growing season ETc in the range between
3.2% to 6.0%. Seasonal ETc by land-use type showed significant variation over the study area where
crop ETc was 52% higher than natural vegetation ETc. Furthermore, it was found that, in the arid
to semi-arid intermountain region of Wyoming, the contribution of irrigation to total seasonal ETc
varied in the range of 73–81% in nine irrigation districts that fall within the study area. The high
relative contribution of irrigation highlights the importance of identifying and quantifying ETc for
improved management in irrigation system design and water allocation.
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1. Introduction

The availability of freshwater resources for agroecosystems has been an important issue for
the sustainability of agricultural production in the U.S. and around the world. This is particularly
important to the arid to semi-arid regions of the western U.S.A, including Wyoming, where climatic
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variability, drought, and water scarcity are becoming a persistent challenge [1]. In the inter-mountain
region of Wyoming, irrigated agriculture is the backbone of the state’s economy, representing an
annual income of approximately $1.8 billion [2]. Irrigated agriculture accounts for 80–85% of total
consumptive water use, with the state irrigating approximately 0.60–0.65 million hectares annually
depending upon the surface and groundwater supplies. As Wyoming’s agricultural, municipal,
industrial, and recreational/environmental water uses increase, the state’s limited water supplies have
come under increased scrutiny. This has led to the scrutiny of surface and groundwater by the state
and local governments, leading to the development of new regulatory approaches and groundwater
policies. Although the Wyoming State Constitution decrees that all water inside its boundaries is the
property of the state, several interstate water compacts and court decrees limit the amount of outgoing
streamflow that Wyoming can deplete [3]. Wyoming is also a headwater state and provides water to
four major river basins of the US. Wyoming’s land area drains into the Missouri-Mississippi River
basin (approximately 72%), Green-Colorado River Basin (approximately 17%), Snake-Columbia River
Basin (approximately 5%), and Great Salt Lake Basin (approximately 2%) [4]. Interstate compacts
and decrees between upstream and downstream user states have placed some restrictions on the
amount of streamflow Wyoming users can deplete. Under these circumstances, the management of
water resources at the field, watershed, and regional scales is critical to sustained crop production and
economic vitality in the region’s agro-ecosystem.

The efficient use of water resources in agriculture and to understand the response
of agro-ecosystems to changing environment require the adequate quantification of crop
evapotranspiration (ETc; latent heat flux) and other surface energy balance fluxes (net radiation
(Rn), soil heat flux (G), and sensible heat flux (H)) on both point and regional scales. ETc, a combination
of evaporation and transpiration fluxes, is an important component of the agro-ecosystem and
plays a significant role in determining the mass and energy transfer between the hydrosphere,
atmosphere, and biosphere by impacting the relationships between land-use/land cover change
and microclimate/climate energy balance in the hydrologic cycle [5–8]. In agricultural settings, ETc

is directly related to plant biomass and contributes to the determination of crop irrigation water
requirements, groundwater consumption, water allocation in a river basin, irrigation reservoirs, storage
and conveyance system capacities, and water rights [9,10].

Although highly established and localized techniques, such as eddy covariance [11], Bowen ratio
energy balance [5], lysimeter [12], etc., have been widely used for the continuous measurement of ETc,
their application beyond the local scale (watershed/regional scale) has become challenging because
of the high cost of instrumentation, complexity, and effectiveness of the measurement. In general,
the footprint of ETc measurement by these methods is relatively smaller, which creates a significant bias
at watershed/regional scales due to heterogeneity of the land surface and the complex nature of the heat
transfer process governing the ETc [13,14]. Another popular and easy method used to quantify crop
ETc is by adjusting the reference (potential) evapotranspiration (ETr) with crop coefficients (Kc) using
the Food and Agricultural Organisation (FAO) Irrigation and Drainage paper number 56 approach [10].
However, this approach over a regional scale does not consider the within-season spatial variation
in crop growth stages (even for the same crop), management practices (irrigation, fertilization, etc),
soil type, local climate variation, etc. increasing uncertainties in results [8]. Remote sensing-based
estimation of ETc using freely available satellite data in conjunction with meteorological data via surface
energy balance techniques can provide the viable means to map-regional patterns of surface energy
balance fluxes both spatially and temporally in a consistent and economically practical manner. Over
time, different surface energy balance-based algorithms with varying complexities have been developed
to quantify spatial and temporal dynamics of energy balance fluxes, e.g., surface energy balance
algorithm for land (SEBAL) model [15], surface energy balance system (SEBS) model [14], surface
energy balance index (SEBI) model [16], simplified surface energy balance index (S-SEBI) model [17],
operational simplified surface energy balance (SSEBop) model [18], mapping evapotranspiration at
a high-resolution with internalized calibration (METRIC) model [19], etc. All these models utilize
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multispectral data from visible and thermal sensors onboard different satellites to identify the differences
in land surface characteristics and to estimate ETc.

In this study, METRIC (mapping evapotranspiration at high resolution using internalized
calibration), a satellite-based surface energy balance algorithm formulated by Allen et al. [19,20], based
on the (surface energy balance algorithm for land) SEBAL model [15,21–24], was used to evaluate ETc

and other energy balance flux, viz. Rn, H, and G. Allen et al. [19] report the accuracy of METRIC to
be heavily dependent upon choosing appropriate hot and cold pixel points (anchor pixels) within a
given image during the calibration process, also know as calibration using inverse modeling at extreme
conditions (CIMES). In this process, it uses an internal calibration procedure to estimate the near-surface
temperature gradient (dT function) as an indexed function of radiometric surface temperature (Ts)
for estimating the H component of the surface energy balance. This procedure further eliminates
the need for atmospheric correction of Ts and albedo. Generally, a cold pixel is a well-irrigated field
with full crop cover, transpiring actively and a dry pixel is a dry field with approximately zero ETc.
The selection of these extreme pixels is extremely important and requires careful consideration of
maps of Ts, normalized difference vegetative index (NDVI), leaf ares index (LAI), surface albedo,
land use, and image in true and false colors. Moreover, this procedure uses the hourly reference
evapotranspiration (ETr) to auto-calibrate the H calculation for each satellite image, which makes ETc

estimates more robust [20,25].
Since its introduction, METRIC has been applied worldwide to evaluate and estimate spatial

and temporal variability of ETc under different vegetative and climatic conditions at different spatial
and temporal scales. In the US, METRIC has been extensively used to manage water use in cropland,
riparian and forest vegetation [19,26–30], regulate water allocation in a river basin and water rights [9],
and regulate groundwater withdrawal [31]. Outside the U.S., METRIC has been applied to several
regions of the world [26,29,32,33]. For example, Allen et.al. [19] applied METRIC with Landsat images
in Idaho, US to predict monthly and season ETc and reported the difference between METRIC estimated
and lysimeter measured growing season ETc to be less than 5%. They further used METRIC monthly
and seasonal regional ETc estimates to quantify the net ground-water pumpage and total depletion of
water from Bear River systems and Snake River aquifer systems to regulate water rights [9]. Likewise,
Singh & Senay [34] tested the METRIC model using Landsat images over three Ameriflux cropland
sites in the Mid-western United States. The daily ETc from three flux sites had an average R2 of
0.92 and an average RMSE of 0.93 mm d−1. Singh et al. [35] used the METRIC model in conjunction
with the wet METRIC (a modified version of METRIC) model for analyzing Landsat images in the
mid-western United States. They reported that the model-estimated daily ETc was in good agreement
with eddy covariance measurements with an average R2 of 0.91 and a standard error of 0.6 mm day−1.
Furthermore, Mokhtari et al. [36] reported that monthly ETc estimated using the METRIC model falls
within ±10% of the actual ETc. Tang et al. [37] concluded that METRIC estimated instantaneous and
daily ETc values fall within 10–15% of the actual ETc. They also mentioned that METRIC estimated
seasonal ETc was overestimated as compared to that of flux measurements. The METRIC model also
showed a promising result in the study conducted on apple and olive orchards [38–40].

Unlike its applications over flat cropland areas, only limited studies have been focused on its
application to mountainous terrain where there is significant relief and a wide range of slopes and
aspects. Thus, a local modification of the algorithms is required. This includes the adjustment of
the solar and thermal radiation estimates for slope, aspect, and elevation. Moreover, wind speed
and aerodynamic roughness are adjusted to account for the impacts of drag due to undulating
topography [19,33,41]. Therefore, the main goals of this study were: to (i) assess the performance of the
METRIC algorithm to estimate ETc and other energy balance fluxes using Landsat imagery with respect
to measured surface energy balance variables from Bowen ratio energy balance system for the different
vegetative surface in the intermountain region of Wyoming; (ii) quantify, map, and evaluate spatial
and temporal distribution (daily, monthly and seasonal) of ETc and other energy balance fluxes over
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the study region; and (iii) quantify the seasonal crop water use and percent contribution of irrigation
toward ETc for different vegetative surfaces and different irrigation districts within the study area.

2. Materials and Methods

2.1. Study Area

The study area covers the arid to semi-arid region of the Big Horn Basin (BHB), Wyoming which
lies in the coverage of Landsat Path: 37 and Row: 29 centered at 44.40◦N, 108.52◦W (Figure 1). Situated
in the Rocky Mountain region of the Western United States, the BHB is dominated by mountain ranges
and high elevation plains and covers the highly developed irrigation-based agricultural system within
nine irrigation districts which are fed by three major rivers in the regions, namely the Shoshone River,
Big Horn River, and Greybull River (Figure 1). The surface elevation of the study region varies from
1110 m to 3254 m above mean sea level. The major soil type in the study area is sandy loam, with a
total study area of 7930 km2. Annual average P over the study region can vary from over 639 mm in
the high elevation mountainous regions to as low as 142 mm in the lower elevation agricultural plains,
with an average of 235 mm compared to the state and national average (Contiguous US) of 406 and
762 mm, respectively [42].

