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Abstract: This paper introduces a methodology for predicting and mapping surface motion beneath
road pavement structures caused by environmental factors. Persistent Scatterer Interferometric
Synthetic Aperture Radar (PS-InSAR) measurements, geospatial analyses, and Machine Learning
Algorithms (MLAs) are employed for achieving the purpose. Two single learners, i.e., Regression
Tree (RT) and Support Vector Machine (SVM), and two ensemble learners, i.e., Boosted Regression
Trees (BRT) and Random Forest (RF) are utilized for estimating the surface motion ratio in terms
of mm/year over the Province of Pistoia (Tuscany Region, central Italy, 964 km2), in which strong
subsidence phenomena have occurred. The interferometric process of 210 Sentinel-1 images from
2014 to 2019 allows exploiting the average displacements of 52,257 Persistent Scatterers as output
targets to predict. A set of 29 environmental-related factors are preprocessed by SAGA-GIS, version
2.3.2, and ESRI ArcGIS, version 10.5, and employed as input features. Once the dataset has been
prepared, three wrapper feature selection approaches (backward, forward, and bi-directional) are
used for recognizing the set of most relevant features to be used in the modeling. A random splitting
of the dataset in 70% and 30% is implemented to identify the training and test set. Through a Bayesian
Optimization Algorithm (BOA) and a 10-Fold Cross-Validation (CV), the algorithms are trained and
validated. Therefore, the Predictive Performance of MLAs is evaluated and compared by plotting
the Taylor Diagram. Outcomes show that SVM and BRT are the most suitable algorithms; in the
test phase, BRT has the highest Correlation Coefficient (0.96) and the lowest Root Mean Square
Error (0.44 mm/year), while the SVM has the lowest difference between the standard deviation of
its predictions (2.05 mm/year) and that of the reference samples (2.09 mm/year). Finally, algorithms
are used for mapping surface motion over the study area. We propose three case studies on critical
stretches of two-lane rural roads for evaluating the reliability of the procedure. Road authorities could
consider the proposed methodology for their monitoring, management, and planning activities.

Keywords: infrastructure monitoring; PS-InSAR; machine learning; bayesian optimization algorithm;
classification and regression tree; support vector machine; boosted regression tree; random forest;
Taylor diagram; surface motion

1. Introduction

The different aspects of the daily life of most people and communities are intertwined with the
roads [1]. Therefore, hazard prevention, planning, monitoring, inspection, and maintenance of roads
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network is critical. Non-Destructive High-Performance Techniques are essential tools for managing
extended and complex road networks. By such techniques, road authorities can efficiently obtain
reliable information concerning the causes of distresses (exogenous and endogenous factors) and
consequences (infrastructure damages and deficiencies) of the assets they manage.

Currently, Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique
is widely employed in infrastructure monitoring and inspection since it allows achieving reliable
outcomes in the identification and prevention of infrastructural instabilities over time. However,
PS-InSAR provides a point-based outcome and, therefore, infrastructures are not generally covered
wholly by PS measures. Especially by using non-high-resolution satellites, there is usually no sufficient
and homogeneous number of PS for assessing the condition of the assets, comprehensively. Besides,
the PS-InSAR technique is not able to define the causes that produce surface motions. Considering the
strengths and weaknesses of PS-InSAR for road monitoring and inspection activities, it is essential to
optimize its functionality. To the best of our knowledge, little or nothing has been discussed on the use
of PS-InSAR outcomes for modeling and predicting infrastructure instabilities for road infrastructure
monitoring and management.

Accordingly, this research fits into the field of road maintenance using SAR-based sensors, through
which we want to investigate the possibility of defining a predictive and preventive strategy. In other
words, we aim to define a methodology that is able to exploit the PS-InSAR survey and allows mapping
the surface movement at any point over infrastructures. Furthermore, this methodology should be able
to predict instabilities even where PS are absent, and also highlight the causes of such motions, enabling
road authorities to intervene before the triggering of a potentially critical phenomenon. By exploiting
this strategy, road authorities should optimize the prevention, planning, monitoring, inspection, and
maintenance of their network.

The primary hypothesis of the present research is that the surface motion recorded by the PS-InSAR
technique can be correlated to road pavement deformations and damages. Once the Machine Learning
Algorithms (MLAs) have been calibrated, through this assumption, it is possible to map surface
movements and detect where road pavement structures are damaged.

In combination with SAR, the proposed methodology exploits the capability of advanced statistical
modeling, such as MLAs, that can associate the most relevant conditioning factors with the target
variable examined. Such target output (i.e., the dependent variable of the MLAs) is the average yearly
surface motion identified by a PS-InSAR survey. In contrast, conditioning factors (i.e., the independent
variables of the MLAs) are associated with exogenous events of infrastructures. Such events can alter
infrastructure quality and are associated with natural phenomena, such as earthquakes, landslides,
subsidence, sinkholes, and floods. Such events can be triggered by topological, geomorphological,
hydrological, and social systems of the surrounding environment of infrastructures. The suggested
methodology should enhance the feasibility of well-structured road maintenance plans, recognizing
the most relevant interventions that infrastructures demand in advance.

This paper is an extended and updated version of Reference [2]. Specifically:

• An extensive literature review has been conducted in all sections of the paper by adding
120 references;

• This study proposes a prediction of surface motion rate for an extended area (from 132 km2 to 964 km2);
• A wrapper feature selection approach has been introduced in order to reduce the computational

complexity of the algorithms, improving their interpretability, reduce overfitting issues, and
also increase the overall predictive performance. Our previous study did not include this
preprocessing step;

• Only PS observations have been used as target output to be modeled. Conversely, in Reference [2],
we considered as output an interpolated map of PS-InSAR measures realized by the Inverse
Distance Weighting process. Therefore, in this paper, we deal with real observation, avoiding
the hypothesis that the measurements are correlated with each other through a predetermined
distance function;
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• In this paper, we not only used Regression Tree (RT) algorithm that was used in Reference [2]
but also investigated three MLAs, namely Support Vector Machine (SVM), Random Forest (RF),
and Boosted Regression Trees (BRT);

• Bayesian Optimization Algorithm (BOA) and 10-Fold Cross-Validation (CV) have been
implemented to ensure that the best set of hyperparameters has been found out automatically.
Therefore, we avoided to use of manual, random, or grid searches (that require user experience
and a higher computational cost);

• The Taylor Diagram and scatterplots have been computed to evaluate and compare the algorithms
appropriately (in addition to R2, Root Mean Square Error (RMSE), and Mean Absolute Error (MAE));

• Once the surface motion maps have been computed, we propose two additional case studies
(i.e., two critical road sites) for evaluating the reliability of the suggested methodology.

The remainder of this paper is organized as follows: In Section 2, InSAR techniques for road
monitoring are reviewed and several papers where the authors dealt with Machine Learning for
modeling environmental-related issues are mentioned. In Section 3, the methodology: study area,
workflow, database preparation (data collection, input/output definition, and feature selection), MLAs
implementation (training, validation, test, evaluation, and comparison) are described. Afterward, in
Section 4, the main findings of the research and future works are reported and discussed. Finally,
the closing discussion and conclusion are presented in Section 5.

2. Related Works

2.1. InSAR Techniques and InSAR for Road Monitoring and Inspection

SAR is an active sensor mounted on both airborne and spaceborne platforms able to realize
high-resolution radar images of the earth’s surface. SAR uses the microwave band in the broad radio
spectrum; thus, it can provide images during day and night, and it can penetrate cloud cover and,
sometimes, rain [3].

In 1974 the concept of SAR interferometry (InSAR) for earth’s surface observation had been
introduced [4]. Differential InSAR (D-InSAR) technique has been developed to measure gradual surface
motion between a couple of SAR image acquisitions. The core idea is to observe the difference between
phase information that is correlated to the spatial changes of surface height. Therefore, D-InSAR
can produce accurate digital elevation models (DEM) at a relatively low cost and detect deformation
caused by various phenomena, such as earthquakes, volcanic activities, and glacier flows. D-InSAR
allows monitoring large areas [5] with accuracy within centimeters to millimeters. Unfortunately, the
accuracy of D-InSAR could be affected and reduced by two primary issues: temporal and geometric
decorrelation and phase distortion due to atmospheric circumstances. Furthermore, since D-InSAR
exploits only two SAR images, it is not capable of describing displacement patterns over time.

