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Abstract: Many spatiotemporal image fusion methods in remote sensing have been developed to
blend highly resolved spatial images and highly resolved temporal images to solve the problem
of a trade-off between the spatial and temporal resolution from a single sensor. Yet, none of the
spatiotemporal fusion methods considers how the various temporal changes between different pixels
affect the performance of the fusion results; to develop an improved fusion method, these temporal
changes need to be integrated into one framework. Adaptive-SFSDAF extends the existing fusion
method that incorporates sub-pixel class fraction change information in Flexible Spatiotemporal DAta
Fusion (SFSDAF) by modifying spectral unmixing to select spectral unmixing adaptively in order to
greatly improve the efficiency of the algorithm. Accordingly, the main contributions of the proposed
adaptive-SFSDAF method are twofold. One is to address the detection of outliers of temporal
change in the image during the period between the origin and prediction dates, as these pixels
are the most difficult to estimate and affect the performance of the spatiotemporal fusion methods.
The other primary contribution is to establish an adaptive unmixing strategy according to the guided
mask map, thus effectively eliminating a great number of insignificant unmixed pixels. The proposed
method is compared with the state-of-the-art Flexible Spatiotemporal DAta Fusion (FSDAF), SFSDAF,
FIT-FC, and Unmixing-Based Data Fusion (UBDF) methods, and the fusion accuracy is evaluated
both quantitatively and visually. The experimental results show that adaptive-SFSDAF achieves
outstanding performance in balancing computational efficiency and the accuracy of the fusion results.

Keywords: spatiotemporal image fusion; remote sensing; SFSDAF

1. Introduction

Earth observation missions have played an important role in coping with global changes and
solving many problems and challenges related to the development of human society. Both land cover
dynamics monitoring, such as timely crop monitoring [1], forest degradation monitoring [2,3], and land
use change detection [4], and emergency response to disaster monitoring [5–7], such as forest fire and
flood monitoring, require remote sensing data with both high spatial and high temporal resolution.
Although high spatial and spectral resolution with frequent coverage are the long-term targets of
remote sensors, it is difficult for a single sensor to have both high spatial and temporal resolution due to
technological constraints. In addition, cloud and shadow contamination also make a large number of
remote sensing images unusable. Over the last decade, increasing numbers of remote sensing satellites
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have been launched, collecting multi-modal remote sensing data with multi-sensor, multi-resolution,
and multi-temporal properties. Therefore, there is an increasing amount of research focused on fusing
multi-modal remote sensing data to collect fine-scale data with high spatiotemporal resolution.

Spatiotemporal image fusion approaches in remote sensing have been developed for blending
images with fine spatial resolution but coarse temporal resolution (e.g., Landsat imagery) with
images with fine temporal resolution but coarse spatial resolution (e.g., MODIS imagery) to generate
fine-spatiotemporal-resolution images [8–11]. With minimal input, given one pair of fine-coarse images
acquired on nearly the same day (hereafter referred to as T1,) and one coarse image acquired on
the predicted date (hereafter referred to as T2), the output is the fine-spatial-resolution image at T2;
this technique can make better use of remote sensing data in Earth observation missions by fully
mining the inherent associations of multi-modal remote sensing data.

Spatiotemporal image fusion in remote sensing integrates the super-resolution problem in the
temporal, spatial, and spectral domains. In the temporal domain, it is necessary to estimate temporal
change information to predict the target image. Thus, many fusion methods using change detection
techniques are proposed, such as fusion methods based on two fine-coarse image pairs [3,12–14],
and fusion methods based on one fine-coarse image pair [15–19]. The Hybrid Color Mapping (HCM)
approach [18,19], which directly established the mapping between two MODIS images at different times
and then used that mapping for forward prediction, can work well for homogeneous images. In the
spatial domain, such a method estimates the predicted image information through the self-similar
characteristics in the scene. Such methods are often referred to as weighted function-based methods [20].
The spatial and temporal adaptive reflectance fusion model (STARFM) is the one of the earliest
to establish the satellite fusion model [1], which is simple, flexible and the most widely used.
However, this method assumes that the land cover type in the coarse pixel does not change over
the prediction period, so the performance degrades somewhat when used on landscapes with high
heterogeneity. Improved algorithms based on STARFM include the enhanced version of STARFM
(ESTARFM) [21] and the Spatio-Temporal Adaptive Fusion model For NDVI products (STAFFN) [22].
Emelyanova et al. [23] compared STARFM and ESTARFM and concluded that ESTARFM achieved
better performance where/when spatial variance was dominant; STARFM achieved better performance
where/when temporal variance was dominant. The method of retrieving fine image information in the
spectral domain is often referred to as an unmixing-based method. The traditional unmixing-based
method is based on the linear mixing model to solve the fractional abundance of endmembers [24],
but the unmixing based method used in the fusion model is somewhat different. More precisely, it is
a spatial unmixing method [25] that estimates the endmembers in the sliding window where the
class abundance is known; therefore, spatial unmixing can describe the endmember variability of
different spatial regions. One of the earliest unmixing methods is the Multisensor Multiresolution
Technique (MMT) [26], and many improved variants have been proposed. Zurita-Milla et al. [27,28] used
constrained least squares in the unmixing process to obtain a justified solution. Amorós-López et al. [25]
added a regularization term to the cost function to restrict the variance of the endmember spectra.
Gevaert and García-Haro [29] proposed the Spatial and Temporal Reflectance Unmixing Model
(STRUM) using Bayesian method that describes data fusion uncertainties in a clear probabilistic
framework. Based on STRUM, Ma et al. [30] proposed an improved method (ISTRUM) by applying
fine-resolution abundance image, which can generate higher accuracy than STRUM. In addition to the
above algorithms, there are other fusion approaches that incorporate the unmixing based method to
improve the performance of existing algorithms. For example, two improved Bayesian data fusion
approaches (ISTBDF-I and -II) [31] were proposed by incorporating an unmixing based algorithm into
the existing Spatiotemporal Bayesian Data Fusion (STBDF) framework [32], which can enhance the
fusion ability of existing STBDF model in handling heterogeneous areas.

In recent years, due to the development of machine learning and deep learning,
many learning-based methods have also been developed, including SPSTFM based on two pairs of
input images [33], one pair learning based on sparse representation [34], extreme learning [35], and deep
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learning [36–38]. This type of method learns the correspondence between the available coarse-fine
image pairs in a whole framework. For example, the StfNet [36] learns two fine difference images
predictions from the corresponding coarse ones at forward and backward dates respectively, and further
optimizes the fusion results through a temporal constraint among time-series images. This method is
based on two fine-coarse image pairs and is suitable for monitoring intermediate dynamics.