Figure 1. Location map of the study area within the Big Horn Basin (BHB) Wyoming (a) Landsat
Path 37 Row 29 footprint along with county map and location of Bowen Ratio Energy Balance System
(BREBS) (b) Land use map with irrigation district boundaries of nine irrigation districts within the
study area (c) elevation (meters) with hill shade effect underneath (meters).

In the inter-mountain region of Wyoming, the growing season is generally short due to a limited
number of frost-free days in the year. Despite the limited season, the region provides an ideal
environment to grow high-yielding and high-quality crops. Natural vegetation covers about 83% of
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our study area whereas the cropland area is limited to about 14%. Alfalfa is the major crop grown in
terms of total acreage, followed by barley, sugar beet, dry bean, and maize, primarily under furrow
irrigation with many growers switching to center pivot irrigation [43]. The growing season in the
study area starts with the sowing of barley beginning mid-March, sugar beet in Mid April, maize and
dry bean in mid to late May, and ends with harvesting that usually starts from August for barley, early
September for dry bean, mid to late September for sugar beet until mid-November for Maize. Because of
relatively low growing season precipitation (P) and low relative humidity (RH), disease incidence is
minimal, and cool winter temperatures suppress insect and disease cycles and much acreage of the
region is dedicated to producing certified seed, including dry beans. The natural vegetation comprises
evergreen and deciduous forest, grassland, shrubland, and woody and herbaceous wetlands (Figure 1).

High-quality hourly and daily weather data including maximum and minimum air temperature
(Tmax and Tmin), maximum and minimum relative humidity (RHmax and RHmin), wind speed at 2-m
height (u2), incoming solar radiation (Rs), and precipitation (P) were collected from the Wyoming
Agricultural Climate Network (WACNet) weather station at the University of Wyoming Powell
Research and Extension Center (PREC), located within the Landsat scene footprint [43]. The measured
weather data were used to estimate alfalfa reference ET (ETr), which is utilized in METRIC algorithm
to internally calibrate (hourly ETr) and upscale (daily ETr) instantaneous ETc to daily and periodic
ETc. Daily precipitation data are helpful to estimate bare soil evaporation and evaluate prior Landsat
image-acquisition date precipitation. The ground-based windspeed values are used to calculate wind
speed at blending height (200 m) needed during H calculation. Air temperature and RH values are
utilized to calculate dew point temperature (Tdew) and vapor pressure which is then used to compute
atmospheric transmissivity. Atmospheric transmissivity signifies the ability of Earth’s atmosphere to
allow/pass incoming radiation from the sun and is required during calculation of Rn. Table 1 outlines
the average meteorological conditions at PREC on the Landsat image acquisition date.

Table 1. Image acquisition date, spacecraft ID, and daily weather parameters measured at BREBS station,
Powell Research and Extension Center, Wyoming. Daily weather parameters include minimum air
temperature (Tmin), maximum air temperature (Tmax), minimum relative humidity (RHmin), maximum
relative humidity (RHmax), wind speed (u2), solar radiation (Rs), precipitation (P), and ASCE PM
alfalfa-reference evapotranspiration (ETr).

Date ID Julian
Date

Tmin
(◦C)

Tmax
(◦C)

RHmin
(%)

RHmax
(%)

u2
(ms−1)

Rs
(W m−2)

P
(mm)

ETr
(mm d−1)

4 May 2017 L07 124 1.4 17.7 22.9 84.8 2.0 324.0 0 5.47
5 June 2017 L07 156 12.2 32.7 11.2 65.3 2.0 336.0 0 9.23

21 June 2017 L07 172 10.8 31.4 19.0 80.0 2.1 268.4 0.254 7.95
15 July 2017 L08 196 15.9 36.8 13.0 66.2 1.2 280.1 0 7.28
31 July 2017 L08 212 10.8 33.3 12.4 84.3 0.9 306.0 0 6.3

16 August 2017 L08 228 9.7 25.3 22.6 82.6 0.8 217.8 0 4.14
1 September 2017 L08 244 15.0 31.4 17.6 68.4 1.2 178.3 0 5.15
9 September 2017 L07 252 8.1 30.2 11.6 65.6 0.8 198.2 0 4.25

15 May 2018 L08 135 6.2 19.9 33.8 100 1.4 235.9 0 4.33
8 June 2018 L07 159 10.7 27.0 24.6 82.1 1.4 230.4 0 5.55
2 July 2018 L08 183 10.4 27.8 16.2 81.7 0.8 300.0 0 5.55

18 July 2018 L08 199 11.8 29.5 23.6 84.0 0.7 210.6 0.254 4.55
26 July 2018 L07 207 14.6 28.8 26.8 69.6 1.5 262.7 0 6.36

11 August 2018 L07 223 12.4 36.4 9.0 68.2 0.7 302.5 0 5.95
4 September 2018 L08 247 6.8 30.7 11.6 77.8 1.3 261.8 0 6.03

12 September 2018 L07 255 8.7 24.7 18.1 69.6 1.0 207.3 0 4.12
22 October 2018 L08 295 −0.2 21.6 16.8 74.0 0.9 151.5 0 2.49

3 June 2019 L08 154 8.9 27.3 20.3 84.4 1.1 301.2 0 5.97
13 July 2019 L07 194 13.3 33.4 20.8 82.5 0.9 300.5 0 6.26
21 July 2019 L08 202 12.0 27.5 21.8 57 1.9 332.8 0 7.63

14 August 2019 L07 226 9.5 28.3 19.4 77.8 1.2 298.5 0 6.01
15 September 2019 L07 258 8.6 29.1 13.9 80.7 1.9 192.3 0 5.99

Assessing the uncertainties in satellite estimated ETc using a ground-based measured ETc is an
important and challenging task. While the objective of this study is to assess the performance of
METRIC estimated ETc for the complex mountainous terrain, however, no ground-measured fluxes
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were available for those areas. In this study, the accuracy of METRIC estimated surface energy balance
fluxes were assessed using the field measured dataset for different vegetation from Bowen ratio energy
balance system (BREBS) located at the center of the study area at PREC (44.46◦N, 108.45◦W) in a large
center pivot irrigation production field (14 ha) with a fetch distance of 180 m, 230 m, 223 m, and 160 m
in the north, east, south, and west directions, respectively (Figure 2). The BREBS station was installed
on a center-pivot field in June 2017 and continuously sampled the energy flux components and other
microclimate variables every 60 s and averaged over 15-mi scales during both crop growing and
non-growing seasons using a CR10X datalogger and AM416 relay multiplexer (Campbell Scientific, Inc.,
Logan, Utah). The BREBS measures ET as latent heat (LE; also known as ETc) based on the energy
balance equation as:

LE =
Rn −G
1 + β

(1)

where β a is the Bowen ratio, which is defined as the ratio of sensible heat flux to latent heat flux [44].
The Bowen ratio is calculated from the differences in air temperature (Tair) and vapor pressure measured
at two heights above the crop canopy. The systems measure Tair and RH using two platinum resistance
thermometers and monolithic capacitive humidity sensors (REBS models THP04015 and THP04016,
respectively) with resolutions of 0.0055 ◦C for temperature and 0.033% for relative humidity. The Tair

and RH sensors are located at the center of two coaxial anodized aluminum radiation shield at two
heights. It is important to note that a small bias in temperature and relative humidity measurements
can cause incorrect estimation of gradients which can cause significant error in β and LE. Therefore,
to minimize the impact of any bias, the system automatically exchanges the temperature and humidity
sensors every 15 min at two heights above the canopy. Additionally, aluminum housing units for
Tair and RH sensors face the north direction to avoid any impact of direct sunlight on Tair and RH
measurements. The system is designed to measure all the components of radiation balance, i.e.,
incoming and outgoing shortwave and longwave radiation, from which Rn is calculated. The Rn

is measured using a REBS Q*7.1 net radiometer that is installed 3 m above the crop canopy using
the tripod assembly. To eliminate the effect of reflection of heat and radiation other instruments
installed on the tripod and to capture the Rn at the vegetation surface all the Rn measurements are
taken away from the tripod station. Other radiation balance components, i.e., incoming and outgoing
shortwave and longwave radiation are measured using the REBS models THRDS7.1 double-sided
total hemispherical radiometer. The P is recorded using a model TR-525 tipping bucket rain gauge
with 0.1 mm resolution. Wind speed and direction above the canopy at 3 m height are measured
using a model 034B cup anemometer. The G is measured using three REBS HFT-3.1 heat flux plates
and three soil thermocouples installed in close proximity, 0.06 m below the soil surface under the net
radiometer assembly. One soil temperature and one SMP1R surface soil moisture sensor were also
installed nearby of heat flux plated to G correction. Detailed information on BREBS functioning and
instrumentation is provided by Irmak [5]. In this study, the estimated fluxes from METRIC model were
validated for three irrigated vegetative surfaces i.e., sugar beet in 2017, dry bean in 2018, and barley in
2019. These crops were selected based on their high acreage, high economic value, and high irrigation
demand in the intermountain region of Wyoming. In 2017, sugar beet cultivar 9418RR was planted on
8 May at 0.3 m plating depth with a planting density of 118,600 seeds per hectare and harvested on
13 October. In 2018, dry bean cultivar La Paz was planted on 5 June at 0.05 m soil depth and 0.56 row
spacing at a seeding rate of 222,395 seeds per hectare and harvested on 10 September. In 2019, barley
was planted on 5 April at a target planting density of 850,000 plants per hectare on 0.19-row spacing
and harvested on 14 August.
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Figure 2. Bowen Ratio Energy Balance System (BREBS) installed in center pivot irrigated (a) sugar beet,
(b) dry bean, and (c) barley field at Powell Research and Extension Center in Powell, Wyoming.