PS-InSAR has been promoted to overcome the drawbacks of D-InSAR. Indeed, by employing a long
stack of co-registered SAR images, a PS-InSAR survey allows practitioners to visualize displacement
patterns and quantify surface motion over time efficiently [6–8]. The PS-InSAR technique provides a
point-based map outcome, in which a massive amount of Persistent (or Permanent) Scatterers (PS)
is generally detected. PS are on-ground stable items for which spectral response does not change
significantly during various SAR image acquisitions. Phase information backscattered from PS is used
to determine the intensity and the temporal pattern of the surface motion along the Line-Of-Sight of
the SAR sensor. Starting from a reference image, called the master image, each new acquisition allows
adding a displacement value to each detected PS. To obtain a concise value, all recorded values are
averaged, thus obtaining the average displacement over time, i.e., the average deformation velocity
(or surface motion rate) of each PS. This deformation rate is generally expressed in millimeters/year.

The highest performance of PS-InSAR is provided in surveys on urbanized areas and
infrastructures, where several stable PS can be found [7,9]. The technique has been used broadly
for monitoring slow or relatively slow movements caused by human-related factors, such as mining
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activities [10,11], tunneling [12,13], and groundwater extraction [14]. Moreover, PS-InSAR can
detect efficiently phenomena in which the environment plays also a key role, e.g., subsidence
phenomena [15–20], landslides [21–27], sinkholes [20,28–31], active rock glacier movements [32,33],
and displacement patterns driven by permafrost processes [34]. Nonetheless, there are some practice
barriers to the use of PS-InSAR; the most significant flaw of this technique is the lack of PS in
non-urbanized areas (e.g., agricultural and forested regions), where irregularities in geometry among
SAR acquisitions generate phase decorrelation and cause a problematic PS identification [35].

In contrast, the ability to efficiently detect surface movements over urbanized large areas with
relatively high accuracy and resolution has allowed the PS-InSAR technique to be developed in the
field of Non-Destructive High-Performance civil infrastructure survey. The range of activities is broad:

• planning, where the PS-InSAR technique is implemented for identifying areas where building
new infrastructures [36];

• prevention, where PS-InSAR is used to provide maintenance plans relying on the magnitude of
the detected surface motion [37];

• monitoring and inspection, an interferometric process is used to detect critical infrastructural
damages, identifying sections in which there are substantial movements [38]. We found researches
on the implementation of PS-InSAR for road infrastructures [36–42], rail infrastructures [29,43–46],
bridges [47–50], and dams [51–54];

Furthermore, Ozden et al. [55] demonstrated by an InSAR benefit/cost analysis that SAR-based
monitoring improves the effectiveness of the overall infrastructure monitoring system and reduces the
total cost. Furthermore, it is worth mentioning that the effect of traffic jams on SAR images can be
avoided as described in Reference [42]. The authors stated that the PS-InSAR outcomes can be used
efficiently for predicting the quality of pavement, and that results are comparable with in-situ road
roughness measurement.

2.2. Environmental Modeling by Machine Learning Modeling

To the best of our knowledge, there is not so much research on the prediction of surface motion
ratio exploiting PS-InSAR measurement and MLAs. In addition to our previous research [2], it is
worth mentioning the work of Deng et al. [56], in which the authors used a Grey–Markov model to
predict subsidence ratio by exploiting PS-InSAR measures. However, such a study is different since
they did not use environmental parameters for predicting subsidence detected by InSAR, and suggest
a prediction of subsidence by a probabilistic approach.

Therefore, the purpose of this subsection is to identify how researchers use MLAs to map the
susceptibility of areas to major natural or human-induced phenomena that cause massive economic
and social losses to the community. We would like to highlight the most investigated issues, the most
implemented MLAs, and the way for evaluating their modeling. Table 1 proposes a review of more
than 40 recent works on environmental modeling by MLAs. It reports the reference (Ref.), the
environmental-related issue investigated (Topic), the type of modeling (Task), i.e., if the MLAs have
been used for classification (C) or Regression (R) purposes, the algorithms implemented (MLAs),
the metrics employed for their evaluation (Performance Metrics), and if the authors made a feature
selection approach in a preprocessing stage before training the MLAs.
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Table 1. Review of papers addressing environmental-related issues by Machine Learning.

Ref. Topic Task MLAs Performance Metrics Feature Selection

[57] Landslide
Susceptibility C LR, LMT, SVM, ANN AUROC, KI, Spec., Sens. VIF

[58] Landslide
Susceptibility C WoE, LR, SVM AUROC PCA, Chi-square test

[59] Landslide
Susceptibility C NB, BLR, RF AUROC VIF, Chi-square test,

Pearson Correlation

[60] Landslide
Susceptibility C CART, RF AUROC, KI, Spec., Sens.,

Prec., Acc., RMSE, MAE VIF

[61] Landslide
Susceptibility C SVM AUROC No

[62] Landslide
Susceptibility C CART Accuracy No

[63] Landslide
Susceptibility C CF, IoE, LR AUROC No

[64] Landslide
Susceptibility C ANN Accuracy No

[65] Landslide
Susceptibility C ANN AUROC No

[66] Landslide
Susceptibility C SVM, LR, ANN Accuracy, Conf. Mat.,

AUROC No

[67] Landslide
Susceptibility C SVM AUROC, KI No

[68] Landslide
Susceptibility C CART AUROC No

[69] Landslide
Susceptibility C ABSGD, SGD, LR,

LMT, FT, SVM

Sens., Spec., Accuracy,
Conf. Mat., AUROC,

RMSE
LSSVM

[70] Landslide
Susceptibility C SVM AUROC No

[71] Landslide
Susceptibility C FR, LR Accuracy, AUROC No

[72] Landslide
Susceptibility C SVM, CART, NB Sens., Spec., Prec.,

Accuracy, KI, AUROC No

[73] Landslide
Susceptibility C SVM, CART, ANFIS AUROC 5 different datasets

have been used

[74] Landslide
Susceptibility C FR Accuracy No

[75] Landslide
Susceptibility C CART, BRT, RF, GLM AUROC VIF, CART, BRT, RF

[76] Landslide
Susceptibility C RF, LR, LMT

Sens., Spec., Accuracy,
AUROC, RMSE, MAE,

F&W
No

[77] Landslide
Susceptibility C SVM, BLR, ADT Sens., Spec., Accuracy,

AUROC, RMSE, F&W ORAE

[78] Landslide
Susceptibility C LMT, LR, NBT, ANN,

SVM
Sens., Spec., Accuracy,
AUROC, RMSE, MAE ORAE

[79] Landslide
Susceptibility Review paper
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Table 1. Cont.

Ref. Topic Task MLAs Performance Metrics Feature Selection

[80]
Mass Movement

Susceptibility (debris flow,
landslides, rockfalls)

C RF, MARS, MDA,
BRT AUROC Pearson

Correlation

[81]
Mass Movement

Susceptibility (debris flow,
landslides)

C LR R2, Conf. Mat. No

[82] Mass Movement
Susceptibility C ANN, FR, LR Accuracy SI, SDC

[83] Gully erosion by
stream power C MARS, FDA, SVM,

RF AUROC VIF

[84] Gully erosion by
stream power C WoE, MARS, BRT, RF AUROC VIF

[85] Gully erosion by
stream power C CF, RF Accuracy, Conf. Mat. VIF

[86] Floods susceptibility C NB, NBT AUROC, KI, Accuracy,
RMSE, MAE VIF, IGR

[87] Floods susceptibility C WoE-SVM
(ensemble) AUROC BSA

[88] Floods susceptibility C SVM, FR AUROC, KI No

[89] Floods susceptibility C EBF, LR, EBF-LR
(ensemble) AUROC VIF

[90] Groundwater Potential
Mapping C CART, BRT, RF, EBF,

GLM AUROC No

[91] Groundwater Potential
Mapping C FR, CART, BRT, RF AUROC No

[92] Groundwater Potential
Mapping C SVM, MARS, RF AUROC, F1, Fall., Sens.,

Spec., TSS, Accuracy LASSO

[93] Groundwater Potential
Mapping C FR, BRT, FR-BRT

(ensemble) AUROC, Spec., Sens. No

[94] Avalanches, rockfalls, and
floods susceptibility C SVM, BRT, GAM TSS, Sens., Spec., AUROC No

[95] Subsidence modeling C CART, RBDT, BRT,
RF TSS, Sens., Spec., AUROC No

[96] Surface settlement
prediction by tunneling R SVM, ANN, GPR R2, RMSE, MAE,

RAE, RRSE
Wrapper Forward

and Backward

[97] Slope stability assessment C/R SVM Accuracy, R2, RMSE, MAE No

[98] Slope stability assessment R ANN, GPR, MLR,
SLR, SVM

R2, RMSE, MAE,
RAE, RRSE

No

[99] Consolidation coefficient of
soil prediction R RF R2, RMSE, MAE

8 different datasets
have been used

[100] Temperature prediction R SVM, ANN MSE No

[101] Prediction of nitrate
pollution of groundwater R SVM, KNN, RF R2, RMSE, Taylor Diagram No