Meanwhile, additional fusion methods use a mixture of multiple technologies introduced
previously to achieve higher fusion performance. For example, the Flexible Spatiotemporal DAta
Fusion (FSDAF) [11] first estimated the temporal changes of endmembers in a scene based on the
spatial unmixing method to describe gradual phenology changes, then used spatial interpolation to
characterize sudden land cover type changes, and finally performed residual compensation based on a
weighted function of similar pixels.

Based on FSDAF, an enhanced fusion method incorporates sub-pixel class fraction change
information in Flexible Spatiotemporal DAta Fusion (SFSDAF) [39], resulting in better performance
when applied to landscapes with many mixed pixels and land cover type changes. However,
in practice, not all pixels experienced class abundance changes, and SFSDAF still unmixed such pixels
with invariant class abundance, which not only leads to a large computational burden, but also
brings some uncertainty to the prediction model. There are no spatiotemporal fusion methods that
consider the various temporal changes among in different pixels, which can affect the performance
of the fusion results, or how these changes could be integrated into one framework to develop an
improved fusion method. The adaptive-SFSDAF proposed in this paper is based on SFSDAF, a recently
developed, best-performing method with minimal input pairs. Adaptive-SFSDAF first detects outliers
in the image over the prediction period and then selectively uses class abundance change information
by a guided mask map. The proposed adaptive-SFSDAF optimizes the unchanged-type areas contained
in land cover class change more directly from the perspective of class abundance information present in
the image, thus reducing the uncertainty in the SFSDAF prediction model. Although Wu et al. [17] also
used a changed mask map in the reflectance fusion method, their method is based on the regularized
Iteratively Reweighted Multivariate Alteration Detection (IR- MAD) method, and only determines
whether a pixel is changed or not. In experiments, our proposed method is compared with the
state-of-the-art FSDAF, SFSDAF, FIT-FC, and Unmixing-Based Data Fusion (UBDF) methods, and the
fusion accuracy is evaluated both quantitatively and visually. According to the experimental results,
the following two conclusions are drawn:

(1) For both Coleambally and Gwydir, adaptive-SFSDAF can greatly reduce the number of
unmixed pixels in spectral unmixing processing; nearly 80% of the total pixels are shown to be
unnecessary in terms of prediction accuracy and, thus, can be eliminated with negligible loss of
performance. This shows that adaptive-SFSDAF can achieve significant unmixed pixels reduction
while preserving comparable fusion performance using full unmixed pixels.

(2) Adaptive-SFSDAF reduced the uncertainty in the SFSDAF prediction model by optimizing
the unchanged-type areas of land cover class change, thus strengthening the robustness of SFSDAF.
In particular, adaptive-SFSDAF was superior when capturing the Gwydir site image structure. For both
types of sites, adaptive-SFSDAF achieved better performance than FSDAF, according to both visual
and quantitative measurements.

The rest of this paper is organized as follows. We introduce the theory and steps of
adaptive-SFSDAF in Section 2 and describe the experiments and results in Sections 3 and 4. Finally,
discussion and conclusions are presented in Sections 5 and 6.

2. Methods

In Adaptive-SFSDAF, a pair of fine-coarse images acquired at T1 and one coarse image acquired at
T2 are known. The aim of the fusion algorithm is to predict the fine image corresponding to the coarse
input at T2. Because the fine-coarse images are obtained by two different sensors, the input pair needs
to be geographically registered first to facilitate subsequent fusion processing [1]. Adaptive-SFSDAF
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mainly includes the following four steps: (1) spectral unmixing of the fine image at T1 to obtain its
endmembers and abundances; (2) estimation of the spectral unmixing result for the fine image at T2;
(3) prediction of the fine image at T2 according to the change information of both endmembers and
class abundances; and (4) compensation for the prediction residual and production of the final fine
image at T2. The flowchart of the proposed adaptive-SFSDAF is shown in Figure 1. In this proposed
process, the difference between adaptive-SFSDAF and SFSDAF occurs in step 2, corresponding to
the red boxes in Figure 1. Adaptive-SFSDAF is detailed as follows. The notations and definitions in
adaptive-SFSDAF are provided in Abbreviations.

Remote Sens. 2020, 12, 3979 4 of 23 

 

pair needs to be geographically registered first to facilitate subsequent fusion processing [1]. 
Adaptive-SFSDAF mainly includes the following four steps: (1) spectral unmixing of the fine image 
at T1 to obtain its endmembers and abundances; (2) estimation of the spectral unmixing result for the 
fine image at T2; (3) prediction of the fine image at T2 according to the change information of both 
endmembers and class abundances; and (4) compensation for the prediction residual and production 
of the final fine image at T2. The flowchart of the proposed adaptive-SFSDAF is shown in Figure 1. 
In this proposed process, the difference between adaptive-SFSDAF and SFSDAF occurs in step 2, 
corresponding to the red boxes in Figure 1. Adaptive-SFSDAF is detailed as follows. The notations 
and definitions in adaptive-SFSDAF are provided in Abbreviations. 

  
Figure 1. Flowchart of the proposed adaptive- sub-pixel class fraction change information 
incorporated in Flexible Spatiotemporal DAta Fusion (SFSDAF). 

Figure 1. Flowchart of the proposed adaptive- sub-pixel class fraction change information incorporated
in Flexible Spatiotemporal DAta Fusion (SFSDAF).



Remote Sens. 2020, 12, 3979 5 of 22

2.1. Fine Image Spectral Unmixing at T1

First, the fine-resolution (fine) image at T1 is classified by either a supervised or an unsupervised
classification method. In order to classify the image automatically, an unsupervised clustering method,
such as Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA), is applied [40].
According to the classification map, endmember information of the image can be estimated using the
average vector of each class. Then, the abundance of class at each pixel (xi,yi) can be estimated by soft
classification as follows:

aFR(xi, yi, c, t1) =
(‖F(xi, yi, t1) − vc‖Σ)

−1

K∑
k=1

(
‖F(xi, yi, t1) − vk‖Σ

)−1
(1)

where F(xi,yi,t1) is the fine image at observation date T1, (xi,yi) represents the spatial position of each
input spectral vector, K is the total number of classes, vc is the average vector of class c; ‖X‖∑ is the
Mahalanobis norm, which is calculated by ‖X‖∑=XT∑−1X, and Σ denotes the sample covariance matrix.