2.2. Satellite Datasets and Image Processing

A total of 22 cloud-free and geo-rectified Landsat 7-Enhanced Thematic Mapper Plus (ETM+) and
Landsat 8-Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS) images (Path: 37 and
Row: 29) were obtained from the US Geological Survey (USGS) (https://earthexplorer.usgs.gov/) for
2017, 2018, and 2019 growing seasons (Table 1). Landsat satellite imagery was preferred over other
contemporary satellites because it collects thermal data and has a temporal and spatial resolution
of 16 days and 30 m by 30 m, respectively making it easier to map individual agricultural fields.
The scan line correction for Landsat 7 was carried out on final instantaneous images using the natural
neighborhood interpolation tool of ArcGIS 10.6.1. This tool finds the closest subsets of missing pixels
from the pixels surrounding the query point to interpolate a value. It is important to note that the
pixels corresponding to the BREBS station location did not have any scan line error. The land use
map/cropland data layer (CDL) of the study area for 2017, 2018, and 2019 were obtained from the USDA
National Agriculture Statistical Service (NASS). The CDL is a georeferenced raster layer created using
moderate resolution satellite imagery and extensive agricultural ground truth. METRIC optionally
uses a land-use map to improve the parameterization and estimation of the roughness length for
momentum transfer [19,20]. Roughness length for momentum transfer is the height above the plant
canopy at which windspeed extrapolates to zero because of form drag of air as well as skin layer
friction in between air molecules and surface terrain. The CDL layers were also used to extract
water use information of different vegetative surfaces for different irrigation districts in the study
regions. Irrigation district boundaries shapefiles were collected from the Wyoming Water Resources
Data System (WRDS) and State Climate Office (SCO). The digital elevation model (DEM) provides
data on the relief of the earth’s surface in the form of points of elevation. METRIC requires DEM in
mountainous terrain where parameters like temperature, pressure, and solar elevation angle vary

https://earthexplorer.usgs.gov/
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by slope and aspect. These data were acquired from USDA geospatial data gateway with spatial
resolution same as that of Landsat image.

ERDAS imagine (Leica Geosystems Geospatial Imaging, LLC, Englewood, CO, USA) graphical
model maker tool was used for geospatial processing of Landsat images. Firstly, the digital numbers
(DN) of the images were converted to top of atmosphere radiance and reflectance values using the
procedure outline in Landsat 7 and 8 data users’ handbook. Normalized difference vegetation index
(NDVI) and soil adjusted vegetation index (SAVI) were computed using reflectance from red and
near-infrared bands [45,46]. Leaf area index (LAI) was computed using the empirical equation provided
by Bastiaanssen [15], which utilizes SAVI value. Likewise, the solar incidence angle was computed
for each pixel of the image using Duffie and Beckman [47] model that considers slope and aspect
for each pixel. The slope and aspect of each pixel were computed using DEM. Surface albedo was
calculated by integrating the at-surface band reflectance using weighting coefficients [48–50]. Surface
temperature (Ts) was computed using a modified Planck equation with atmospheric and surface
emissivity correction [20]. A neutral-stability-condition atmosphere lapse rate at 6.5 K km−1 in flat
terrain and 10 K km−1 in mountainous terrain was considered while calculating DEM corrected Surface
temperature (Ts-dem). Likewise, lapse rate change of 2000 m was considered keeping in mind the
elevation data of the study area. Moreover, momentum roughness (Zom), wind speed, and atmospheric
pressure were adjusted as mentioned by Allen et al. [20] for use in the mountain model of METRIC.

2.3. METRIC Model

METRIC utilizes multispectral raster images to estimate the energy balance at each pixel of
an image and is primarily based upon the principle of energy conservation, i.e., energy arriving at the
surface must equal the energy leaving the surface for the same period.

Rn = LE + G + H (2)

where net radiation (Rn) is the total energy available at the earth surface, soil heat flux (G) is the rate of
conductive heat exchange between soil and vegetation, sensible heat flux (H) is the rate of convective
and conductive heat exchange between plant canopy and the surrounding air due to temperature
difference, and Latent heat (LE) is the instantaneous residual energy available for evapotranspiration
which is computed by subtracting G and H from Rn. Figure 3 shows the flowchart of energy balance
components and other intermediate parameters estimation by METRIC.

Figure 3. Flowchart illustrating the computation of surface energy balance fluxes using METRIC algorithm.
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2.3.1. Net Radiation (Rn)

Rn is calculated by subtracting incoming and outgoing radiant fluxes at the top-of-the-atmosphere as:

Rn = Rs ↓ − αRs ↓ + RL ↓ − RL ↑ − (1 − εo) RL ↓ (3)

where Rs↓ is the incoming shortwave radiation (W m−2), RL↓ is the incoming longwave radiation
(W m−2), RL↑ is the emitted outgoing longwave radiation (W m−2), α is surface albedo (dimensionless)
and εo is the surface thermal emissivity (dimensionless). The term ((1 − εo) RL↓) in Equation (3)
represents a fraction of incoming longwave radiation that is reflected from the earth’s surface.
These intermediate parameters of long and short-wave radiation are computed as per Allen et al. [20]
and are a function of satellite images, albedo, atmospheric transmissivity, DEM, ground-based
weather data, and satellite estimated surface temperature. Surface emissivity (εo) was computed using
LAI in an empirical equation formulated by Tasumi [51].

2.3.2. Soil Heat Flux (G)

G was empirically calculated as a G/Rn fraction using vegetation indices and surface
temperature [51].

G
Rn

= 0.05 + 0.18 × e−0.521LAI (LAI ≥ 0.5) (4)

G
Rn

=
1.80 × ( Ts – 273.15)

Rn
+ 0.084 (LAI < 0.5) (5)

where Ts is the surface temperature in Kelvin and LAI (dimensionless) is the leaf area index.

2.3.3. Sensible Heat Flux (H)

H is a function of aerodynamic observations such as u2, vegetation type and roughness, and surface
to air temperature differences (T s − Ta). H is determined using an one-dimensional aerodynamic
function within METRIC [15,20] as:

H =
ρ × Cp × dT

rah
=
ρ × Cp × (T s − Ta)

rah
(6)

where ρ is the air density (kg m−3), Cp is the specific heat of the air (1004 J kg−1 K−1), dT is the
near-surface air temperature difference (T s − Ta) between two reference heights Z1 and Z2, Ts is the
surface temperature (K), Ta is the air temperature (K), and rah is the aerodynamic resistance to heat
transfer (s m−1) over the vertical distance. METRIC utilizes the internal calibration procedure at
extreme conditions following surface energy balance algorithms for land (SEBAL) to estimate the dT
function. The radiometric temperature available in Landsat thermal band is generally different from
the aerodynamic temperature of the surface because of the difference in thermal sensor view angle, land
use type and cover fraction, and the surface roughness length of heat and momentum [19]. Therefore,
to compensate for uncertainties in the estimation of Ts from satellite, dT function is established for two
extreme conditions present in the image viz: cold and hot anchor pixels and is estimated assuming
a linear relationship between dT and Ts-dem [15,19,20,24].

dT = b + aTs-dem (7)

where Ts-dem is DEM adjusted surface temperature (Ts), a is the slope, and b is the intercept of the plot
between dT and Ts-dem for a given satellite image.

Generally, a cold pixel is a well-irrigated field with full crop cover transpiring at potential
evapotranspiration rate and a dry pixel is a dry field with approximately zero ETc. Hot and cold pixels
are the evaporative extremes of the Landsat scene being analyzed and selection of these extreme pixels
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is extremely important in the METRIC processing. Therefore, to select the appropriate hot and cold
anchor pixels, the maps of NDVI, surface albedo, LAI, Ts, land use, and maps of the image in true and
false colors were taken into consideration.

Figure 4 provides a general overview of the hot and cold pixel selection procedure in the study.
Cold pixel candidates were selected from the well-irrigated densely vegetated area with NDVI between
0.76 and 0.84, mid season LAI greater than 3 or 4 m2 m−2, surface albedo between 0.18 to 0.24, and a
lower surface temperature. Similarly, the hot pixel candidates were selected from the bare agricultural
field with NDVI less than 0.20, surface albedo between 0.17 to 0.23, and relatively higher surface
temperature. Final selection of the anchor hot and cold pixel for each image was made using the
candidate pixels already selected. Tasumi [51] and Tasumi et al. [52] estimated cold pixels to have ETc

rates of about 1.05 times the reference evapotranspiration of alfalfa crop (ETr) except during early
and late growing season. To account for any residual evaporation and wetting events before image
acquisition, METRIC approximates LE at the hot pixel to be 0.1 [20]. A bare soil evaporation model on a
daily time step was used to adjust LEhot-pixel h.igher than 0.1 in situations with residual soil evaporation
from antecedent rainfall. Moreover, the cold and hot pixels were selected within a 20–25 km radius of
the meteorological station to counter heterogeneity in weather variables over the Landsat image.

Figure 4. A plot of Surface temperature vs (a) NDVI, (b) LAI, and (c) albedo to depict the hot and cold
pixel selection procedure.

Sensible heat is estimated for both the selected hot and cold pixel using the energy balance
equation in respective pixels.