Acronyms of MLAs: CART = Classification and Regression Tree, LR = Logistic Regression, LMT = Logistic
Model Tree, SVM = Support Vector Machine, ANN = Artificial Neural Network, WoE =Weight of Evidence,
BLR = Boosted Logistic Regression, BRT = Boosted Regression Tree, RF = Random Forest, NB = Naïve
Bayes Classifier, NBT = Naïve Bayes Tree, GAM = Generalized Additive Model, GPR = Gaussian Process
Regression, MLR = Multiple Linear Regression, SLR = Simple Linear Regression, MARS = Multivariate Adaptive
Regression Splines, FDA = Flexible Discriminant Analysis, CF = Certainty Factor, IoE = Index of Entropy,
SGD = Stochastic Gradient Descend, FT = Functional Tree, ABSGD = AdaBoost-SGD, FR = Frequency Ratio,
ANFIS = Adaptive Neuro-Fuzzy Inference System, BLR = Bayesian Logistic Regression, ADT = Alternating Decision
Tree, GLM = General Linear Model, EBF = Evidential Belief Function, MDA = Mixture Discriminant Additive,
KNN = K-Nearest Neighbor. Acronyms of Performance Metrics: R2 = Correlation Coefficient, RMSE = Root Mean
Square Error, MAE = Mean Absolute Error, RAE = Relative Absolute Error, RRSE = Root Relative Squared Error,
AUROC = Area Under the Receiver Operating Characteristic, KI = Kappa-Index, F&W = Friedman & Wilcoxon
test, TSS = True Skill Score, F1 = F1-Score, Fall. = Fallout, MSE = Mean Square Error. Acronyms of Feature
Selection: PCA = Principal Component Analysis, Corr. Mat. = Correlation Matrix, VIF = Variance Inflation Factors,
IGR = Information Gain Ratio, LSSVM = Least-Square SVM, BSA = Bivariate Statistical Analysis, ORAE = One–R
Attribute Evaluation, SI = Susceptibility Index, SDC = Standard Deviation Criterion, LASSO = Least Absolute
Shrinkage and Selection Operator.
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Table 1 provides an overview depicting the following aspects:

• Most of the studies involve the prediction of landslides, probably because they are the phenomenon
that is most manifested worldwide. Some other relevant topics are flood susceptibility, gully
erosion by stream power, and groundwater potential mapping. Subsidence, settlements, uplift,
and, in general, surface motion prediction seems to have a lower interest from the academic
community. However, the losses caused by these effects can still be enormous, and it is essential
to be able to predict and mitigate their effects;

• Most of the study involves a classification approach, i.e., the MLAs are calibrated for providing a
binary output; thus, they can predict the presence or the absence of the phenomena, but nothing
can be said regarding the intensity, the duration, and the direction. Conversely, Regression
approaches attempt to predict a numerical output, i.e., they can provide information regarding a
parameter of interest of a phenomenon (e.g., the safety factor in slope stability assessment or the
settlement ratio in subsidence modeling). They suppose that a phenomenon could manifest over
the entire study area;

• An extensive set of implemented MLAs has been identified. There are numerous studies in
which the algorithms are single learners (such as Classification and Regression Tree (CART) or
SVM), and several ones in which ensemble learners are adopted (through aggregation techniques,
such as bagging or boosting). Generally, they belong to three families: tree-based models (e.g.,
CART, RF, and BRT), Artificial Neural Network (ANN)-based models, and SVM-based models.
Other algorithms often used are Logistic Regression (LR), Frequency Ratio (FR) (they only work
for classification tasks), and Multivariate Adaptive Regression Splines (MARS). Other types of
algorithms, less used, are shown in Table 1;

• The metrics for evaluating the performance of MLAs are also manifold. The vast majority of
classification-based studies present the calculation of the Area Under the Receiver Operating
Characteristic (AUROC) and Accuracy. In regression-based studies, the most common parameters
are the R2, RMSE, and MAE;

• A feature selection approach before the training phase is not always implemented. Indeed, in
about half of the reviewed papers, the authors declare that the set of conditioning factors is
defined relying on expert judgment or their previous implementation in other papers, or simply
describe the set of parameters without precise justifications. It must be said, however, that the set
of conditioning factors are often the same for all the reviewed studies.

• When a feature selection approach is implemented, the computation of the Variance Inflation
Factors (VIF) has often been found. This parameter tests the multicollinearity of the factors,
excluding the redundant ones. Unfortunately, VIF can only consider linear relationships between
features, and in complex phenomena, this hypothesis appears strong. However, the VIF proposes
a simple calculation, and the experience demonstrated by its extensive use shows that it still has
a beneficial effect on modeling. Sometimes authors decide to test different subsets of features
(for example, using a set with few features and a set with many of them) and compare the
performance of MLAs. This technique could be useful for identifying a good subset of features
excluding the less relevant ones, but if the subdivision into different datasets does not follow a
specific algorithm, a satisfactory result is not guaranteed. More sophisticated feature selection
methods, such as Principal Component Analysis (PCA) or Wrapper approaches, have been
identified in limited research. Although they are powerful techniques, their limited use could
derive from the excessive computational cost required.

Considering the above information highlighted by a bibliographic review, in this paper, we have
decided to implement four MLAs: two single learners, i.e., RT and SVM, and two ensemble learners, i.e.,
RF (to exploit the advantages of bagging) and BRT (to exploit the potential of boosting). Considering
that these models predict a numerical response, the metrics for evaluating their performance are the
R2, RMSE, and the MAE. Furthermore, to highlight specific problems related to overfitting, clustering,
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or possible outliers, the scatterplots of the training and test phase are shown. Finally, to compare
the MLAs from a graphical point of view, the Taylor Diagram is plotted. Three wrapper feature
selection approaches are used, which allow, through an iterative and automatic procedure, to select a
subset of the most relevant features for the modeling of the phenomenon. Wrappers should reduce
the complexity of the phenomenon, reduce training times, alleviate possible overfitting issues, and
possibly improve the performance of the models. The models are trained (the hyperparameters are
tuned) automatically through the BOA and a 10-Fold CV process on 70% of the dataset (training set)
and tested on the remaining 30% (test set).

3. Methodology

3.1. Study Area

The study area is the Province of Pistoia (Figure 1b), located in the Tuscany Region (Figure 1a),
central Italy, and extends for 964 km2. Considering the strong subsidence that influences the Province,
this area has become attractive for many authors aiming to analyze the magnitude of such effects and the
associated causes; for example, there are studies involving Pistoia [16], the surrounding “Arno” river
basin [35,102–104], and the Florence-Prato-Pistoia plain [17]. In Reference [17], the authors explained
that movements are likely correlated to groundwater overexploitation by numerous nurseries opened
since the 21st century. The high request for water is combined with soft layers compaction, resulting in
a drop in the groundwater level and subsidence. Figure 1c describes the topography of the study area
by its elevation (DEM) map; we can note a mountainous area in the northern part of the area, while
two extensive flat areas are located in the southern part, divided by a not too pronounced mountain
range. In the flat area on the right is located the city of Pistoia.

Furthermore, Figure 1c shows the river network. The network is made up of numerous rivers and
streams, both in the mountainous and in the flat part, distributed evenly over the entire study area.
These rivers flow mainly into the Arno River, the most important in the Tuscany region. Indeed, the
flat areas of the study area are part of the so-called “Firenze-Pistoia-Prato” Arno river basin.

Finally, Figure 1c depicts the road network managed by the Tuscany Region Road Administration
(TRRA). From an operational point of view, TRRA generally carries out monitoring and inspections
of road infrastructures, plans maintenance interventions, and designs new infrastructural works.
Moreover, the TRRA promotes and funds research for road safety analyses [105], planning maintenance
intervention [106], mitigating road pavement noise [107,108], and using renewable materials in
pavement structures [109]. In the province of Pistoia, TRRA manages three regional two-lane rural
roads, called SR435, SR436, and SR66. Two-lane rural roads are single carriageway roads with one
lane for each travel direction [110]. In Italy, such roads should have a lanes’ width greater than 3.75 m,
paved shoulder greater than 1.50 m, a radius of curves greater than 118 m, and a maximum slope of
7%. These roads may eventually cross urban centers (such as the SR66 and SR435, which cross the
city of Pistoia) for short stretches. The TRRA manages only the stretches that persist in rural areas;
the suggested procedure is provided for these road sections but can be extended to the urban context.