After solving the class abundance of the fine image at T1, the endmember information can be
estimated according to the well-known linear mixing model (LMM). The endmember rFR(c,b,t1) can be
calculated by solving the following equation:

F(xi, yi, b, t1) =
K∑

c=1

aFR(xi, yi, c, t1) × rFR(c, b, t1), b = 1, . . . , l (2)

where F(xi,yi,b,t1) is the band b value of the fine image at T1. Equation (2) is solved separately for each
band b of l total bands.

2.2. Spectral Unmixing to Fine Pixels at T2

In order to predict the fine image at T2, the temporal change information of the image from T1 to
T2 needs to be calculated. FSDAF estimates the time variation of endmembers, while SFSDAF further
considers the time variation of abundance information within each fine pixel. Because the fine details
at T2 are unknown except for the coarse-resolution (coarse) image, the estimation of the fine abundance
map at T2 will use the coarse image at T2 repeatedly. The estimation of the fine abundance map at T2
can be accomplished by the spectral unmixing method. The main steps are detailed as follows.

2.2.1. Estimation of the Coarse-Resolution Endmember at T2

Let C(xi,yi,t1) be the coarse image observed at T1 where (xi,yi) is the ith pixel. Its abundance map
can be obtained by downsampling the fine abundance map aFR(xij,yij,c,t1):

aCR(xi, yi, c, t1) = f↓(aFR(xi j, yi j, c, t1)) (3)

where f ↓ represents the downsampling operator and aFR(xij,yij,c,t1) denotes the jth fine-resolution
abundance value within the ith coarse-resolution abundance value aCR(xi,yi,c,t1) at T1.

Next, the endmember information of the coarse image at T2 can be estimated based on the linear
mixing model,

C(xi, yi, b, t2) =
K∑

c=1

aCR(xi, yi, c, t1) × rCR(c, b, t2), b = 1, . . . l (4)

where C(xi,yi,b,t2) is the coarse image of band b observed at T2 and rCR(c,b,t2) is the cth endmember in
spectrum b corresponding to the coarse image at T2.

Since the abundance information of the coarse image at T2 is unknown, here the corresponding
abundance information at T1 is used for approximation. This approximation error can be reduced
using a pixel selection strategy, similar to the method used in [11]. It is worth mentioning that an
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iterative algorithm that repeatedly estimates rCR(c,b,t2) and updates aCR(xi,yi,c,t2) by Equation (4) and
Equation (7) could be a better alternative for situations with no time constraints.

2.2.2. Estimation of the Fine-Resolution Endmember at T2

Assuming that the land cover type does not change between T1 and T2, the temporal change in a
coarse pixel at location (xi,yi) in band b can be expressed as follows:

∆T(xi, yi, b) =
K∑

c=1

aCR(xi, yi, c, t1) × ∆F(c, b), i = 1, . . .N (5)

where ∆T(xi,yi,b) is the difference value between C(xi,yi,t2) and C(xi,yi,t1) in band b and ∆F(c,b) is the
endmember change information. To avoid the collinearity problem, the purest pixels of each class are
selected. At the same time, only pixels with moderate amounts of change are used to avoid the effects
of the land cover type change. The final N(N > K) selected pixels can form N linear mixing equations.
Then, ∆F(c,b) can be solved using the above equations by the least square method.

The fine-resolution endmember at T2 can be estimated by adding the fine-resolution endmember
at T1 and the endmember change information between T1 and T2:

rFR(c, b, t2) = rFR(c, b, t1) + ∆F(c, b) (6)

2.2.3. Estimation of the Coarse-Resolution Abundance at T2

According to the coarse-resolution endmember at T2, the corresponding abundance for each
coarse pixel at T2 can be solved using the linear unmixing method. Let l be the total band number of
the input image; then, l equations can be obtained by the well-known linear mixing model (LMM),
the coarse resolution abundance can be derived by the constrained least square method. The formula
is as follows:

C(xi, yi, b, t2) =
K∑

c=1
aCR(xi, yi, c, t2) × rCR(c, b, t2), b = 1, . . . lS.T.aCR(xi, yi, c, t2) ≥ 0

K∑
c=1

aCR(xi, yi, c, t2) = 1 (7)

where aCR(xi,yi,c,t2) is the coarse-resolution abundance value of class c at T2.
In order to obtain each abundance value at position (xi,yi), SFSDAF needs to solve the above

LMM model pixel by pixel, which leads to a large computational burden. Note that the endmember
estimation process also needs to solve linear mixture equations, but only once for the whole image.
It is apparent that with increases in the size and band number of the input image, the computation time
will increase proportionally. This is an intolerable problem for rapid fusion of large remote sensing
images. Adaptive-SFSDAF compares the actual change information of the image from T1 to T2 with
the predicted endmember change information, and then derives a mask whose pixel value represents
whether spectral unmixing is needed. According to the various temporal changes between different
pixels over the prediction period, the mask will dynamically select some pixels to guide the spectral
unmixing, thus greatly increasing the speed of the unmixing processing by SFSDAF. The mask is
explained in the below:

The actual change information of the coarse images from T1 to T2 is defined as:

→

∆T(xi, yi) = C(xi, yi, t2) −C(xi, yi, t1) (8)

From the endmember change ∆F, we can derive:

→

∆TEM(xi, yi) =
K∑

c=1

aCR(xi, yi, c, t1) × ∆F(c) (9)
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Now, comparing the two change information terms
→

∆T(xi, yi) and
→

∆TEM(xi, yi), the normalized
measure index at (xi,yi) is defined as:

λ(xi, yi) =


0 ,

→

∆TEM(xi, yi) = 0 and
→

∆T(xi, yi) = 0∣∣∣∣∣ →

∆TEM(xi,yi)−
→

∆T(xi,yi)

∣∣∣∣∣∣∣∣∣∣ →

∆TEM(xi,yi)

∣∣∣∣∣+∣∣∣∣∣ →∆T(xi,yi)

∣∣∣∣∣ , others

(10)

The range of the normalized measure index λ(xi,yi) is [0,1]. It can be seen that if
→

∆T and
→

∆TEM

are equal, the minimum value of 0 will be taken, and if the directions of
→

∆T and
→

∆TEM are opposite,
the maximum value of 1 will be chosen.

Let ξ be the mask generation threshold. Using the threshold method for the variable λ(xi,yi),
the final binary mask at (xi,yi) is obtained:

mask(xi, yi) =

{
1,λ(xi, yi) ≥ ξ
0,λ(xi, yi) < ξ

(11)

Since the value range of λ(xi,yi) is [0,1], the mask generation threshold ξ ranges from 0 to 1

correspondingly. When the maximum value of 1 is taken by ξ, pixels with opposite directions of
→

∆T

and
→

∆TEM are selected for spectral unmixing. When the minimum value of 0 is taken by ξ, then all the
pixels are selected for spectral unmixing, and adaptive-SFSDAF is the same as SFSDAF.