Hhot = (Rn −G)hot − LEhot (8)

Hcold = (Rn −G)cold − 1.05× λ× ETr (9)

where λ in Hcold computation refers to latent heat of vaporization (JKg−1). The temperature gradient
(dT) is computed for both cold and hot pixels before the final H is calculated.

At cold pixel, dTcold =
Hcold × rah−cold

ρcold × Cp
(10)

At hot pixel, dThot =
Hhot × rah−hot

ρhot × Cp
(11)

The aerodynamic resistance to the transfer of the heat from the evaporating surface to the air
above the canopy is calculated as given by Bastiaanssen et al. [15].

rah =
1

k × u∗
ln

(
Z2

Z1

)
(12)
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where z1 and z2 are lower and upper reference heights (m) above zero plane displacement (d) of the
vegetation and are assigned to be 0.1 m and 2 m respectively [15]. u∗ is the friction velocity (m s−1)
computed during the first iteration of H and k is the Von Karman’s constant (0.41). The u∗ at the first
iteration, is defined by the relation:

u∗ =
K × U200

ln
(

200
Zom

) (13)

where U200 is the wind speed at the blending height (200 m) above the weather station, zom (m) is the
momentum roughness length calculated using a land-use map for each image pixel. zom is calculated
as a function of LAI [51].

zom = 0.018 × LAI (14)

The sensible heat flux (H) is then calculated for each pixel using Equation (6). However, this event
is the first estimation of H and is calculated assuming neutral atmospheric conditions. To counter
unstable atmospheric conditions, H is computed through the number of iterations until rah is stabilized.
At each iteration, values for dTcold, dThot, air temperature, air density, rah, U*, and H is corrected and is
continued until successive values for dThot and rah at the hot pixel have stabilized. Usually, stability
is achieved after 4–5 iterations. The Monin–Obukhov length (L) is used to stabilize the atmosphere
(boundary layer) where turbulence is generated by the buoyancy effect of surface heating. The value of
L is zero for neutral, positive for stable, and negative for unstable atmospheric conditions.

L =
ρ ×Cp × u∗3 × Ts

K× g×H
(15)

where g is the gravitational constant (9.8 ms−2).

2.3.4. Estimation of Instantaneous, Daily, Monthly and Seasonal Crop Evapotranspiration (ETc)

Instantaneous ET (ETinst) at the time of Landsat overpass is computed as residual of the surface
energy balance by subtracting instantaneous G and H are from Rn as:

ETinst =
3600 × (Rn −G−H)

λ × ρw
(16)

where ρw is the density of water (~1000 kgm−3). METRIC utilizes reference ET fraction (ETrF) value to
compute daily and periodic ETc [20]. ETrF (dimensionless) is calculated for each pixel as a ratio of
ETinst to the reference ET values at the time of image acquisition.

ETrF =
ETinst

ETr
(17)

where ETr is the alfalfa reference evapotranspiration calculated using the standardized ASCE
Penman–Monteith equation [53] on an hourly basis. It is assumed that ETrF (equivalent to crop
coefficient) values remain constant throughout the day and the use of it minimizes the impact of
advective heat on ETc [54]. The daily evapotranspiration (ET24) rate (mm d−1) for each image pixel is
then computed as:

ET24 = ETrF × ETr-24 (18)

where ETr-24 is 24-h ETr and is calculated by summing hourly ETr values over the day of image.
To estimate periodic ETc values, both linear and cubic spline methods of interpolation were
employed. Linear interpolation [55] was done by interpolating ETrF between successive image
dates. The interpolated values were then multiplied by ETr-24 to obtain ET24, which is then summed
up on monthly and seasonal baisis. On the other hand, cubic spline [19] is reported to get a smooth
and curvilinear bend as of the typical crop coefficient curve of annual crops [56]. Rather than taking all
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the data points at once to fit one polynomial, spline interpolation fits a polynomial function between
two adjacent data points. For example, 4 images (data points) will have three polynomials fitted in
between. A third-degree polynomial (cubic polynomial) is used to get a smooth fit between each spline.
Thus, cubic spline interpolation requires two images on either side of the month and at least one ETrF
image per month in a growing season. As such, it requires at least 5 images to interpolate for a month.
Likewise, synthetic points (ETrFsynthetic) were computed for the beginning and end of the growing
season (ETc is dominated by evaporation) to be able to start and end the interpolation. Daily actual
evaporation (Ea), estimated using the soil water balance method [10], and ETr were used to calculate
the synthetic points.

ETrFsynthetic =

last day of summation∑
1st day of summation

( Ea

ETr

)
(19)

ETmonth =

last day of month∑
1st day of month

((ETrFi) × (ETr24i)) (20)

where ETmonth (mm) is the monthly cumulative ETc from day 1st to last day of the month, ETrFi is the
interpolated ETrF for a month and ETr24i is the 24-h ETr for a month. Seasonal estimates of ETc were
then obtained by summing up the monthly ETc values. The METRIC estimated instantaneous and
periodic fluxes were compared with BREBS measured fluxes. Root mean square error (RMSE) and
Nash–Sutcliffe’s efficiency (NSE) were used as the main criterion to judge the accuracy and reliability
of the METRIC model for estimating ETc and other surface energy fluxes.

RMSE =

√∑n
i=1(O− P)2

n
(21)

NSE = 1−


∑n

i=1(O− P)2∑n
i=1(O−Omean)

2

 (22)

where O and P is the observed and METRIC predicted surface energy balance fluxes, Omean is the
mean of observed energy balance fluxes, and n is the number of observations.

3. Result and Discussions

3.1. Weather Conditions

Figure 5 represents daily and cumulative P and ETr during 2017, 2018, and 2019 growing seasons
(May to September). Substantial variations were observed in weather variables during each of the three
years. Compared to long-term average values, 2017 had below normal precipitation and higher ETr.
A total of 32 and 30 precipitation events occurred in 2017 and 2018, respectively, compared to 56 events
in 2019. The total seasonal P of 94 mm, 128 mm, and 20817 mm was observed in 2017, 2018, and 2019,
respectively. Likewise, September 2017 (40 mm), June 2018 (48 mm), and May 2019 (58 mm) were
the months receiving highest cumulative precipitation in their respective years. Greater evaporative
demand existed in 2017 and 2018 compared to 2019. The ETr ranged from 0.84 to 10.01 mmd−1,
1.23 to 9.94 mmd−1, and 0.70 to 8.9 mmd−1, with an average of 5.7 mmd−1, 5.4 mmd−1, and 5.2 mmd−1

for 2017, 2018, and 2019, respectively. Cumulative ETr was highest in 2017 (883 mm) followed by
2018 (820 mm), and 2019 (794 mm) growing season. The month of July observed highest ETr (224 mm
in 2017, 196 mm in 2018, and 198 mm in 2019) in each of the growing season. Likewise, the month of
May witnessed some days with relatively higher ETr (Figure 5b).
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Figure 5. Daily and cumulative seasonal (May to September) (a) precipitation (P) and (b) reference
evapotranspiration (ETr) during 2017, 2018, and 2019 at Powell Research and Extension Center,
Powell, WY.

3.2. Comparison of METRIC Estimated and Measured Surface Energy Balance Fluxes

Several uncertainties may be associated with the satellite retrievals of energy balance systems
including sensor pixel scale, sensor accuracy, etc. Thus, a comparison of satellite retrievals with
ground-based measurements becomes inevitable to garner confidence on the final output being
accurately estimated. Figure 6 reflects the evaluation of estimated vs. measured instantaneous surface
energy balance fluxes at the BREBS flux tower footprint in Powell Research and Extension Center,
Powell, WY. The BREBS values were retrieved at satellite overpass time (11:00 A.M. MST) to compare
with corresponding METRIC determined energy balance components. A total of five different data
points from the 2017 growing season (July–September), nine different data points from the 2018 growing
season (May–October), and five different data points from the 2019 growing season (June–September)
along with the pooled data from all the growing seasons were used in the analyses. Similarly, Table 2
provides a statistical comparison between METRIC estimated and BREBS measured energy balance
components. The R2, RMSE, and NSE were used to assess the error associated with each component.
The following section discusses the comparison of METRIC estimated instantaneous energy balance
fluxes (Rn, G, H, and ETc) of the pixel corresponding to the geographic location of the BREBS towers.
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Figure 6. METRIC—estimated and BREBS—measured instantaneous surface energy balance fluxes
(a) crop evapotranspiration (ETc), (b) net radiation (Rn), (c) sensible heat (H), and (d) soil heat (G)
for 2017, 2018, and 2019 growing season as well as a combined pooled data at the BREBS flux-tower
footprint located in Powell Research and Extension Center, Powell, WY, USA.

Table 2. Statistical comparison between METRIC estimated and BREBS measured crop
evapotranspiration (ETc, mm h−1), net radiation (Rn, Wm−2), soil heat (G, Wm−2), and sensible
heat (H, Wm−2) for 2017, 2018, 2019, and pooled data from all the growing seasons (N = number of
data points, R2 = coefficient of determination, SD = standard deviation, S = slope, RMSE = root mean
square error, NSE = Nash-Sutcliffe’s efficiency).