Figure 2 describes the land use map of the surrounding area of the Pistoia city center; it allows
understanding the significant overexploitation of water in this area.
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From Figure 2 we can note the imposing presence of nurseries ranging from the outskirts of the
city to the right border of the Province. Pistoia is, in fact, one of the major European centers of nurseries.
Figure A1 describes the Land Use map for the entire study area.
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3.2. Workflow

The steps of the proposed approach have been explained in Figure 3.
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Firstly, data collection has been carried out. Sixteen types of information have been collected and
preprocessed into a GIS platform to define the input features and the target output of the MLAs. A total
of 29 input features have been computed. Subsequently, three wrapper feature selection approaches
(forward, backward, and bi-directional) have been performed to identify the most relevant subset
of features that can be associated with the output target. Specifically, 9 out of 29 features have been
elected as input features. Once the dataset has been prepared, we randomly split it into the training
(70% of the observations) and test set (30%).

Using the training set, the MLAs (RT, SVM, BRT, and RF) have been trained, validated, and
evaluated by R2, RMSE, MAE, and the Scatterplots (phase of the Goodness-of-Fit assessment).
The training phases of each MLA have been carried out by 30 iterations of the BOA; in each iteration,
a 10-Fold CV has been implemented for evaluating the performance of the trained MLA. Therefore,
the hyperparameters of the MLAs have been tuned by the BOA and CV in this phase.

Using the test set and the trained MLAs, the Predictive Performance can be evaluated by R2, RMSE,
MAE, the Scatterplots, and the Taylor Diagram. In this phase, the MLAs have also been compared for
identifying the most efficient and promising ones.

Once the MLAs have been trained and tested, we have employed them for making predictions
and mapping the surface motion ratio over the whole study area, even in areas where there are no
PS measurements.

Finally, we have overlayed the road network that crosses the study area with the predicted surface
motion maps; thus, it is possible to detect all the critical road sites of the network and draw up a priority
road inspection list for planning a monitoring and inspection activity. For ensuring the reliability of
the suggested approach, we propose three case studies of road sites predicted as critical by MLAs.
The following subsections describe each of these phases.
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3.3. Database Preparation

3.3.1. Data Collection

Sixteen types of information have been collected, including elevation, river network, land
use, area type (i.e., localization of the urban and rural areas), localization of the rain gauges and
rainfall data from 2014 to 2019, landslides (localization) and earthquakes (localization and magnitude)
occurred, landslide susceptibility, flood susceptibility, erosion susceptibility, drainage capacity of the
soil, and sand, silt, clay, and organic content of the subsoil. The Functional Center of the Tuscany
Region (http://www.cfr.toscana.it/) provided the information related to the rain gauges localization
and rainfalls. The Traffic Data Monitoring System on the Regional Roads of the Tuscany Region
(https://www.regione.toscana.it/speciali/muoversi-in-toscana/traffico-in-tempo-reale) provided the
information related to the area type. TRRA provided the other data, free of charge, on its Geoscope,
at http://www502.regione.toscana.it/geoscopio/cartoteca.html.

A raster file has provided elevation with a cell size of 10 m per 10 m. River network has been
provided by line-based shapefile. Land use, area type, landslide localization, landslide susceptibility,
flood susceptibility, erosion susceptibility, drainage capacity of the soil, and sand, silt, clay, and organic
content of the subsoil have been provided by polygon-based shapefile. Finally, rain gauges localization
and earthquakes occurred have been provided by point-based shapefile, while rainfall data have been
recorded on spreadsheet files.

Figure A2 reports the map of the area type, rain gauges localization, earthquakes, and landslides
occurred, while Figure A3 shows the susceptibility maps (landslide, erosion, flood, and drainage
capacity of the soil). Finally, Figure A4 describes the composition of the subsoil by the map of sand,
silt, clay, and organic content. Elevation and river network have already been reported previously in
Figure 1c.

3.3.2. Definition of the Input Features and Data Aggregation

In order to define the features employed as input predictors of the MLAs, two GIS platforms
have been used: SAGA-GIS, version 2.3.2 [111], and ESRI ArcGIS (Redlands, CA, USA), version
10.5. The purpose of this phase is to handle the collected data for obtaining additional topographic-,
hydrological-, and environmental-related features useful for modeling the phenomenon of surface
motion. It is not obvious to identify the most critical predictors to model this complex phenomenon,
which could be correlated in a highly non-linear manner to multiple features. Therefore, for their
identification, the strategy adopted consists of two steps: (1) review of the factors most used in the
literature and their computing, and (2) implementation of a strategy for subset feature selection, in
order to limit the set of inputs exclusively to the most relevant and related ones to the target output.

The review of the literature and the data already collected have led to identifying an amount
of 29 potential input features, including 9 topographical-based features (Elevation, Aspect, Slope,
Convergence Index (CI) [112], Curvature, Vector Ruggedness Measure (VRM) [113], Topographic
Position Index (TPI) [114], Topographic Ruggedness Index (TRI) [115], and Slope Length (SL) [116]),
4 hydrological factors (Stream Power Index (SPI) [117], Topographic Wetness Index (TWI) [118],
River Density, and Average Cumulative Yearly Rainfall), 4 environmental-based factors (Direct and
Diffusive Yearly Solar Radiation [119], Wind Exposition (WE) [119], and Earthquake Susceptibility),
2 social system-based factors (Land Use and Area Type), 4 susceptibility-based factors (Landslide
Susceptibility, Flood Susceptibility, Erosion Susceptibility, and Drainage capacity of the soil), and 4
subsoil composition-based factors (sand, silt, clay, and organic content). Distance from Rivers and
Landslides have also been computed.

http://www.cfr.toscana.it/
https://www.regione.toscana.it/speciali/muoversi-in-toscana/traffico-in-tempo-reale
http://www502.regione.toscana.it/geoscopio/cartoteca.html
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Apart from the sixteen features collected (Figures A1–A4) and inserted directly into the models,
several others require to be determined through the GIS platforms. Both SAGA-GIS and ArcGIS
have allowed computing most of them by specific instructions. They are based on mathematical
relations (such as for the calculation of Aspect, Slope, Curvature, CI, TPI, TRI, SL, SPI, TWI),
geospatial interpolations (such as for the computation of River Density, Average Cumulative Yearly
Rainfall, Earthquake Susceptibility, Distance from Rivers, and Distance from Landslides), or more
complex procedures (such as for the definition of the VRM, WE, Direct and Diffusive Solar Radiation).
Figures A5–A7 report the computed topographical factors, hydrological factors, and environmental
factors, respectively. Finally, Figure A8 shows the map of the distance from rivers and distance from
landslides, respectively.

ArcGIS software has been used for computing the following input features:

• Aspect and Slope (exploiting the Elevation) by their homonymous commands;
• Average Cumulative Yearly Rainfall (considering the rain gauges localization and rainfall data)

and the Earthquake Susceptibility (considering the earthquakes localization and magnitude) using
an ordinary spherical kriging interpolation [2,58,61];

• Distance from Rivers and Distance from Landslides by the Euclidean Distance command
(considering the landslides localization and the river network);

• River Density through the Kernel Density command (using the river network as input).
• Furthermore, SAGA-GIS software has been exploited for deriving:
• CI, Curvature, VRM, TPI, TRI, SL, WE, Direct and Diffusive Solar Radiation by their homonymous

commands (considering the Elevation);
• SPI, TWI, by their homonymous commands (considering the Slope and the catchment area derived

from the Elevation).

In order to solve the semantical relations between features, a raster-based grid format with a 10-m
spatial resolution has been used for all the predictors.

The main analytical relations for computing the features obtainable through a single relation, i.e.,
CI, TPI, TRI, SL, SPI, and TWI (Equations (1)–(6)), are reported below. The reader is referred to the
references proposed for the calculation of the remaining more complex input features.

• CI:

CI = [
(1

n

) n∑
i = 1

ϑi − 90
◦

]·
10
9

(1)

where ϑi describes the angle between the aspect of the i-th surrounding neighbor cell and the center
cell (the cell under analysis) and n is the number of neighbors (eight neighbor cells considering a
3-by-3 scheme);

• TPI:

TPI = z0 −
1

nR

∑
i∈R

zi (2)

where z0 is the elevation of the cell under analysis, zi is the elevation of the surrounding cells
within a specified radius (100 m), and nR is the number of cells surrounding z0,

• TRI:

TRI =

√√√ n∑
i, j

(
zi, j − z0

)
(3)

where zi, j is the elevation of each neighbor cell (eight neighbor cells considering a 3-by-3 scheme)
to the elevation z0 of the center cell (the cell under analysis);
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• SL, SPI, and TWI:

SL =
( S

22.13

)0.6
·

(
sin(α)
0.0896

)1.3

(4)

SPI = S· tan(α) (5)

TWI = ln
(

S
tan(α)

)
(6)

where S is the specific area of the catchment (expressed as m2/m of catchment) and α is the slope
gradient (expressed in degrees). Equation (4) shows that SL is computed by knowing information
on catchment area and slope; SAGA-GIS computes them internally by exploiting the Elevation.