A flowchart of the proposed method is shown in Figure 2. When performing the linear unmixing
processing of the coarse image at T2, only the pixels where the mask is valid are unmixed:

aCR(xi, yi, c, t2) =

{
aCR(xi, yi, c, t1), mask(xi, yi) = 0
solve LMM equations, mask(xi, yi) = 1

(12)

2.2.4. Estimation of the Fine-Resolution Abundance at T2

After solving the abundance information of the coarse image at T1 and T2, the temporal change in
the coarse-resolution abundance from T1 to T2 can be obtained as follows:

∆aCR(xi, yi, c) = aCR(xi, yi, c, t2) − aCR(xi, yi, c, t1) (13)

The corresponding temporal change in the fine-resolution abundance can be obtained by
upsampling and refinement processing:

∆aFR(xi j, yi j, c) = B( f↑(∆aCR(xi, yi, c))) (14)

where f ↑ is the upsampling operator, B is the weighted function for refinement, and ∆aFR(xij,yij,c)
denotes the jth fine-resolution abundance change within the ith coarse-resolution abundance change
∆aCR(xi,yi,c) of class c.

Similar to finding the endmembers of the fine image at T2, the abundance of the fine image at T2
can also be calculated as follows:

aFR(xi, yi, c, t2) = aFR(xi, yi, c, t1) + ∆aFR(xi, yi, c) (15)



Remote Sens. 2020, 12, 3979 8 of 22

Remote Sens. 2020, 12, 3979 8 of 23 

 

Coarse 
image at T2

Coarse 
image at T1

Calculate (T2-T1) temporal changes

Estimate endmember changes from 
T1 to T2

Calculate  change information

TΔ


( , ) 0i imask x y = ( , ) 1i imask x y =

EMTΔ


Calculate normalized measure index ( , )i ix yλ

( , ) ?i ix yλ ξ≥
No Yes

Fine image 
at T1

Estimate fine abundance at T1

Degraded to coarse abundance at T1

 
Figure 2. Flowchart of the calculation of the guided mask map in adaptive-SFSDAF. 

2.2.4. Estimation of the Fine-Resolution Abundance at T2 

After solving the abundance information of the coarse image at T1 and T2, the temporal change 
in the coarse-resolution abundance from T1 to T2 can be obtained as follows: 

2 1( , , ) ( , , , ) ( , , , )CR i i CR i i CR i ia x y c a x y c t a x y c tΔ = −  (13) 

The corresponding temporal change in the fine-resolution abundance can be obtained by 
upsampling and refinement processing: 

( , , ) ( ( ( , , )))FR ij ij CR i ia x y c B f a x y c↑Δ = Δ  (14) 

where f↑ is the upsampling operator, B is the weighted function for refinement, and ∆aFR(xij,yij,c) denotes 

the jth fine-resolution abundance change within the ith coarse-resolution abundance change ∆aCR(xi,yi,c) 
of class c. 

Similar to finding the endmembers of the fine image at T2, the abundance of the fine image at 
T2 can also be calculated as follows: 

2 1( , , , ) ( , , , ) ( , , )FR i i FR i i FR i ia x y c t a x y c t a x y c= +Δ  (15) 

2.3. Prediction of the Fine Image at T2 

Since the temporal endmember change and abundance change from T1 to T2 are both estimated 
in the aforementioned steps, the fine image at T2 can be predicted: 

2 1( , , ) ( , , )TP i i i iF x y t F x y t FT= +Δ  (16) 

Figure 2. Flowchart of the calculation of the guided mask map in adaptive-SFSDAF.

2.3. Prediction of the Fine Image at T2

Since the temporal endmember change and abundance change from T1 to T2 are both estimated
in the aforementioned steps, the fine image at T2 can be predicted:

FTP(xi, yi, t2) = F(xi, yi, t1) + ∆FT (16)

FTP(xi, yi, t2) = F(xi, yi, t1) +


K∑

c=1
aFR(xi, yi, c, t2) × rFR(c, t2)

−

K∑
c=1

aFR(xi, yi, c, t1) × rFR(c, t1)

 (17)

where FTP(xi,yi,t2) is referred to as the temporal prediction image because it combines the fine image at
T1 and the temporal change information ∆FT. Within the temporal change information, each pixel
is modeled as a linear mixture of material endmembers in the image. By respectively representing
the fine pixel at T1 and T2 using the LMM model, the temporal change information can be derived
accordingly. The advantage of using temporal change information to predict the target is that the two
known coarse images can be fully utilized, and more importantly, except for the temporal change
information, there is no need to consider the reconstruction accuracy of any image.



Remote Sens. 2020, 12, 3979 9 of 22

2.4. Residual Compensation for the Temporal Prediction Image at T2

Residuals exist in the whole processing chain and, thus, residual compensation is needed
to refine the obtained predicted image. Let RCR(xi,yi) be the coarse-resolution residuals at (xi,yi).
The coarse-resolution temporal change is defined as:

C(xi, yi, t2) −C(xi, yi, t1) =
(

f↓(FTP(xi, yi, t2)) − f↓(F(xi, yi, t1))
)
+ RCR(xi, yi) (18)

Then, we obtain

RCR(xi, yi) = (C(xi, yi, t2) −C(xi, yi, t1)) −
(

f↓(FTP(xi, yi, t2)) − f↓(F(xi, yi, t1))
)

(19)

Since the real fine image at T2 is unknown, only coarse-resolution residuals can be calculated
from the known conditions. To compensate for these residuals in order to produce the fine
prediction image, the key problem is to derive the fine-resolution residuals from its corresponding
coarse-resolution residuals.

For a single coarse pixel, the aim is to allocate the residuals to each fine pixel inside it. Since the
coarse image at T2 is the only information known at that time, its spatial interpolation can produce
another spatial predicted image. Combined with the local uniformity characteristics of the pixel,
the allocation weight can be estimated. Let RFR(xij,yij) be the fine residuals at location (xij,yij), which is
calculated as:

RFR(xi j, yi j) = w(i j, i j) ×RCR(xi, yi) (20)

where w(ij,ij) is the allocated weight at fine pixel (ij,ij) inside the coarse pixel at location (xi,yi).
After residual compensation the fine predicted image at T2 is:

F(xi, yi, t2) = F(xi, yi, t1) + ∆FT + RFR(xi j, yi j) (21)

Since the residual distribution is allocated within each coarse pixel, the distributed image will have
obvious coarse-grained effect at the edge of each coarse pixel. In order to overcome this problem and
maintain the spectral characteristics of the original image, further refinement process is implemented
using spectrally similar pixels within the neighborhood of target pixel (xij,yij):

F(xi, yi, t2) = F(xi, yi, t1) +
n∑

k=1

wk × (∆FT + RFR(xii, yi j)) (22)

where n is the total number of similar pixels and wk is the weight of the similar pixel k.