Flux Year Surface N R2 Avg.
BREBS

Avg.
METRIC

SD
BREBS

SD
METRIC S RMSE NSE

ETc

2017 Sugarbeet 5 0.21 0.75 0.76 0.11 0.05 0.20 0.09 0.20
2018 Dry Bean 9 0.95 * 0.33 0.38 0.23 0.23 0.99 * 0.07 0.89
2019 Barley 5 0.80 * 0.54 0.54 0.15 0.18 1.1 * 0.08 0.67

Pooled 19 0.91 * 0.49 0.52 0.25 0.24 0.91 * 0.08 0.90

Rn

2017 Sugarbeet 5 0.94 * 492.8 544.3 58.8 40 0.66 * 55.3 0.95
2018 Dry Bean 9 0.83 * 506.9 522 113.2 77.9 0.62 * 52.7 0.76
2019 Barley 5 0.96 * 520.5 554.5 74.7 73.8 0.97 * 36.2 0.70

Pooled 19 0.81 * 506.8 536.4 88.4 66.9 0.68 * 49.6 0.67

G

2017 Sugarbeet 5 0.72 32.2 39.9 23.4 11 0.4 15.7 0.44
2018 Dry Bean 9 0.46 * 78.3 78.8 44.2 29.9 0.46 * 30.8 0.46
2019 Barley 5 0.23 66.5 55.8 34.3 17.6 0.24 29.1 0.1

Pooled 19 0.53 * 63.04 62.5 40.5 28 0.50 27.1 0.53

H

2017 Sugarbeet 5 0.21 −46.9 −6.4 75.4 30.5 0.19 72.5 −0.15
2018 Dry Bean 9 0.90 * 205.1 186.4 127.9 102 0.75 46.8 0.85
2019 Barley 5 0.24 87.6 132 52.3 50 0.47 64 −0.87

Pooled 19 0.86 * 107.8 121.4 143.7 109.9 0.71 * 59.2 0.82

* The correlation between measured and estimated flux is significant and slope of the regression line was significantly
different from zero (p = 0.05).
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3.2.1. Instantaneous ETc (ETinst)

Figure 6a indicates a good correlation between METRIC estimated and BREBS measured ETinst

with R2 values ranging between 0.21 to 0.95 and slopes between 0.2 to 1.13. For pooled data points,
the linear regression model explains 91% of all the variance in the estimated ETinst values. The slope of
the regression coefficient of pooled data (0.91) close to unity (p-value < 0.05) indicates a strong fit and
low systematic error between modeled and measured ETinst. The average ETinst for all data points
over three vegetative surfaces was 0.52 mm h−1 (355 W m−2) as compared to the BREBS measurement
of 0.49 mm h−1 (336 W m−2), with pooled RMSE of 0.08 mm h−1 and NSE of 0.90. Table 2 represents
a comparison of METRIC estimate ETinst with BREBS measurement for individual surfaces. Overall,
a good correlation was observed between measured and estimated ETc for all three vegetative surfaces,
with R2 ranging from 0.21 for sugar beet in 2017 to 0.95 for dry bean in 2018. A relatively lower R2

(0.21), slope (0.20) and NSE (0.21) for 2017 ETinst indicate low performance of the model (Table 2).
The regression analysis showed that the correlation is not significant and slope of the regression line was
significantly different from unity (p-value > 0.05). The BREBS tower was installed on June 2017 which
resulted only handful of images (5) in mid to late growing season for analysis in 2017. This resulted
in a skewness of data and errors in one direction causing lower NSE, R2, and slope values. On the
other hand, 2018 and 2019 had images spread across the growing season. A comparison of the
individual vegetation surfaces revealed that the METRIC model overestimated ETinst by 1.4%, 15.8%,
and 0.4% for 2017, 2018, and 2019, respectively, as compared to BREBS measurements (Table 2). Higher
overestimation in 2018 is due to the fact that three out of the nine images were analyzed before planting
and after harvest when only crop residue was available at the surface. For example, the combined
overestimation of 41% was observed for the three images when only crop residue was available at
the surface compared to 9.8% when the image was analyzed within the growing season. Variation in
crop residue at the surface can alter the surface temperature which may result in more variation in
ETc available at the surface [13,57]. A similar improvement in results was reported by Allen et al. [19].
They compared METRIC estimated ETc with lysimeter measured ETc using eight Landsat images
acquired from April to September and reported 30% averaged absolute differences for sugar beet crop
(R2 = 0.82). When they omitted one image date of drying bare soil following P, the average absolute
difference was only 14%. The maximum difference in ETinst of 0.13 mm h−1 was observed in 2019 on
21 July, which could attribute to the continuous P events from 14 July to 17 July which resulted in
increased soil surface moisture and decreased surface temperature, thus resulting in higher bias from
the measured data [58].

3.2.2. Net Radiation (Rn)

METRIC estimated Rn had an R2 value of 0.83 to 0.96 and a slope of 0.62 to 0.97 when compared
with corresponding BREBS fluxes (Figure 6b). The average METRIC estimated Rn for the pooled dataset
was 507 W m−2 (SD = 88 W m−2) compared to BREBS measured Rn of 537 W m−2 (SD = 67 W m−2).
The RMSE value for Rn was found to be ranging from 36.2 to 55.3 W m−2 and NSE between 0.70
to 0.95 (Table 2). Pooled data points had R2 of 0.81, slope of 0.68, RMSE value of 49.6 W m−2,
and NSE of 0.67 (Figure 6b). Table 2 indicates the average Rn to be overestimated by 10.5%, 3%, 6.5%,
and 5.8% for 2017, 2018, 2019, and pooled data points, respectively. Similar observations were made
by Singh et al. [35], who used METRIC model in conjunction with wet-METRIC (a modified version
of METRIC) model for analyzing Landsat images in the three sites of Mid-western United States.
They reported model-estimated net radiation (Rn) to be within −12%, −11.4%, and −6.3% of the eddy
covariance measurement for three different study sites with R2 of 0.95. Rn is a very complex variable
and varies with the complexity of the underlying surface heterogeneity. For example, a heterogeneous
surface influences the surface radiation properties, e.g., surface albedo and emissivity, and thereby
impacts the fraction of photosynthetically active radiation absorbed crop transpiration rate and
surface energy budgets. For example, as observed from Figure 6b, the maximum variation in Rn was
observed on 12 September and 22 October 2018, when only crop residue was available at the surface.
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Horton et al. [57] reported that crop residue that alters surface evaporation and soil moisture content
can affect both the shortwave albedo and longwave emissivity, and hence Rn.

3.2.3. Sensible Heat Flux (H)

Figure 6c and Table 2 represent the comparison of METRIC derived H with BREBS measured H
along with statistical analysis. Overall good correlation was observed between METRIC estimated H
and BREBS measured instantaneous H values with R2 between 0.21 to 0.9 while the value for slope
was between 0.19 to 0.75 (Figure 6c). When pooled data were taken into consideration, R2 value was
0.86 with a slope of 0.71. Lower RMSE value was observed in 2018 (46.8 W m−2) as compared to
2017 (72.5 W m−2) and 2019 (64 W m−2) image dates (Table 2). However, when pooled data points
were considered, the average METRIC estimated H was 121 W m−2 which is 12.6% higher than field
measurements (average H = 107 W m−2) with RMSE 59.2 W m−2 and NSE of 0.82 (Table 2). A negative
NSE during 2017 (−0.15) and 2019 (−0.87) indicates the model had less predictive skill during those
periods. The partitioning of available energy (Rn-G) to LE for each satellite date revealed some image
dates where advection is prominent (LE/(Rn-G) > 1) (data not shown). For example, negative values of
Hwere observed for both METRIC estimated H and BREBS H, especially in 2017 on 15 July, 31 July,
1 September, and 9 September (Figure 6c). This indicates the movement of energy from the air to the
plant canopy and additional energy being used by the crop to meet the high ET demand on that day.
This may be due to the already harvested barley field surrounding the BREBS sugar beet field that
acted as a source for advective heat. In addition, natural vegetation covers about 83% of our study
area surrounding the cropland which also acted as a source of advective heat. However, compared
to 2017, in 2018 and 2019, the ratio of LE/(Rn-G) was observed to be less than 1 on most image dates;
this may be due to higher P and lower Tair in 2018 and 2019, where the average P was 19 mm and
81 mm higher than 2017 and average Tair was 0.50 ◦C and 0.74 ◦C lower than 2017, which reduce the
effect of advective heat from surrounding areas. On average, H was better estimated during 2018
image dates where average METRIC estimated H differed from BREBS H by −9.1% as compared to
2017 (−86.4%) and 2019 (50.8%) image dates (Table 2). Poor estimation of H in 2017 and 2019 can be
associated with the irrigation and P events that occurred before Landsat overpass time. This created
difficulty in choosing a suitable hot pixel candidate having LE approximately zero [35,59]. Similar
observations were made by Singh et al. [35] who reported estimated and measured sensible heat had
predictive error and R2 value of 48.3% (R2 = 0.73), 15.2% (R2 = 0.71), and −2.4% (R2 = 0.03) for three
different sites in the Mid-western United States. Kilic et al. [60] reported RMSE of 46.5 W m−2 and
31.5 W m−2 in H during the 2005 and 2006 growing seasons in Southeast Nebraska, similar to the
RSME in this study in 2017.