It is worth reminding that:

• Slope represents the rate of change of the surface in horizontal and vertical directions from the
cell under analysis;

• Aspect defines the slope direction. The values of Aspect of a cell indicates the compass direction
(expressed in [rad] in the present paper) that the slope faces at that cell;

• Curvature is equal to the second derivative value of the input surface (the Elevation). For each
cell, a fourth-order polynomial function is fit to a surface composed of a 3-by-3 window;

• VRM computes terrain ruggedness by measuring the dispersion of vectors orthogonal to each
cell of the terrain input surface (Elevation). The cell under analysis and the eight surrounding
neighbors are decomposed into three orthogonal components exploiting trigonometric relations,
slope, and aspect. The VRM of the center cell (the cell under analysis) is equal to the magnitude of
the resultant vector. Finally, the magnitude of the resultant vector is divided by the number of
neighbor cells and subtracted from 1 (standardized and dimensionless form). Therefore, VRM
ranges from 0 (flat) to 1 (most rugged) [120];

• WE is represented by the absolute angle distance between the aspect and the azimuth of wind flux
considering the North direction as the reference. It considers surface orientation only, neglecting
the influence of surrounding terrains as well as the slope. Accordingly, WE moves from 0◦

(windward) to 180◦ (leeward). In the present paper, it is expressed in its dimensionless form
(i.e., values lesser than 1 define wind shadowed areas whereas values greater than 1 identify
areas exposed to wind). Considering that the predominant wind directions were not known in
advance, the averaged WE has been computed by imposing several hypothetic directions (i.e., for
each 15◦) [119];

• Direct Solar Radiation received from sun disk (Sdir) and Diffuse Solar Radiation received by the
sky’s hemisphere (Sdir), on an unobstructed horizontal surface, in clear-sky conditions, at an
altitude z, can be computed by Equations (7) and (8) exploiting the Elevation data [119]:

Sdir = sin(θ)·Sc·e
−

∫
∞

z l·∆z
sin (θ) (7)

Sdi f = 0.5· sin(θ)·Sc·c·(1− e−
∫
∞

z l·∆z
sin (θ) ) (8)

where Sc is the solar constant (∼1.367 kW/m2), l is the air density integrated over distance ∆z
from top of the atmosphere to the elevation z, and c < 1 is a coefficient for accounting the loss
of absorbed exo-atmospheric solar energy when passing the atmosphere (in the present study,
c = 0.7).

Table 2 shows the descriptive statistics of the numerical features, in terms of the unit of measure
(Unit), an example reference in which the same input has been used (Ref.), the minimum, maximum,
and mean value (Min., Max., and Mean), the standard deviation, skewness, and kurtosis (St. Dev.,
Skew., and Kurt.).
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Table 2. Descriptive statistics of the numerical input features.

Input Feature Unit Ref. Min. Max. Mean St. Dev. Skew. Kurt.

Elevation [m] [83] 12.19 1792.46 130.93 219.37 2.71 6.99
Aspect [rad] [57] 0.00 6.28 3.01 1.40 0.06 −0.42
Slope [rad] [86] 0.00 1.21 0.06 0.10 2.90 12.23

Curvature [rad] [86] −1.13 0.83 0.00 0.02 −2.27 473.25
Convergence Index [-] [84] −100.00 100.00 0.91 15.75 0.23 7.80

Slope-Length [m] [83] 0.00 1853.38 95.08 130.40 3.11 15.55
Topographic Position Index [-] [94] −40.37 30.33 0.05 2.59 0.07 22.01
Vector Ruggedness Measure [-] [94] 0.00 0.57 0.00 0.01 11.38 247.11
Terrain Ruggedness Index [-] [59] 0.00 18.72 0.46 0.83 4.82 51.54

Average Yearly Rainfall [mm/year] [61] 957.79 1781.72 1092.22 125.83 2.47 7.36
Topographic Wetness Index [-] [83] 4.32 19.99 11.05 2.14 0.12 −0.18

Stream Power Index [m2/m] [61] 0.00 53,146.60 146.48 749.58 25.93 1066.99
River Density [river/km2] [83] 0.00 3.25 0.85 0.43 0.51 0.35

Distance from rivers [m] [86] 0.00 1951.67 401.78 315.72 0.99 0.52
Earthquake susceptibility [magn.] 1.32 1.92 1.60 0.16 −0.40 −1.00
Distance from landslides [m] 0.00 6704.57 1296.57 1278.21 1.11 0.68

Diffusive Yearly Solar Radiation [kWh/m2] [119] 0.67 1.01 0.99 0.03 −2.81 9.57
Direct Yearly Solar Radiation [kWh/m2] [119] 0.10 5.86 4.42 0.28 −0.42 14.64

Wind Exposition [-] [94] 0.79 1.29 0.95 0.05 1.91 5.98
Content of Sand of the subsoil [%] 6.60 67.00 37.53 12.44 0.09 −0.61
Content of Silt of the subsoil [%] 16.60 65.36 45.59 10.44 0.10 0.56

Content of Clay of the subsoil [%] 2.85 51.58 16.91 7.03 1.41 1.70
Content of Organic of the subsoil [%] 0.65 8.24 1.45 0.72 3.34 19.88

Table 3 describes the categorical features in terms of type, i.e., Ordinal (Ord), Categorical (Cat), or
Binary (Bin) feature, and the number of categories.

Table 3. Descriptive statistics of the categorical input features.

Input Feature Type Number of Categories

Drainage Capacity of the soil Ord 6
Flood susceptibility Ord 4

Erosion susceptibility Ord 7
Landslide susceptibility Ord 5

Land Use Cat 39
Area Type Bin 2

3.3.3. Output Target Response

The MLAs are calibrated for predicting surface motion ratio in terms of mm/year. This considering,
we have exploited the measurement of 52,257 PS detected over the study area (Figure 4a). The PSs with
a coherence greater than 0.9 have been considered for ensuring the reliability of their measurements.
The average velocity of each PS is considered as the target response of the MLAs. It is possible to
note in Figure 4b that most PSs are localized over both urban areas and infrastructures that cross the
study area.

The interferometric process is repeatedly carried out by the TRE Altamira (https://site.tre-altamira.
com/), Milan, Italy, every six days, and provided free of charge by the “Geoportale Lamma” website
https://geoportale.lamma.rete.toscana.it/difesa_suolo/#/viewer/openlayers/326. Indeed, the Tuscany
Region is the first worldwide example of a regional scale monitoring system based on continuous
satellite interferometric data processing, and in Reference [121], the main characteristics of the project
are explained. In the present study, TRE Altamira has exploited a stack of co-registered Sentinel-1
ascending orbit acquisitions that cover a period from 12 December 2014 to 24 August 2019. The stack is
composed of 210 images. The subsidence effect reaches an intensity of 29.6 mm/year, while uplifts
assume maximum values equal to 11.1 mm/year.

It is worth considering that the surface motion revealed by PS-InSAR should be verified using
external ground truth information, such as Global Navigation Satellite System (GNSS) measures. As for

https://site.tre-altamira.com/
https://site.tre-altamira.com/
https://geoportale.lamma.rete.toscana.it/difesa_suolo/#/viewer/openlayers/326
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the Province of Pistoia, the issue of subsidence phenomenon is widely known and recognized by
several international studies. There are some researches focused on validating the PS-InSAR data using
GNSS information. For instance, in Reference [17], PS-InSAR data obtained by Sentinel-1 acquisitions
from 2014 to 2017 have been compared and validated with GNSS data for the Province of Pistoia; the
Authors reported that the difference in the vertical displacements detected by the Sentinel-1 data before
and after the GNSS correction in Pistoia Province is approximately 1.0 mm/year. Supported by these
findings, we can consider surface motion observations reliable enough to be used in the modeling of
the MLAs.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 57 
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As described in Section 3.1, the city of Pistoia is strongly affected by surface motion phenomena:
at the city center, there are strong subsidence effects, while uplift motions have been detected at
the boundaries of the city. Figure 5 demonstrates that the PS-InSAR technique can reveal such
surface movements.