3. Experiments

3.1. Study Area and Data

Two sets of images in this study were used for testing the proposed method. The fine images are real
Landsat remote sensing data from public remote sensing datasets provided by Dr. Emelyanova et al. [23].
In order to avoid the influence of radiometric and geometric inconsistencies from different sensors on
the fusion algorithms, degraded MODIS-like images were used as coarse images, which is a commonly
used strategy in performance comparison of spatiotemporal satellite image fusion models [11]. In all of
the experiments, the degrading factor was 16. Six spectral bands were used: red, green, blue, infrared,
and two shortwave infrared bands.

The first set of data come from the Coleambally Irrigation Area (Coleambally), which is located
in southern New South Wales of Australia (34.0034 E, 145.0675 S). This region is planted with a
variety of different crops. These scattered, small, patchy crops show a complicated distribution
with heterogeneous characteristics. The Landsat images were acquired on 25 December 2001 (T1),
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and 12 January 2002 (T2). Figure 3a,b show the fine images at T1 and T2, which have a size of
1200 × 1200 and a spatial resolution of 25 m. Figure 3c,d are the corresponding degraded MODIS-like
images. Coleambally mainly consists of irrigated rice crops and other farmlands. It can be seen that this
period happens to be the austral summer growing season, which leads to obvious temporal changes.
The input to the spatiotemporal fusion algorithm is the pair of images taken on 25 December 2001
(Figure 3a,c at T1), and the coarse image taken on 12 January 2002 (Figure 3d at T2). The output is
the predicted fine image at T2 based on the three available images. Figure 3b presents the evaluation
reference image for the predicted image at T2.
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The second set of data comes from the Lower Gwydir Catchment (“Gwydir”) located in northern 
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Figure 3. Dataset of Coleambally: real Landsat-7 images acquired on 25 December 2001 (a),
and 12 January 2002 (b), (c,d) are simulated MODIS-like images with a degrading factor 16.

The second set of data comes from the Lower Gwydir Catchment (“Gwydir”) located in northern
New South Wales of Australia (149.2815 E, 29.0855 S). This site is representative of dramatic temporal
change because of a large flooding event that occurred in mid-December 2004. The Landsat images
were acquired on 26 November 2004 (T1), and 12 December 2004 (T2). Figure 4a,b show the fine images
at T1 and T2, which have a size of 1600 × 1600 and a spatial resolution of 25 m. Figure 4c,d are the
corresponding degraded MODIS-like images. It can be seen that many areas at T1 change to large,
water-inundated areas at T2 due to the sudden flooding. Different from that in Coleambally, the large
temporal change of Gwydir mainly can be attributed to the land cover type change. The input to the
spatiotemporal fusion algorithm is the pair of images taken on 26 November 2004 (Figure 4a,c at T1),
and the coarse image taken on 12 December 2004 (Figure 4d at T2). The output is the predicted fine
image at T2 based on the three available images. Figure 4b is the reference image for the predicted
image at T2.
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3.2. Comparison and Evaluation

To evaluate the performance of the adaptive-SFSDAF algorithm quantitatively and visually, four
comparison algorithms are selected as benchmark methods: FSDAF [11], SFSDAF [39], FIT-FC [9],
and UBDF [27]. The above four methods were selected due to the following reasons: (1) FSDAF
is a robust model at various scales [20]; (2) SFSDAF is a recently developed fusion algorithm
based on FSDAF and had better performance than the existing representative fusion methods in
all of the experiments reported as it incorporated sub-pixel class fraction change information in the
fusion methods; (3) FIT-FC is computationally efficient in comparison to other fusion algorithms in
the literature; and (4) UBDF is the most cited model in the unmixing based methods. Among all
experiments, for FSDAF, SFSDAF and UBDF, the number of land cover classes was set to 4, for FSDAF,
SFSDAF and FIT-FC, the number of similar pixels was set to 20, and the size of the sliding window was
set to 16. For UBDF and FIT-FC, the size of the sliding window in MODIS image was 5 × 5 and 3 × 3
coarse-resolution pixels respectively.

Five indices were calculated for accuracy assessment: root mean square error (RMSE), mean
absolute difference (MAD), correlation coefficient (CC), structure similarity (SSIM), and peak
signal-to-noise ratio (PSNR). Among these indices, RMSE and MAD were used to gauge the prediction
error between the fused image and the real image. The closer the values of RMSE and MAD were to 0,
the better the performance. CC was used to measure the linear correlation between the fused image
and the real image, and SSIM was used to show the structural similarity between them. The closer the
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values of CC and SSIM were to 1, the more similar the two images. In addition to the above indices,
an assessment index, PSNR, was also used to evaluate fusion quality from the perspective of applying
remote sensing images. Finally, we further compared the processing time between adaptive-SFSDAF
and the above four comparison algorithms.

4. Results

4.1. Test Using the Coleambally Dataset with a Heterogeneous Landscape

Figure 5 shows the results of the fusion predicted by the five methods. The rows from left to right
successively show the two original Landsat images (see Figure 5a,b) and the UBDF, FIT-FC, FSDAF,
SFSDAF, and adaptive-SFSDAF images (see Figure 5c–g), respectively. Figure 6 shows the magnified
area in the yellow box in Figure 5b. It can be seen that all the fusion methods can reasonably predict
the Landsat image at T2. However, the methods still have apparent differences when focusing on the
spatial details of the magnified area. Particularly, it can be seen that in the yellow ellipses, the SFSDAF
and adaptive-SFSDAF images are the most similar to the real Landsat image at T2, but both the FSDAF
and FIT-FC images show some small crop parcels with dissimilar changes in color. UBDF has the worst
performance. Generally, FSDAF and SFSDAF are better than UBDF, which can be further confirmed by
the green ellipses where UBDF exhibits an incorrect white area (see Figure 6d). In addition, we can see
that although adaptive-SFSDAF only performed abundance unmixing on selected pixels based on the
guided mask map, there is almost no difference between SFSDAF and adaptive-SFSDAF in both the
overall and detailed images.
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images predicted by Unmixing-Based Data Fusion (UBDF) (c), FIT-FC (d), FSDAF (e), SFSDAF (f) and
adaptive-SFSDAF (g).
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The quantitative results are shown in Table 1. The table shows the quantitative evaluation of
the original images at T1 and the fusion images from the five methods, with the real image at T2 for
reference. Compared with those of SFSDAF, the indices of adaptive-SFSDAF are slightly degraded but
still better than those of FSDAF. For example, band 4 has the highest temporal variation among all
6 bands (RMSE > 0.1); for adaptive-SFSDAF, the RMSE is 0.0355, with a decrease of 0.0005 compared
to that of FSDAF and an increase of 0.0001 compared to that of SFSDAF. In terms of CC and SSIM
of band 4, adaptive-SFSDAF has a value of 0.8427 and 0.7544, respectively, with gains of 0.0048 and
0.0056 over those of FSDAF, and with a decrease of 0.0015 and 0.0017 compared to those of SFSDAF.