3.2.4. Soil Heat Flux (G)

G is one of the key components in the surface energy budget used to estimate the available energy
to be partitioned into H and LE. A moderate correlation was observed between METRIC estimated G
and BREBS measured G with R2 in between 0.23 to 0.72 and slope in between 0.24 to 0.46 (Figure 6d).
Pooled G data points had R2 of 0.53 and a slope of 0.5 (Figure 6d). METRIC estimated average G
differed by 23.9%, 0.75%, −16.1%, and −0.8% for 2017, 2018, 2019, and pooled data, respectively,
when compared with BREBS fluxes (Table 2). The RMSE value for the growing seasons ranged between
15.7 to 30.8 W m−2 while pooled data points had RMSE of 27.1 W m−2 (Table 2). Likewise, NSE value
for the growing seasons considered ranged between 0.1 and 0.46 while pooled data points had NSE
of 0.53 (Table 2). In general, G is a relatively small component in energy balance, and its estimation
via model is usually difficult because of changes occurring in soil properties such as in conductivity,
temperature, and heat capacity with a change in moisture and vegetation of soil. Singh et al. [35],
in their study in mid-west USA, reported estimated and measured soil heat flux (G) differing by 16.5%,
−6.6%, and −30.3% for three different sites. The same study showed a low R2 value of 0.03, 0.36,
and 0.33 for soil heat flux. Similar results were found by Irmak et al. [61], who reported a higher RMSD
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of 48.6 W m−2 in 2005 on irrigated continuous maize at three sites near Mead, Nebraska. They used a
different remote sensing model to predict G at the Mead and Clay Center locations, and the reported
difference in G ranged from 36.3 to 62.6 W m−2 due to differences in soil properties, measurement of G
(sensor depth and distance between sensors), and surface conditions at the different locations.

It is important to note that there are many sources of uncertainties associated with the comparison
of BREBS measured and modeled fluxes including model algorithm (model assumptions), tower
observations (systematic and unsystematic bias), scaling issues (flux footprint), and management
practices. For example, BREBS assumes the eddy diffusivities of heat and water vapor to be equal.
Studies [62,63] have revealed that these diffusitives may not be equal in some cases resulting a force
closure of surface energy budget. Likewise, Barr et al. [62] reported that BREBS favoured prediction of
LE as compared to H. The potential effect of condensation in the surface energy balance fluxes is small
and has not been considered in this research. Condensation is more pronounced during the night
time when RH is at 91–99% and the leaves are cooler than the surrounding air and approaches dew
point temperature [64]. Careful analysis of average hourly RH data from BREBS indicated RH barely
goes above 90% in the actice growing season where most of the staelite images were collected (data
not shown). A similar oberevation was made by Sharma [65] in the semi-arid grass land region of
New South Wales, Australia where it was reported that dew fall amounted to 8.7% of ETc in winter,
4.7% of ETc in autumn, 1.6% of ETc in spring season, and as low as 1% of actual or pan evaporation in
warmer months.

3.3. Comparison of METRIC Estimated and BREBS Measured Monthly ETc

METRIC estimated monthly ETc values during 2017 (3 data points), 2018 (6 data points), and 2019
(4 data points) growing seasons were obtained employing linear and cubic spline interpolation method.
Cubic spline interpolation observed a better correlation between estimated and measured monthly
values with high R2 ranging from 0.82 to 0.9, slope between 0.83 to 1.32, and RMSE in between 16.8
to 20.8 mm (Figure 7b). On the other hand, linear interpolation had moderate R2 in between 0.7 to
0.85, slope between 0.68 to 1.1, and RMSE in between 17 to 28.5 mm (Figure 7a). Pooled data (13 data
points) for cubic spline had R2 and slope at 0.9 and RMSE at 18.2 mm, whereas for linear interpolation
the values were at 0.84, 0.85 and 23.6 mm for R2, slope and RMSE respectively (Figure 7a,b). Cubic
spline interpolation underestimated seasonal ETc by 6%, 5.4%, and 3.2%, while linear interpolation
underestimated seasonal ETc by 4%, 12%, and 2% during 2017, 2018, and 2019 growing seasons (Table 3).
The biggest discrepancy between measured and estimated monthly ETc values was observed during
times when the BREBS flux tower footprint was devoid of any crops or the crops at footprint were
not actively transpiring (Table 3). During the 2018 growing season, METRIC estimation of monthly
ETc values ranged between −49% (underestimation) in June (dry bean at BREBS footprint planted on
5 June) to 75% (overestimation) in October (dry bean at BREBS footprint harvested on 10 September)
(Table 3). Allen et al. [19], in a study regarding sugar beet, observed estimated periodic ETc differing
by −28% on 7 July to 107% on 4 May as compared to lysimeter measured ETc. However, this difference
in data decreased to less than 1% when cumulative ETc values for the growing season were compared.
Similarly, Allen et al. [19], considering an irrigated meadow, observed METRIC estimated monthly ETc

to be ±16% of the lysimeter measurement. However, in the same study, the difference was reduced
to 4% when METRIC estimated and lysimeter measured growing season ETc (July to October) was
considered. This decrease in the difference between estimated and measured growing season ETc

values can be linked with the error associated being randomly distributed (monthly ETc values being
both over and underestimated) tending to cancel while computing a cumulative growing season
value [19]. However, both interpolation methods performed well, with cubic interpolation performing
slightly better than linear interpolation, owing to its lower and consistent RMSE and % error. Therefore,
in this study, cubic interpolation estimated ETc values were used to quantify and map the seasonal ETc
and for other analysis. Further quantification and mapping of periodic ETc in this study was done
using cubic spline interpolated images.
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Figure 7. Comparison of METRIC estimated and BREBS station measured monthly ETc (mm) during
2017, 2018, 2019, and pooled data from all the growing seasons. (a) Linear Interpolation, (b) Cubic
spline interpolation.

Table 3. Statistical comparison between METRIC estimated (via linear and cubic spline interpolation)
and BREBS derived monthly and seasonal ETc during 2017, 2018, and 2019 growing seasons.

Year Month Surface BREBS
ETc

METRIC ETc
(C. Spline)

METRIC ETc
(Linear)

% Error
(C. Spline)

% Error
(Linear)

2017 July Sugarbeet 179 195.1 193.7 9 8.2
2017 August Sugarbeet 184 162 161.7 −12 −12.1
2017 September Sugarbeet 125 101.5 112.5 −18.8 −10
2017 (July–September) Sugarbeet 488 459 468 −6 −4
2018 May Dry bean 47 43 55.4 −8.5 18
2018 June Dry bean 81 50 41.3 −38.3 −49
2018 July Dry bean 137 132 107.7 −3.6 −21.4
2018 August Dry bean 168 151 147 −10.1 −12.5
2018 September Dry bean 87 103 98.1 18.4 12.8
2018 October Dry bean 16 28 21.4 75 33.4
2018 (May–October) Dry bean 536 507 471 −5.4 −12
2019 June Barley 161.7 137.4 131.3 −15.1 −19
2019 July Barley 187.6 185.1 180.7 −1.3 −3.9
2019 August Barley 68.4 92.3 112.2 34.9 65
2019 September Barley 79.7 66.7 62.8 −16.4 −21
2019 (June–September) Barley 497.5 481.5 487 −3.2 −2

3.4. Mapping Spatio-Temporal Variation of Surface Energy Balance Components

Satellite images, unlike traditional and conventional methods of measurement, provide an
excellent means to determine and map the spatial and temporal variation of surface energy balance
fluxes and vegetative indices. The spatial (space) and temporal (time) variability on a regional
scale is a function of topography, weather parameters, climate, soil characteristics, land-use type,
and management practices.

3.4.1. Spatio-Temporal Variation of Net Radiation (Rn), Sensible Heat (H), and Soil Heat (G) Flux

Figure 8 depicts the early, mid, and late-season Spatio-temporal variability of Rn, H, and G for
2018 crop growing season. In general, the intensity of Rs and thus the Rn increases gradually after the
March equinox and starts decreasing when the September equinox is reached [66]. A similar pattern is
observed in our case where a higher Rn value is observed from May to August. Clouded parts in the
images over estimates Rn value as evidenced in the 8 June image where the Rn climbed up to 980 W m−2.
As more and more energy gets partitioned into ETc, the H value decreases (occasionally negative) as
the growing season moves forward. Negative sensible heat estimation occurred occasionally when
the temperature and vapor pressure of surrounding air were higher as compared to plant surface
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temperature and air vapor pressure surrounding the plant, resulting in a flow of heat from surrounding
air to the plant. Clouded parts in the image can cause a drastic reduction in the value of H, obvious in
8 June image in Figure 8f, where the H value hovered around −125 W m−2. Similarly, lower soil heat
value was estimated for cropland during mid-season because of higher LAI and NDVI during this time.
High ground cover decreases the conduction of Rn to the soil surface. The opposite happens during the
early season when crops have less effective ground cover. Similarly, a lower soil heat value at the end
of the growing season indicated less availability of net radiant energy. The overestimation of G value
can be apparent in clouded parts of the images. A higher G value reaching up to 500 W m−2 is from
the open water area of the image. Unlike land surface, G is a larger and more important component for
water bodies [67].

Figure 8. Spatio-temporal distribution of METRIC estimated instantaneous net Radiation (Rn, W m−2)
(a–d), sensible heat (H, W m−2) (e–h) and soil heat (G, W m−2) (i–l) on 15 May 2018, 2 July 2018,
11 August 2018 and 12 September 2018. The Black circled portion in some images represent the
cloud coverage.

3.4.2. Spatio-Temporal Variation of Evapotranspiration (ETc)

In METRIC, ETc is estimated as a residual of the surface energy balance fluxes and occurs through
energy exchange at vegetation surface via H or Rn. In general, ETc is a function of weather parameters,
crop characteristics, soil properties, and crop cultivation and management practices. Figure 9 shows
the spatial distribution of daily ETc for Landsat overpasses at scattered times in the 2017 and 2018
growing seasons. Over the production crop areas, the ETc rate was low during the beginning of the
crop season and increased as the season moved forward. During the late season, as plants approached
physiological maturity, the ETc rate declined. On the contrary, higher ETc was observed over the
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natural vegetation early in the season (May and June) and strats decrasing as the season progressed.
During the early season, evaporation dominates the ETc while as the season progresses, transpiration
forms the major part of ETc. Most of the variability in ETc was due to the diverse cropping systems
and agronomic practices across the study area. Clouded parts of the image, depending upon the
cloud thickness, will experience an overestimated ET values, reaching up to 14.8 mm (5 June 2017) in
this study.