3.3.4. Definition of the Training and Test Sets

It is essential to identify the training and test set before move on to the training phase of the MLAs.
In the present study, it has been chosen to randomly separate the dataset in the training set and test set,
with a split percentage of 70% and 30%, respectively. Indeed, such percentages are generally employed.
Several authors implemented the 70/30-based split in their modeling [59,61,72,83,85,94,101]. Once the
random split has been implemented, the training set consists of 36,580 PS-InSAR observations, while
the test set consists of 15,677 PS-InSAR observations.

It is also worth mentioning that the training set contains a validation set, according to a 10-Fold
CV procedure.
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3.4. Feature Selection Approach

Feature selection is a critical step in data preprocessing for alleviating overfitting issues of MLAs
and reducing their complexity significantly (improving their interpretation) and the computational
cost for their training. Indeed, some of the input features may be highly correlated or even redundant
Moreover, a feature selection approach should lead to better MLAs in terms of predictive performance.
A comprehensive overview of feature selection approaches and tutorial for their implementation can
be found in Reference [122]. The present study focuses on methods called “wrapper approaches”,
considering that they propose automatic strategies for recognizing the essential features of a dataset.

The wrapper feature selection approach has been introduced in Reference [123]. Wrapper-based
approaches involve a robust but straightforward and pragmatic procedure for challenging the issue of
feature selection. They are not directly connected to the algorithm to be trained, and they are inserted
as an independent phase before the training step. Indeed, the wrapper procedure has to be carried out
before the training phase of whatever MLAs. Therefore, it is one of the essential steps in the dataset
preparation phase.

Approaching a feature selection by a wrapper-based approach means computing the performance
of a prefixed MLA trained by several subsets of input features. The aim is to discover the subset
of input features that shows the highest performance. The procedure is iterative and completely
automatic. Unfortunately, wrappers suffer from the curse of dimensionality; in order to alleviate such
issues, some search strategies can be followed, e.g., forward, backward, and bi-directional feature
selection are efficient strategies [122,124]. In the forward approach, starting from a predetermined
subset (generally starting with an empty subset of predictors), the predictors are inserted progressively
one after the other (one for each iteration). In the Backward approach, the procedure is quite similar
but works in the opposite direction. Still, starting from a predetermined subset (generally starting
with the use of all the predictors), the predictors are removed progressively one after the other. Finally,
in the bi-directional approach, at each iteration, the predictors can be both added and removed.

The use of wrapper feature selection approaches is not very common in environmental modeling,
perhaps for its computational cost. We found an example of using a forward and backward feature
selection approach as data preprocessing in Reference [96], where SVM, ANN, and GP have been used
for predicting surface settlements after metro tunnel excavations.
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In the present study, forward, backward, and bi-directional wrapper approaches have been
implemented. Forward and bi-directional wrappers started with no attributes. Backward wrapper
started with all the attributes. Each wrapper exploited a 500-RT-based RF as a learning algorithm.
The predictive performance has been evaluated by RMSE after a 5-Fold CV process. It was defined
that the wrappers should have stopped if, after 5 iterations, an improvement in RF performance was
not identified.

3.5. Machine Learning Algorithms

Considering that we aim to predict surface motion ratio in terms of mm/year relying on a set
of already known observations (i.e., we know in advance input and target output to be modeled),
supervised MLAs for regression are the most suitable tools for achieving our purpose. Once trained,
they can be used to make predictions on new data (i.e., on the samples belonging to the test set for
evaluating the predictive performance) or on samples whose target response is not known (i.e., mapping
the surface motion even in those places in which PS are not available).

The software MATLAB R2019b and Waikato Environment for Knowledge Analysis (WEKA)
3.8.4 [125,126] have been used to carry out the modeling. Modeling was performed on a workstation
with the following configuration:

• CPU: Intel Core i9-9900 (8 core, 16 threads, 3.10 GHz, max 5 GHz);
• GPU: NVidia GeForce RTX 2080TI-11GB;
• SSD: Samsung 970 PRO 512 Mb;
• RAM memory: Corsair Vengeance LPX 32GB DDR4 3000 MHz (2 × 16 GB).

The following subsections report the core ideas and references of each MLA implemented in the
present study.

3.5.1. Regression Tree

Breiman developed the RT algorithm in 1984 [127]. Commonly, the name of such an algorithm is
Classification and Regression Tree (CART), considering that it can be employed both for classification
and regression tasks, depending on the output target. In the present paper, we used the name “RT”
since we are dealing with the construction of a CART that aims to predict a continuous target output.
The RT algorithm is a hierarchical supervised learning algorithm made by decision rules that iteratively
divides input features into homogeneous zones, called nodes. Such decision rules are learned from the
training samples automatically by inference. Once the RT is trained, a tree-based graph is defined.
The first node of the tree graph will be called the root node, while at the end, nodes will be called
leaf nodes. The decision rules belonging to each node can be used for making predictions by using
new unknown data. In this paper, we used a binary RT, i.e., each node (from the root node to the leaf
nodes) has been subdivided into two branch nodes according to a specific decision rule. The Recursive
Partitioning (RP) algorithm [127,128] has been exploited for defining the decision rules of each node.
The leading analytical relation for training the RT can be found in the tutorial of Torgo [129]. Once a
decision rule is defined for a node, the RP has been applied again to both child nodes. A termination
criterion establishes when the RP process has to conclude. If the RP is not to be applied, the node is
defined as a leaf node; the predicted value of the target output is the average value of all the yi included
in the leaf node. In this study, a MSE threshold equal to 10−6 represents the termination criterion to be
satisfied. This “relaxing” value should lead to a deep and complex tree that accounts for all the hidden
patterns between features; it has been chosen considering that a subsequent pruning procedure should
simplify enough the RT for preventing overfitting. To prune the RT, the so-called Pruning Level (PL)
has to be fixed. PL is the number of hierarchical levels that have to be pruned. There is not rule of
thumb for identifying the right PL. One procedure is to compute the Resubstitution Error (MSE) on the
validation set for different PL and find the place in which adding nodes does not significantly increase
the accuracy of the model.
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Four hyperparameters have to be tuned: the fixed number of the input feature random sample for
identifying the decision rules of the RT, the maximum number of splits, the minimum leaf node size,
and the minimum parent size for each child node. Sections 3.6 and 3.7 describe how they have been
defined in our study.

3.5.2. Support Vector Machine

The concept of SVM was introduced under the name of the generalized portrait method by Vapnik
and Lerner in 1963 [130]. Subsequently, through the definition of the statistical learning theory, Vapnik
developed the current form of SVM [131–134]. In that form, SVM has been firstly implemented for
classification purposes. Afterward, through the studies of Smola and Vapnik [135,136], the concept of
SVM has also been extended to regression tasks. The general basic idea of SVM is to map the original
data χ into a feature space F with high dimensionality through a non-linear mapping function and
then construct an optimal hyperplane in such a new feature space. In the case of classification tasks,
SVMs search for an optimal hyperplane that maximally separates the data into two classes. On the
contrary, in the case of regression tasks, the hyperplane to be searched for lies close to as many points
as possible.

Considering the target output of the present study, the SVM for regression has been implemented.
Valuable tutorials on the implementation of SVM for regression can be found in References [97,137].
The leading analytical relations can be found in such studies. For the sake of brevity, we just mention
that an SVM for regression is generally called ε-insensitive SVM [131] since the aim is to discover the
optimal hyperplane by minimizing the following ε-insensitive loss function:

Lε(y) =

{
0 f or

∣∣∣ f (x) − y
∣∣∣ ≤ ε∣∣∣ f (x) − y

∣∣∣− ε otherwise
(9)

It is proved [97,137] that the function f describing the optimal hyperplane is:

f (x) =
l∑

i = 1

(
αi − α

∗

i

)
〈xi, x〉+ b (10)

where αi, α∗i are non-negative constants obtained by exploiting a Lagrange function to solve a convex
optimization process concerning the minimization of Lε(y). Therefore, the hyperplane to be searched for
only depends on dot products between observations xi. When a non-linear relation links input features
and target output, the SVM can solve the issue by mapping the input features into a high-dimensional
feature space through some non-linear kernel functions [133]. The concept of the so-called kernel
trick is essential to reduce dramatically the computational cost required for training the SVM [131].
In the case of the present paper, the radial basis kernel function (or Gaussian kernel) [138,139] has been
implemented for mapping the feature into a high-dimensional feature space able to account for the
non-linear relations between output response and input features (Equation (11)).