Table 1. Accuracy Assessment of the Five Fusion Methods at the Coleambally Site in Figure 3. Bold data
indicate the most accurate method.

T1 UBDF FIT-FC FSDAF SFSDAF Adaptive-SFSDAF

RMSE

Band1 0.0258 0.0172 0.0151 0.0118 0.0113 0.0116
Band2 0.041 0.0277 0.0226 0.0179 0.0169 0.0175
Band3 0.0617 0.0469 0.0352 0.0283 0.0264 0.0275
Band4 0.1152 0.0557 0.0438 0.036 0.0354 0.0355
Band5 0.0802 0.0519 0.0415 0.0357 0.0344 0.0354
Band7 0.0541 0.041 0.0336 0.0292 0.0284 0.029

MAD

Band1 0.0204 0.0122 0.0107 0.0082 0.0079 0.0082
Band2 0.0321 0.0196 0.0159 0.0123 0.0117 0.0123
Band3 0.0482 0.0324 0.0242 0.0191 0.0179 0.0188
Band4 0.0805 0.0414 0.0312 0.0247 0.0245 0.0247
Band5 0.0626 0.0368 0.0289 0.0244 0.0234 0.0242
Band7 0.0409 0.029 0.0233 0.0196 0.0191 0.0195

CC

Band1 0.6586 0.7869 0.8368 0.9036 0.9128 0.9082
Band2 0.6427 0.7508 0.8345 0.9006 0.9119 0.9057
Band3 0.731 0.7702 0.8732 0.9194 0.9305 0.9246
Band4 0.0898 0.5633 0.7481 0.8379 0.8442 0.8427
Band5 0.8463 0.8585 0.9102 0.9339 0.939 0.9356
Band7 0.8694 0.8849 0.9237 0.9427 0.9459 0.944
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Table 1. Cont.

T1 UBDF FIT-FC FSDAF SFSDAF Adaptive-SFSDAF

SSIM

Band1 0.8629 0.8824 0.9053 0.9234 0.9275 0.9239
Band2 0.8365 0.8079 0.869 0.8832 0.891 0.8863
Band3 0.7655 0.6914 0.7906 0.8122 0.8266 0.8173
Band4 0.6321 0.6231 0.7145 0.7488 0.7561 0.7544
Band5 0.6994 0.6823 0.7702 0.7689 0.7814 0.7763
Band7 0.7529 0.7298 0.8026 0.8062 0.8134 0.8103

PSNR

Band1 31.7545 35.2938 36.4347 38.5496 38.954 38.7268
Band2 27.748 31.1607 32.903 34.9645 35.4478 35.149
Band3 24.2001 26.5832 29.0748 30.9549 31.5601 31.2184
Band4 18.7718 25.0879 27.1724 28.8701 29.0257 28.9879
Band5 21.9126 25.6997 27.6463 28.9346 29.2691 29.0167
Band7 25.3384 27.7344 29.4774 30.6877 30.9286 30.7642

4.2. Test Using the Gwydir Dataset with Land Cover Type Change

Figure 7 presents the results of the fusion predicted by the five methods. Figure 7a,b show
the two original Landsat images, while Figure 7c-g show the UBDF, FIT-FC, FSDAF, SFSDAF,
and adaptive-SFSDAF images, respectively. Figure 8 shows the magnified area in the yellow box
in Figure 7b. It is obvious that UBDF is the worst among the five methods, as it is not fine enough
to describe flooding area at various scales (see Figure 7c, with an incorrect predicted flooding area,
and Figure 8d, with blocky boundaries in detail). This is because UBDF is a local window-based
unmixing method and is not suitable for landscapes with land cover type change. FIT-FC and
FSDAF exhibit better prediction for the flooding areas but still has obvious dissimilar patches in the
green ellipse. The SFSDAF and adaptive-SFSDAF images are the most similar to the real Landsat
image. According to the visual comparison, adaptive-SFSDAF and SFSDAF are generally similar both
overall and in detail.
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Figure 8. Magnified images in the yellow box shown in Figure 7b: original Landsat image
on 26 November 2004 (a), original MODIS-like and Landsat images on 12 December 2004 (b,c), and the
images predicted by UBDF(d), FIT-FC(e), FSDAF(f), SFSDAF(g), and adaptive-SFSDAF(h).

Table 2 shows the quantitative comparison results of the five methods. It appears that UBDF has
the worst performance among all the methods, which is consistent with the results reported in [20].
For all the bands, SFSDAF generated lower RMSE and MAD and higher CC, SSIM and PSNR
values compared with those of FSDAF. Adaptive-SFSDAF is generally consistent with SFSDAF
in terms of RMSE and MAD, but for band 4, band 5, and band 7, it predicted a slightly
higher CC (band 4, 0.8971 vs. 0.895; band 5, 0.8278 vs. 0.8273; band 7, 0.8238 vs. 0.8212) and SSIM
(band 4, 0.8119 vs. 0.8043; band5, 0.6391 vs. 0.6347; band 7, 0.723 vs. 0.7198) compared with those of
SFSDAF. The 4th, 5th, and 7th bands have the largest temporal change among all the bands, suggesting
that adaptive-SFSDAF has advantages in maintaining structural similarity for images with large
temporal change.

Table 2. Accuracy assessment of the five fusion methods at the Gwydir site in Figure 4. Bold data
indicate the most accurate method.