Figure 9. Spatio-temporal distribution of METRIC estimated daily Evapotranspiration (ETc, mm d−1)
during 2017 and 2018 growing season. (a) 4 May 2017, (b) 5 June 2017, (c) 21 June 2017, (d) 15 July 2017,
(e) 31 July 2017, (f) 16 August 2017, (g) 1 September 2017, (h) 9 September 2017, (i) 15 May 2018,
(j) 8 June 2018, (k) 2 July 2018, (l) 18 July 2018, (m) 26 July 2018, (n) 11 August 2018, (o) 4 September 2018,
and (p) 12 September 2018. The Black circled portion in some images represent the cloud coverage.

3.5. Mapping Spatio-Temporal Variation of Cumulative Seasonal Evapotranspiration

Figure 10 reflects the spatio-temporal variation of cumulative seasonal ETc during the 2017 and
2018 (May–September) growing season periods. The METRIC estimated average growing season
ETc for cropland was 644 mm and 575 mm for 2017 and 2018, respectively. Similarly, the METRIC
estimated average growing season ETc for natural vegetation was 311 mm and 275 mm for 2017 and
2018, respectively. Natural vegetation suffers from water scarcity during the majority of the growing
season which leads to a lower ETc rate. On the other hand, P is accompanied by frequent irrigation in
the cropland which causes crops to transpire more. A Higher ETc rate was observed in 2017 because
of the even distribution of the total P amount (144 mm from March–September) during the growing
season. On the other hand, the 2018 growing season experienced uneven distribution of total P amount
(158 mm from March to September) where most of the P was observed during May (49 mm) and June
(49 mm). A higher cumulative ETc is evident on the conifer forested part (top right and bottom left) of
the image. Brown patches (a higher ETc estimation as compared to surrounding vegetation) seen in
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the naturally vegetated area are due to cloud masses present in some images. However, cloud masking
was performed to estimate seasonal ETc for natural vegetation.

Figure 10. Spatio-temporal distribution of METRIC estimated seasonal ETc (mm) during (a) 2017 and
(b) 2018 growing season (May–September).

3.6. Comparison of METRIC Estimated Mean Monthly Evapotranspiration for Different Land Cover Type

Monthly ETc is the summation of the amount of water lost from a cropped surface during each
day of the month. Monthly and seasonal ETc estimates are valuable in determining the irrigation,
storage, and conveyance capacities of an irrigation system. Figure 11 shows the METRIC estimated
mean monthly ETc rate for sixteen different land cover type viz. alfalfa, dry bean, sugar beet, barley,
Maize, Oats, other hay/non-alfalfa, sod/grass seed, spring wheat, fallow/idle crop, barren, open
water, shrubland, grassland, woody wetlands, and herbaceous wetlands during 2018 growing season
(May–September). While estimating periodic ETc rate for each landcover type, the clouded part seen on
some of the images were cropped out. The monthly ETc estimates for crops exhibited a bell-shaped ETc

curve. This implies monthly ETc rate will be lower during the beginning and end of the growing season
and higher during mid-season when plants have good canopy cover to transpire at their potential rates.
Early planting date (starts mid-March) for barley means it reached its peak growth during the period
from June to July resulting in a higher ETc rate during those months. The monthly ETc values from the
barley field start decreasing by August as the crop reaches physiological maturity. The harvesting of
barley starts from early August and can last until Mid-August. Monthly ETc values observed from
barley fields after harvesting accounts to surface residue ETc and soil evaporation. Dry bean, sugar
beet, and maize had the highest ETc rate during July and August which coincides with the peak growth
and flowering stage of these crops. Dry bean fields experienced lower monthly ETc values as compared
to fields of Maize and sugar beet (Figure 11). Dry bean tends to have less dense vegetation and a shorter
growing span, resulting in a lower rate of cumulative ETc. Unlike dry bean, sugar beet and maize
field had considerably higher ETc values until September. Maize and sugar beet have fair vegetation
cover until September and subsequently senesce prior to harvest in October. In Wyoming, alfalfa is
grown primarily for hay under irrigation. Alfalfa fields have higher ETc values in May as compared to
other crops as it is planted by early-August of the previous year and is already established by winter.
Likewise, alfalfa has a longer growing season, a deep root system, and a dense canopy of vegetation
that results in higher cumulative seasonal ETc values as compared to other crops. Alfalfa is normally
harvested 2–3 times a year with the most active harvesting period between June to September that
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results in fluctuation of monthly ETc values during this period. As expected, the naturally vegetated
areas had lower average monthly ETc values as compared to those of crop fields.

Figure 11. METRIC estimated mean monthly crop evapotranspiration (ETc, mm) across the study area
during the 2018 growing season (May to September) for different land cover types.

Similarly, Figure 11 indicates open water evaporation (Ewater) to be greater than wetland ET
(ETwetland) in the study area. Ewater − ETwetland was less during early (May) and late growing season
(October). However, the difference increased considerably during the mid-season summer and fall
images (June, July, August, and September). This increase in the difference in mid-season can be
associated with vegetation senescence (resulting in low ETwetland) in the wetland region. On the
other hand, water has high specific heat and heat capacity that induces it to absorb and store thermal
energy. The storage of thermal energy in the water body is greater in summer and fall as more
radiant energy is available. The greater release of stored heat in summer and fall from open water
increases the net energy available for evaporation. The Ewater − ETwetland value was much higher
for herbaceous wetlands (Ewater − ET herbaceous-wetland = 33.7%) as compared to woody wetlands
(Ewater − ETwoody-wetland = 15%). Stannard et al. [68] used eddy covariance to measure ETwetland

rates from two wetland sites and BREBS to measure Ewater rate from two open water sites for three
years and reported overall Ewater to be 20% greater than overall ETwetland. Their study also reported
Ewater − ETwetland to have a lower difference from late June to early August, while the difference
increased during late summer.

The majority of the study area in this study is under natural vegetation (about 83%). A comparison
was done to assess METRIC estimated surface energy balance fluxes between cropland and natural
vegetation (Figure 12). For that, average flux across the study area on five different image acquisition
dates comprising early (15 May), mid (8 June, 18 July, and 11 August), and late-season (12 September)
during the 2018 growing season were considered. Natural vegetation had comparatively lower Rn

values (up to 15% lower) as compared to cropland as the growing season progressed. The difference in
the net radiation values can be associated with the variation in surface albedo value. As the growing
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season progresses, the bare soil in the naturally vegetated area is dry (because of water stress) and
has higher albedo values (dry soil albedo was reported to be around 0.31 by Idso et al. [69]) causing
a decline in Rn. However, during the early season, the soil in the natural vegetation area is wet
(because of possible precipitation and snow cover) with lower albedo values (wet soil albedo was
reported to be be around 0.14 by Idso et al. [69]) causing the Rn to be similar or sometimes greater
than that of cropland, as evidenced in May in our study area. Natural vegetation can also have lower
albedo value due to the effect of shading that might happen in taller vegetation like forest and woody
wetlands. As compared to cropland, naturally vegetated areas had higher H value (up to 94% higher in
mid-season). A huge proportion of Rn energy is used up by crops in the ETc process, thus lowering the
H and G estimates in cropland. Natural vegetation, on the other hand, have a lower ETc rate, and the
net available energy is partitioned more into H and G. Lower H values in cropland during mid-season
indicate crops transpiring at a higher rate whereas higher sensible heat values for crops at the end and
beginning of growing season indicate lowering ETc rate. Higher ETc rate in the early season lowered
the H value whereas lower ETc rate during the mid-season resulted in a higher H. Lower H values at
the end of the growing season is caused by the decline in net available radiant energy [58]. G has a
reciprocal relationship with high ground cover (shading or insulation effect) and leaf area index and
a direct proportional relationship with albedo. These factors cause a significant difference between
crop land and natural vegetation G. The decreasing G value at the end of the growing season in the
natural vegetation area reflects less availability of Rn energy. During the early season, the ETc rate
from the cropland can be similar or in some cases less than that of natural vegetation as evidenced
during the month of May in this study. The precipitation received early in the growing season helps
natural vegetation induce new growth and thus transpire more. However, as the season progresses,
the natural vegetation could suffer from water stress, resulting in a lower ETc rate as compared to that
of cropland, where P gets accompanied by irrigation.

Figure 12. Comparison of METRIC estimated surface energy balance fluxes between cropland and
natural vegetation across the study area during the 2018 growing season.