K
(
xi, x j

)
= e−

‖xi−xj‖
2

2σ2 (11)

Three hyperparameters have to be tuned in the present study: the Box Constraint C (it defines
the trade-off between the flatness of f and the amount up to which errors higher than ε are accepted),
the value of ε, and the value of Gamma γ = 1

2σ2 for the computation of the kernel trick. Sections 3.6
and 3.7 describe how they have been defined.

3.5.3. Random Forest

The RF algorithm has been defined in the study of Breiman [140]. RF belongs to the family
of ensemble learners, which are algorithms composed of a large number of single learners, whose
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predictions are provided by aggregating the single prediction of each learner in some way. As for the
previous algorithms, RF can be implemented for solving classification or regression problems. In the
case of RF for regression, the “forest” consists of a massive number of uncorrelated RTs that operate as
an ensemble learner. The fact that these RTs are uncorrelated is the core of the algorithm and its main
strength. Indeed, in addition to each advantage of the RT algorithm, RF should not be prone to overfit
the data, and it should be less sensitive to changes in the training set. Besides, no pruning process is
required. In order to develop the uncorrelated trees:

• RF algorithm exploits the bootstrap aggregation (also called Bagging) process, i.e., it defines
several subsets of training samples with replacement, and then uses each of them for training
each RT. For each subset, RF exploits two-thirds (in-bag samples) for training the RTs, and the
remaining one-third (out-of-bag samples) for a CV process. This CV process is followed by the RF
to minimize the error estimation (out-of-bag error) and define a robust algorithm;

• RF exploits the feature randomness approach, which is to choose a fixed number of input features
randomly chosen to be used for defining the decision rules of each RT. Accordingly, each RT is
trained by a different subset of input features. They have a high variance in their prediction and a
low bias.

Once trained, RF for regression can make predictions using new data by averaging the predicted
target output that each RT predicts. Therefore, RF computes the arithmetic mean of all predictions,
i.e., each RT has the same weight.

Two hyperparameters have to be tuned:

• The amount of RT structures constituting the forest: RF is not prone to overfit the data, then the
number of decision trees can be enormous in order to enhance its performance. However, the
higher the number of RT to train, the higher is the computational cost required for growing the RF.
Moreover, the accuracy of RF does not significantly improve once a certain number of RT has
been reached;

• The fixed number of input factors randomly sampled as candidates at each split.

Sections 3.6 and 3.7 describe how they have been defined in this study.

3.5.4. Boosted Regression Tree

As for the RF, BRT is an ensemble learner based on tree aggregating. Nonetheless, instead of
training parallelly, many uncorrelated trees are averaged to avoid overfitting only at the end of the
process, and in the BRT algorithm, RTs are added sequentially to the ensemble. Therefore, Boosting
is sequential: it is a forward, stage-wise procedure [141]. At each iteration, the new RT to be added
concentrates expressly on those samples that are accountable for the remaining regression error [142]
(the samples that result in the higher residuals).

The boosting technique has been introduced in Reference [143], then it has strongly imposed
itself in Machine Learning modeling by the definition of the AdaBoost algorithm [144], where the
authors defined a boosting algorithm composed of a collection of CART for solving classification
problems. Boosting techniques for regression tasks appear firstly in References [145–147], in which
authors employ a gradient descent process in order to minimize a specified loss function. A squared
loss function is usually employed for regression purposes. Generally speaking, at each iteration,
an additional RT is trained on the residuals of the previous iteration, and it is added to the ensemble.
At the end of the process (once the number of RT composing the BRT, NRT, is reached), the final
prediction T(xi) is computed as:

T(xi) = T1(xi) + η
NRT∑

k = 2

Tk(xi) (12)
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where T1(xi) is the prediction of the first RT and η is the learning rate. The process is stage-wise,
i.e., the existing RTs are left unchanged as the model is enlarged. A detailed explanation of how the
BRT algorithm works can be found in References [141,142,148].

Three hyperparameters need to be tuned in BRT: the number of learning cycles NRT, the learning
rate η, and the minimum size of the leaf nodes. As for the other MLAs, in Sections 3.6 and 3.7, readers
can find a description of how they have been defined.

3.6. Hyperparameter Tuning by Bayesian Optimization Algorithm

Before starting the training phase of the MLAs, in which the model parameters can be discovered,
one has to specify a set of hyperparameter values that allow reaching the highest performance during
the training phase. This step constitutes an optimization problem where the function f (i.e., the objective
function f that aims to represent the distribution of the hyperparameters) to be optimized is commonly
unspecified. The BOA [149] is an efficient optimization algorithm for solving this kind of optimization
problem since it is an automatic process, it does not require any manual search of the hyperparameters
(an issue in manual tuning), and it does not suffer from the curse of dimensionality (an issue in Grid
and Random search). BOA can solve functions that are computationally expensive to find the extremes
values and can be applied for solving functions that do not have a closed-form expression, functions
which are expensive to calculate, functions whose derivatives are hard to compute, and nonconvex
functions. Some comprehensive tutorials on BOA implementation can be found in References [150,151].

Employing the Bayes theorem, BOA combines prior information about the unknown function f
with sample information in order to obtain posterior information of the function distribution. Then,
relying on this posterior information, BOA can deduce where the function has the optimal value.
It is generally assumed that the Gaussian Process [152] is suitable as the prior distribution of f [151].
Accordingly, at each iteration, BOA exploits Gaussian Process for fitting the sample data and update
the posterior distribution. By exploring the hyperparameters space, the aim is to compute the value of
an unknown function f (x) at several sampling points to find the one where it is maximized:

x+ = max
x∈Ψ

f (x) (13)

where Ψ denotes the search space of x (i.e., Ψ is the hyperparameter space, and x is a vector of values that
define the values of the hyperparameters). In order to identify x+, BOA exploits the Bayes’ theorem:

P(M|E) = P(E|M)P(M) (14)

where P(M|E) is the posterior probability of a model M (in this case, M represents the behavior of
f (x)) given the data evidence E (in this case, E is the training sample point used for discovering the
hyperparameters), P(E|M) is the likelihood of observing E given the model M, and P(M) is the prior
probability of M, assumed that it follows a Gaussian Process.

Equation (14) highlights the key step of BOA: combining the prior distribution of f (x) with a
sample point (the evidence E, i.e., at the beginning of the BOA, a set of evaluations of the function
f (x) is identified by imposing different random values of the hyperparameters) to compute P(M|E).
Consequently, the posterior probability is used to find where the function f (x) can be maximized by
the selection of an appropriate x+ according to a specific criterion. The criterion is represented by the
minimization of a utility function u, generally called the acquisition function. By the minimization of
the function u, BOA identifies the next sample point (i.e., the next vector x to be added to the training
sample). In the present paper, since we are dealing with MLAs for regression, the acquisition function
of the i-th iteration is defined as:

ui = log(1 + lossi) (15)

where lossi is the average cross-validated error (MSE) of the algorithm trained by using the set of
hyperparameters defined at the i-th iteration committed on the folds not used for training the algorithm.
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Therefore, BOA implements the following steps:

1. A set of evaluations of the function f (x) (training sample) is identified by imposing a Gaussian
Process distribution and five random values of;

2. The acquisition function is computed; the BOA identifies the next sample point x that could
improve the acquisition function and adds it to the training sample;

3. The BOA updates the posterior distribution and computes the acquisition function again;
4. At each new iteration, steps 1–3 are repeated, updating sequentially the P(M|E) with one new

sample point x per iteration; at each iteration, a new sample point x is found and added to the
training sample (the evidence data).

Once a fixed number of iterations is completed, the BOA concludes its process. The sample
point x that demonstrates the best performance is chosen as x+ of the algorithm. Therefore, the
hyperparameters are identified. Each iteration of the BOA can take from a few seconds to several
hours of work. In this study, each MLA was optimized with 30 iterations of the BOA.

3.7. K-Fold Cross-Validation Procedure

CV is a well-known and established process for training an algorithm, assessing its performance,
or comparing the performance of different sets of hyperparameters for a chosen MLA [153]. Historically,
the CV strategy has been conceptualized in Reference [154] by Larson. CV is meant as the action of
splitting the dataset into two parts; the first one to be used for training the algorithm, while the second
one to be used for assessing the performance of the modeling. Subsequently, the structure of k-fold
CV has been defined in Reference [155], where the training set is divided into k folds of the same size.
Accordingly, there are k iterations of the procedure. At each iteration, k-1 folds are used for training the
algorithm, while the remaining fold is used for the validation phase. Therefore, in a CV procedure,
each observation is used both for training and for testing. In Reference [156], Kohavi recommended
a 10-fold CV as the best model selection procedure. Indeed, several other studies [60,67,69,73,86,87]
used k-fold CV.