T1 UBDF FIT-FC FSDAF SFSDAF Adaptive-SFSDAF

RMSE

Band1 0.0295 0.0152 0.0115 0.0101 0.0098 0.0099
Band2 0.039 0.0222 0.017 0.0145 0.014 0.014
Band3 0.0508 0.0273 0.0207 0.0175 0.017 0.017
Band4 0.0792 0.0524 0.0331 0.0289 0.028 0.0278
Band5 0.1737 0.063 0.0508 0.0444 0.0436 0.0437
Band7 0.1385 0.0444 0.0354 0.0316 0.0313 0.0311

MAD

Band1 0.0256 0.0107 0.0079 0.0073 0.0071 0.0072
Band2 0.0335 0.0156 0.0117 0.0103 0.01 0.01
Band3 0.0445 0.0189 0.014 0.0123 0.0119 0.0119
Band4 0.0636 0.0391 0.0242 0.0212 0.0204 0.0204
Band5 0.1516 0.048 0.0371 0.0331 0.0324 0.0327
Band7 0.1243 0.033 0.0255 0.0231 0.0228 0.0227

CC

Band1 0.3881 0.6563 0.8185 0.8627 0.8702 0.8684
Band2 0.3382 0.6523 0.8096 0.8662 0.8749 0.8746
Band3 0.3871 0.6531 0.8142 0.8705 0.8801 0.8793
Band4 0.4963 0.5898 0.8495 0.8877 0.895 0.8971
Band5 0.2927 0.5931 0.7564 0.8192 0.8273 0.8278
Band7 0.4002 0.586 0.7595 0.8149 0.8212 0.8238
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Table 2. Cont.

T1 UBDF FIT-FC FSDAF SFSDAF Adaptive-SFSDAF

SSIM

Band1 0.8425 0.9093 0.9397 0.9437 0.947 0.9463
Band2 0.8225 0.8575 0.8987 0.9095 0.9156 0.9157
Band3 0.7784 0.8194 0.8712 0.8851 0.8941 0.8937
Band4 0.7109 0.6064 0.7735 0.7903 0.8043 0.8119
Band5 0.4178 0.5096 0.5956 0.62 0.6347 0.6391
Band7 0.4229 0.6029 0.6857 0.7068 0.7198 0.723

PSNR

Band1 30.5947 36.3693 38.8205 39.9448 40.1689 40.1124
Band2 28.1789 33.08 35.3827 36.8026 37.0646 37.05
Band3 25.8912 31.2827 33.6768 35.1207 35.4151 35.3817
Band4 22.0276 25.6164 29.6146 30.7911 31.0706 31.1095
Band5 15.2018 24.018 25.8872 27.045 27.2041 27.1898
Band7 17.1708 27.0463 29.0097 29.9939 30.0891 30.1437

4.3. Comparison of Computation Times

The computation times of different spatiotemporal fusion algorithms are shown in Table 3.
The computer configuration for the experiments was an Intel(R) Core (TM) i7-8750H processor
(2.20 Ghz) with 8 GB RAM. In our study, UBDF, SFSDAF, and adaptive-SFSDAF were implemented in
MATLAB R2019a, and FIT-FC and FSDAF were implemented in ENVI5.1/IDL8.3. In order to make an
accurate and fair comparison, the computation time of MATLAB platform does not include the step
of reading input data or writing output data and only concerns the processing steps. The number of
classes in all methods is 4. As listed in Table 3, adaptive-SFSDAF and FIT-FC are the fastest among all
the models, indicating that they are both suitable for large area applications. It can be seen that in the
first example, the computation time of FIT-FC and adaptive-SFSDAF was comparable; however, in the
second example with larger image size, adaptive-SFSDAF was slightly faster than FIT-FC. This is mainly
because the adaptive selection strategy of adaptive-SFSDAF effectively eliminates a lot of unnecessary
local unmixing calculations, while FIT-FC still needs to perform local regression and spatial filter
calculations pixel by pixel. It is worth mentioning that although SFSDAF has more processing steps
than FSDAF, its computing efficiency is still very high because it used bicubic interpolation method
instead of thin plate spline (TPS) interpolation method. UBDF is less efficient than others due to lots of
local-based unmixing calculations.

Table 3. Comparison of the computation time of different spatiotemporal fusion algorithms (unit: seconds).

Example 1 Example 2

Total Time Time of Spectral
Unmixing

Number of
Unmixed Pixels Total Time Time of Spectral

Unmixing
Number of

Unmixed Pixels

UBDF 757.1 - - 1572.0 - -
FIT-FC 286.2 - - 506.3 - -
FSDAF 515.1 - - 948.3 - -

SFSDAF 343.2 73.3 5625 574.2 89.4 10,000
Adaptive-SFSDAF 286.4 14.2 1100 504.8 20.4 2295

The adaptive-SFSDAF proposed in this paper is an improved version of SFSDAF with greater
calculation efficiency. Therefore, the focus was the comparison of the computation times between
SFSDAF and adaptive-SFSDAF. As shown in Table 3, the total computation time of adaptive-SFSDAF
is significantly reduced compared to that of SFSDAF. Adaptive-SFSDAF required approximately 57 s
less than SFSDAF in the first example and approximately 69 s less than SFSDAF in the second example.
The middle column in each example also shows the time spent solving class abundances by spectral
unmixing, and the third column gives the corresponding number of unmixed pixels. Since the
computation time of SFSDAF is nearly proportional to the number of coarse-resolution pixels [39],
the maximum possible reduction in the number of unmixed pixels while retaining fusion performance
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can greatly improve the computational efficiency of SFSDAF. It is demonstrated in Table 3 that the total
number of unmixed pixels of adaptive-SFSDAF in example 1 is 19.56% of that of SFSDAF, and the
total number of unmixed pixels in example 2 is 22.95% of that of SFSDAF. Therefore, the time used
for spectral unmixing can be reduced to approximately 20% of that of SFSDAF by adaptive-SFSDAF.
For example, in experiment 1, SFSDAF required 73.3 s, whereas adaptive-SFSDAF required 14.2 s.
The results in experiment 2 also support the results from experiment 1 (89.4 s for SFSDAF vs. 20.4 s for
adaptive-SFSDAF).

5. Discussion

For the spatiotemporal image fusion methods used in remote sensing, spatial heterogeneity
and land cover type change are two factors that greatly affect performance [11,39], To improve the
processing speed of SFSDAF, adaptive-SFSDAF selectively uses class abundance change information
by a guided mask map in the estimation of the temporal prediction image. Compared with SFSDAF,
adaptive-SFSDAF exhibits different performance for the two typical experimental landscapes. Concrete
theoretical analysis and results are described next.