3.7. Irrigation District Average Water Consumption

One of the main objectives of this study is to use satellite estimated ETc to quantify the average
crop water use and crop water use for different cropping systems for different irrigation districts
within the study area. Table 4 presents the average ETc, P, and percent of irrigation-based ETc for 2017
and 2018 crop growing seasons over nine irrigation districts in the study region. For this analysis,
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monthly P values for 2017 and 2018 for each irrigation district were extracted from gridded 4-km
monthly parameter-elevation regression on independent slope model (PRISM) dataset [70] obtained
from the PRISM Climate Group website. Within the study region, the area of each irrigation district
varies from 51 Km2 for the Hunt and Godfrey irrigation district to 1284 Km2 for the Greybull Valley
irrigation district. No significant difference was observed in seasonal crop ETc among the irrigation
districts, with average ETc (average of two years) ranging from 598 mm in Greybull Irrigation District
to 689 mm in Heart Mountain irrigation district. The seasonal ETc for 2017 was approximately 34 mm
greater than 2018, except for the Will Wood irrigation district where greater ETc was observed for 2018.
This may be due to higher precipitation P and lower Tair in 2018 where average precipitation P was
19 mm higher than 2017 and average Tair was 0.50 ◦C lower than 2017. To understand the amount of ET
contributed by irrigation, irrigation volumes for each irrigation district were calculated by subtracting
the average seasonal P from ETc (ETc − P) for each irrigation district, assuming other variables such
as streamflow and change in soil moisture are negligible. This assumption is valid considering the
semi-arid to arid intermountain region of Wyoming, where seasonal precipitation is generally less than
200 mm. The results indicated that, in 2017, an average of 81% (maximum of 83% in Hunt and Godfrey
irrigation district and minimum of 79% in Greybull irrigation district) and, in 2018, an average of 73%
(maximum of 77% and minimum of 69%) of ETc is contributed by irrigation only.

Table 4. Average crop evapotranspiration (ETc), seasonal precipitation (P), and percent of
irrigation-based ETc for 2017 and 2018 crop growing season over nine irrigation districts in the
study region.

Irrigation
District Year Avg. ETc

(mm)
A

(km2)

Area Wise
Total ETc

(km3)

P
(mm)

Area Wise
Total P
(km3)

Irrigation
(ETc-P)
(km3)

% of
Irrigation

Contributing
to ETc

1 Cody
Canal

2017 699 157 0.11 158 0.02 0.08 77
2018 653 157 0.10 204 0.03 0.07 69

2 Deaver
2017 666 277 0.18 117 0.03 0.15 82
2018 610 277 0.17 158 0.04 0.13 74

3
Greybull

Valley
2017 609 1284 0.78 125 0.16 0.62 79
2018 587 1284 0.75 162 0.21 0.54 72

4 Heart
Mountain

2017 713 584 0.42 146 0.09 0.33 80
2018 665 584 0.39 197 0.11 0.27 70

5
Hunt &
Godfrey

2017 717 51 0.04 124 0.01 0.03 83
2018 658 51 0.03 177 0.01 0.02 73

6 Lovell
2017 678 30 0.02 121 0.00 0.02 82
2018 658 30 0.02 164 0.00 0.01 75

7 Shoshone
2017 620 538 0.33 125 0.07 0.27 80
2018 606 538 0.33 167 0.09 0.24 72

8 Sidon
2017 637 207 0.13 121 0.03 0.11 81
2018 628 207 0.13 151 0.03 0.10 76

9 Willwood
2017 642 196 0.13 124 0.02 0.10 81
2018 673 196 0.13 153 0.03 0.10 77

To further understand the dynamics of seasonal ETc from different vegetative surfaces, ETc and
percent irrigation contribution to ETc for four major crop types within each irrigation district were
analyzed (refer Supplementary Materials, Tables S1–S9). For both years, higher ETc was observed
for alfalfa followed by sugar beet, and the lowest ETc was observed for dry bean in all irrigation
districts. The percent irrigation contribution to ETc (ETc-P) varies from 60% for dry beans in the
Heart Mountain irrigation district in 2018 to a maximum of 83% for alfalfa in Lovell and Deaver
irrigation districts in 2017. This information could be very useful for irrigation district personnel,
water managers, decision-makers, policymakers, and state and federal water regulatory agencies for
quantification/re-evaluation of the overall distribution of evaporative losses for a given irrigation
district relative to available water resources for evaluating various management practices.
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4. Summary and Conclusions

Estimates of ETc represent a key component of water management in croplands, naturally
vegetated areas, open water sources, wetlands, and riparian basins. Today, determining short term and
long term ETc rates to guide water resource-based policy and decision making has become a necessity.
In the face of population increment and water scarcity around the globe, the importance of ETc has
grown many folds. A total of 22 cloud-free Landsat 7-ETM+ and Landsat 8–OLI and TIRS images
were analyzed using a satellite-based energy balance model, namely mapping evapotranspiration with
internalized calibration (METRIC). The study was carried out for 2017, 2018, and 2019 growing season
period in the semi-arid to arid intermountain region of Wyoming (Path/Row: 37/29). The accuracy
check of METRIC estimates was done by comparing estimated instantaneous and periodic fluxes
with respective Bowen ratio energy balance system (BREBS) measured fluxes. The BREBS station was
installed on a center pivot irrigation field and had sugar beet in 2017, dry beans in 2018, and barley in
2019 growing season. The correlation observed between estimated and measured instantaneous energy
balance fluxes (pooled data points) had R2 values of 0.91 (RMSE = 0.08 mm h−1, NSE = 0.91), 0.81
(RMSE = 49.6 W m−2, NSE = 0.67), 0.53 (RMSE = 27.1 W m−2, NSE = 0.53), and 0.86 (RMSE = 59.2 W m−2,
NSE = 0.84) for ETc, Rn, G, and H respectively. Likewise, estimated instantaneous energy balance
fluxes (pooled data points considered) differed with BREBS fluxes by 5.7%, 5.8%, −0.8%, and 12.6% for
ETc, Rn, G, and H, respectively. Cubic spline interpolation performed a bit better as compared to linear
interpolation, and a comparison of estimated and measured monthly ETc values (pooled data) for
cubic spline had R2 and slope of 0.9 and RMSE of 18.3 mm with growing season ETc underestimated in
the range between 3.2 to 6.02%. A spatio-temporal distribution maps of instantaneous energy balance
fluxes and seasonal ETc showed an anticipated variation across the study area as the plant growth
stage and surface condition changed. In addition, mean monthly ETc values estimated across the study
area for different land cover types showed a substantial variation throughout the growing season
as climate and crop growth stages differed. Furthermore, it was found that, in the arid to semi-arid
intermountain region of Wyoming, the contribution of irrigation varied in the range of 73–81% of
the total seasonal ETc in nine irrigation districts that fall within the study area. The high relative
contribution of irrigation highlights the importance of identifying and quantifying ETc for improved
management in irrigation system design and water allocation.

In this study, METRIC algorithms performed reasonably well, particularly in estimating cumulative
ETc for the entire growing season. However, the model performance was poor during the early and late
growing season when fields had little active leaf area, with METRIC estimated ETc values were within
10% of the BREBS measured values. A companion paper to the research compared the performance of
four surface energy balance models viz. METRIC, SEBAL, SEBS, and S-SEBI in estimating the ETc in
the intermountain region of Wyoming. The METRIC model can be an important tool in quantifying
and mapping surface energy balance components especially in places where quality hourly weather
data are available. Accurate hot and cold pixel selection during sensible heat calculation is a defining
moment of the METRIC algorithm. A selection error can result in an undesired outcome. The selection
of hot pixels was an arduous task, especially when P events occurred prior to Landsat overpass time,
raising the LE value. Similarly, the estimation of negative reference ET fraction (ETrF) in some naturally
vegetated and deserted areas was observed altering ETc estimation for those surfaces. Thus, further
research work on securing accurate hot pixels during prior P events, controlling wayward estimations
during the early and late growing season, and minimizing the estimation of negative reference ET
fraction in naturally vegetated and deserted areas can provide important support for a more accurate
estimation of instantaneous and periodic fluxes. Furthermore, future research will also focus on
multi-sensor data fusion to increase the temporal variation and thereby reduce the uncertainties in
ETc estimations.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/24/4019/s1,
Table S1: Average seasonal crop evapotranspiration ETc, seasonal precipitation (P), and Irrigation contribution
to ETc (ETc-P) for four major crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize within Cody Canal Irrigation
District for 2017 and 2018. Table S2: Average seasonal crop evapotranspiration ETc, seasonal precipitation (P),
and Irrigation contribution to ETc (ETc-P) for four major crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize
within Deaver Irrigation District for 2017 and 2018. Table S3: Average seasonal crop evapotranspiration ETc,
seasonal precipitation (P), and Irrigation contribution to ETc (ETc-P) for four major crops i.e., Sugar beet, Dry
bean, Alfalfa, and Maize within Greybull Valley Irrigation District for 2017 and 2018. Table S4: Average seasonal
crop evapotranspiration ETc, seasonal precipitation (P), and Irrigation contribution to ETc (ETc-P) for our major
crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize within Heart Mountain Irrigation District for 2017 and 2018.
Table S5: Average seasonal crop evapotranspiration ETc, seasonal precipitation (P), and Irrigation contribution to
ETc (ETc-P) for four major crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize within Hunt & Godfrey Irrigation
District for 2017 and 2018. Table S6: Average seasonal crop evapotranspiration ETc, seasonal precipitation (P),
and Irrigation contribution to ETc (ETc-P) for four major crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize
within Lovell Irrigation District for 2017 and 2018. Table S7: Average seasonal crop evapotranspiration ETc,
seasonal precipitation (P), and Irrigation contribution to ETc (ETc-P) for four major crops i.e., Sugar beet, Dry
bean, Alfalfa, and Maize within Shoshone Irrigation District for 2017 and 2018. Table S8: Average seasonal
crop evapotranspiration ETc, seasonal precipitation (P), and Irrigation contribution to ETc (ETc-P) for four major
crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize within Sidon Irrigation District for 2017 and 2018. Table S9:
Average seasonal crop evapotranspiration ETc, seasonal precipitation (P), and Irrigation contribution to ETc
(ETc-P) for four major crops i.e., Sugar beet, Dry bean, Alfalfa, and Maize within Will Wood Irrigation District for
2017 and 2018.
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