5.1. Comparison of Adaptive-SFSDAF and SFSDAF for Spatially Heterogeneous Landscapes

The Coleambally dataset is for a typical spatially heterogeneous landscape. From the original two
Landsat images, it can be seen that there are many small patches of fragmented crops in the scene,
which have irregular shapes and a complex spatial distribution. Due to crop phenology, the reflectance
values changed significantly. The difficulty of spatiotemporal image fusion for highly heterogeneous
landscapes lies in the large number of mixed pixels. SFSDAF estimates both the endmember change
and subpixel class fraction change when performing temporal prediction. The endmember change
is derived for the entire image, while the subpixel class fraction change is estimated for each pixel;
this derivation improves the inaccurate estimation of local changes in mixed pixels of heterogeneous
regions. Therefore, the performance of SFSDAF is better than that of FSDAF. Adaptive-SFSDAF uses
selective class abundance change information based on the guided mask map, which can be seen as a
soft transition from FSDAF to SFSDAF, and its performance is generally intermediate.

Figure 9 plots the adaptive-SFSDAF accuracy indices versus the mask threshold for the
Coleambally site. The green and red lines represent FSDAF and SFSDAF, respectively. The black
line between them represents adaptive-SFSDAF, which is consistent with our analysis. Furthermore,
it can be seen that the curves are smoother when the mask threshold is farther away from 0.5;
this indicates that, in these intervals, the performance of the fusion method does not increase as the
number of unmixed pixels increases. As a result, using more pixels for unmixing did not necessarily
produce better results. In general, with a decrease in the mask generation threshold, the performance
of adaptive-SFSDAF will become closer to SFSDAF.

5.2. Comparison of Adaptive-SFSDAF and SFSDAF for Landscapes with Land Cover Type Change

The Gwydir site is a typical landscape with land cover type change. The sudden flood event caused
abrupt land cover type change between the input and prediction dates. SFSDAF incorporated the
change in class abundance in each fine pixel and improved the performance compared to that of FSDAF
by accurately estimating the water-inundated area. However, the inundated area only occupies a small
part of the whole area and, hence, most ground cover has no abrupt land cover changes. More precisely,
most pixels still exhibit global endmember changes over time. Therefore, it is not necessary to unmix
all pixels one by one, which incurs a large computational burden for the fusion method. For this
study area, the water abundance map at prediction time (T2) is provided in Figure 10a, and the
guided mask map generated by adaptive-SFSDAF is shown in Figure 10b. We can see that the
guided mask map successfully detects and covers the inundated area, indicating where land cover
type change occurs. These detected outliers are very difficult to estimate and primarily affect the
performance of spatiotemporal fusion methods. Adaptive-SFSDAF can adaptively detect and unmix
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these outliers in the image and achieve outstanding performance in balancing the computational
efficiency and accuracy of the fusion results when compared to those of SFSDAF.

From a methods point of view, it is known that, in order to estimate the abundance information
at T2, a relatively long computation chain is used in which each step has some assumptions regarding
estimation; thus, errors generated by the entire computation chain cannot be ignored. Unlike the
Coleambally landscape, Gwydir has a relatively large gradually changing area, except for the
abruptly flooded area. This indicates that a relatively large area contains unchanged-type pixels with
approximately invariant class abundance. Using global predictions in these areas not only avoids
unnecessary calculations, but also can reduce error in the long computation chain. Although a small
number of pixels in the whole area are unmixed by adaptive-SFSDAF, the overall prediction error
(RMSE and MAD values) does not decrease, and since the fine image at T1 provides the only true
structure of the overall image, the CC and SSIM values are slightly improved in the last three spectral
bands with the largest temporal change.
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6. Conclusions

Spatiotemporal image fusion methods in remote sensing establish the super-resolution problem
in three dimensions: time, space, and spectrum. These methods also cover the numerous advanced
technologies of remote sensing intelligent processing such as weighting functions, unmixing, regression,
machine learning, and so on. The development of fusion methods effectively improved the utilization
of the large amount of multi-modal remote sensing data and promoted the wide application of satellite
remote sensing to human activity and disaster monitoring, among other applications. Adaptive-SFSDAF
is based on SFSDAF, which is the best-performing method among existing spatiotemporal fusion
methods with minimal input pairs presented recently. By adaptively selecting class abundance
change information for temporal estimation, adaptive-SFSDAF significantly reduced the number
of unmixed pixels while retaining outstanding fusion performance. Two groups of challenging
landscapes with high heterogeneity and abrupt land cover type change are selected to analyze the
performance of adaptive-SFSDAF. The experimental results showed that adaptive-SFSDAF could
effectively reduce the computation of unmixing processing with very little loss of fusion performance.
More specifically, the following conclusions were drawn for each specific type of site: (1) for landscapes
with high heterogeneity, due to a large number of mixed pixels contained in the image, the quality
index performance of adaptive-SFSDAF falls between those of FSDAF and SFSDAF. However,
visual comparisons of adaptive-SFSDAF and SFSDAF show no substantial differences; (2) for landscapes
with land cover type change, adaptive-SFSDAF did not show degraded fusion performance. On the
contrary, it had slightly higher performance in terms of retaining the image structure. Therefore,
unmixing all abundance changes in the scene would not ensure better performance for fusion methods.

It is worth emphasizing that since adaptive-SFSDAF is built on SFSDAF, it is also not suitable
for predicting products (such as the vegetation index [41], surface temperature [42], etc.) with only
one band. In addition, although SFSDAF improved performance by incorporating class abundance
changes in temporal estimates, it is much more sensitive to the registration error of the coarse-fine
image pair since all class abundance change estimation occurs inside a single coarse-fine pixel pair.
Adaptive-SFSDAF reduced the number of unmixed pixels and, hence, reduced this sensitivity to some
extent. However, how to further improve the robustness of the fusion method to registration errors is
still worthy of further discussion.
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Abbreviations

K denotes the number of classes
N denotes the number of selected coarse pixels
l denotes the number of bands
t1 denotes the observation date T1
t2 denotes the observation date T2
ξ denotes the mask generation threshold
n denotes the total number of similar pixels
C(xi,yi,t1) denotes the ith coarse pixel value at T1
C(xi,yi,t2) denotes the ith coarse pixel value at T2
∆F (c) denotes the cth endmember change information from T1 to T2
∆FT denotes the estimated temporal change information from T1 to T2
∆T(xi,yi,b) denotes the ith difference value between C(xi,yi,t2) and C(xi,yi,t1) in band b
→

∆T(xi, yi) denotes the ith difference vector between C(xi,yi,t2) and C(xi,yi,t1)
→

∆TEM(xi, yi) denotes the ith estimated temporal change due to endmember change from T1 to T2
λ(xi,yi) denotes the ith normalized measure index, which ranges from 0 to 1
mask(xi,yi) denotes the ith binary mask value
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