In this paper, a 10-Fold CV procedure has been implemented for each ith iteration of the BOA in
order to evaluate the performance of the ith training phase of the MLAs (i.e., the MLAs trained by the
i-th set of hyperparameters identified by the BOA process).

3.8. Predictor Importance

A tree-based model can compute the importance of each input factor used in training the MLAs.
The computation of the Predictor Importance (PI) should demonstrate how much the target output of
the MLAs is related to each input factor; the higher is the PI, the higher is the degree of the link between
a specific input and the target output. Nonetheless, it worth mentioning that the term “Importance” is
also connected to the splitting process of the tree-based model. Therefore, if the input is chosen early
for splitting a node compared to another input, it gains more PI, even if this input is not strongly linked
to the target output. Therefore, the PI values should be judged carefully.

The analytical relations for computing the PI are reported below. A detailed description of the
procedure can be found in References [140,157]. As said in the description of the RT, a tree, T, is trained
by a sample of N observations, exploiting the RP algorithm [127,128]. RP recognizes at each node, t,
the best split, st, for subdividing the node observations, Nt, into two subsamples (the branch nodes),
tL and tR; RP aims to maximize the decrease ∆i(st, t) of an impurity measure, i(t). RP concludes its
process when nodes become homogeneous (i.e., every observation belongs to the same class or the
difference between target values is lower than a minimum MSE threshold). The impurity decrease is
computed using Equation (16):

∆i(st, t) = i(t) − pLi(tL) − pRi(tR) (16)
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where:

• PL = NtL /Nt

• PR = NtR /Nt

In the present study, the impurities i(t), i(tL), i(tR), at the nodes t, tL, tR, are represented by
the MSE of the samples belonging to such nodes, respectively. Considering the feature randomness
procedure and the ability to exploit a high number of uncorrelated trees, a 500 tree-based RF algorithm
has been used for computing the PI. Following the study of Breiman [140], the PI of an independent
input feature, Xm, can be computed as:

PI(Xm) =
1

NT

∑
T

∑
t∈T:v(st) = Xm

p(t)∆i(st, t) (17)

where:

• NT is the number of trees composing the forest;
• t are the nodes belonging to the tree T;
• p(t)∆i(st, t) are the weighted impurity decreases;
• PI(Xm) is the importance of the input feature Xm

• p(t) is the proportion NT/N of samples reaching the node t;
• v(st) is the independent variable used in split st.

3.9. Goodness-of-Fit and Predictive Performance Evaluation

The MLAs have been evaluated by three performance metrics: R2, RMSE, and MAE. They can be
computed by the following Equations (18)–(20):

R2 = 1−

∑N
i = 1 (Yipredicted −Yiobserved)

2∑N
i = 1 (Yiobserved −Yobserved)

2 (18)

RMSE =

√√√
1
N

N∑
i = 1

[(
Yipredicted −Yiobserved

)]2
(19)

MAE =
1
N

N∑
i = 1

∣∣∣∣Yipredicted −Yiobserved

∣∣∣∣ (20)

where:

• Yipredicted is the i-th predicted value of the target output Y;

• Yiobserved is the i-th observed value of the target output Y;

• Yobserved is the averaged observed value of the target output Y.

The coefficient R2 describes the ratio of explained variance by the model, comparing the sample
variance of the model and that of the reference population. The RMSE represents the standard
deviation of the residuals, i.e., the distribution of the difference between predicted and observed values.
Therefore, RMSE shows the accuracy of the predictions. Moreover, MAE provides a measure of the
average dimension of the errors.

Moreover, the scatterplots have been computed for each algorithm in order to compare observed
and predicted values. The scatterplots enable identifying quickly if the training and testing phases
have been conducted correctly, and if the algorithms are both able to represent the observed samples
(training) and make predictions on new data (test). Furthermore, scatterplots are worthwhile tools for
the identification of potential clustering of the points and outliers. Therefore, scatterplots should be
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more informative than the R2 since the latter provides only a concise summary of the linear relationship
between observations and predictions, while scatterplots provide a visual summary of a linear or
nonlinear association [158].

Finally, in order to compare the MLAs, we compute the Taylor Diagram. As the name suggests,
this tool has been defined by Taylor [159,160], and it suggests a concise and graph-based metric to assess
the overall performance of an algorithm and enables an objective comparison among several models.
In the Taylor Diagram, the standard deviation, the RMSE, and the R2 of each MLA implemented and
those of the reference population are included. The graph has to be read “radially”. In the present
study, the standard deviation is represented by black arches, the RMSE by green arches, and the R2

by blue arches. Finally, the performance of the MLAs is represented by red dots of various shapes.
The MLAs that lies the most near the performance of the reference population (i.e., the red dot which
belong R2 = 1, RMSE = 0, and standard deviation = 2.09 mm/year) are the most representative. An
example of a Taylor Diagram implementation for ML-based environmental modeling assessment can
be found in Reference [101].

4. Results and Discussion

4.1. Feature Selection

The following Table 4 reports the outcomes in terms of the selected subsets of input features of the
wrapper feature selection approaches. The starting set, the number of iterations, and the RMSE of each
wrapper are also reported. The wrappers are based on a 500-RT-based RF.

Table 4. Wrapper feature selection process: (1) Forward, (2) Backward, and (3) Bi-directional.

Wrapper Feature Selection Approaches

Wrapper Type Forward Feature
Selection

Backward Feature
Selection

Bi-Directional Feature
Selection

Selected Attributes

Elevation Elevation Elevation
Rainfall Rainfall Rainfall

Distance from rivers Distance from rivers Distance from rivers
Distance from landslides Distance from landslides Distance from landslides

Earthquake
susceptibility

Earthquake
susceptibility

Earthquake
susceptibility

Type of area Type of area Type of area
River density River density River density
Silt content Silt content Silt content

Sand content Clay content Sand content
Org content

Starting set No attributes All attributes No Attributes
Iterations 338 424 464

RMSE 0.393 0.390 0.391

From Table 4, we can appreciate that the three approaches lead to very similar results. Indeed,
a set of input features is repeated over the three wrappers: this set includes Elevation, Rainfall, Distance
from rivers, Distance from landslides, Earthquake susceptibility, Type of area, River Density, and Silt
content of the subsoil. Moreover, the other relevant features elected by all the wrapper are those related
to the subsoil composition (Sand, Organic, and Clay). Silt is considered relevant by all the wrappers).
Specifically, Sand is elected by Forward and Bi-directional wrapper, Clay is elected by the Backward
wrapper, and Organic by the Forward wrapper. The RMSE is very similar in all three approaches.
The Backward wrapper shows the lower one and, therefore, the subset of feature selected by this
approach has been chosen as the set of input features of the MLAs.
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4.2. Machine Learning Hyperparameters

The following lists report the hyperparameters of the MLAs tuned by BOA and 10-Fold CV.
Moreover, the time for training algorithms is reported.

RT:

• CV process: 10-Fold;
• Optimization of the Hyperparameters: Bayesian Process, 30 iterations;
• Time for training the CART: 90 s;
• Fixed number of random variables to choose for splitting nodes: 9;
• Maximum number of splits: 8330;
• Minimum leaf nodes size: 2;
• Minimum parent size: 10;
• Split criterion: MSE;
• Number of nodes: 12,995;
• Number of tree levels: 4457;
• Number of pruned levels: 2000 (according to Figure 6, if the RT is pruned by 2000 levels, the MSE

does not increase significantly and the resulting RT is less complex and less prone to overfit data);
• Number of nodes after tree pruning: 6705 (2257 resulting tree levels).

SVM:

• CV process: 10-Fold;
• Optimization of the Hyperparameters: Bayesian Process, 30 iterations;
• Time for training the SVM: 60,200 s;
• Standardize the input factors: yes;
• Type of kernel function: Gaussian kernel;
• C (Box constraint): 38.361;
• Gamma: 0.4017;
• Epsilon: 0.0012.

RF:

• CV process: 10-Fold;
• Optimization of the Hyperparameters: Bayesian Process, 30 iterations;
• Time for training the RF: 997 s;
• Fixed number of random variables to choose for splitting nodes: 9;
• Number of trees: 483;

BRT:

• CV process: 10-Fold;
• Optimization of the Hyperparameters: Bayesian Process, 30 iterations;
• Time for training the BRT: 4285 s;
• Fixed number of random variables to choose for splitting nodes: 9;
• Number of learning cycles: 248;
• Learning rate: 0.1042;
• Maximum number of splits: 1470;
• Minimum size of the leaf nodes: 6;
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We can note that the RT algorithm shows the lowest time for training (90 s), followed by RF (997 s),
BRT (4285 s), and SVM (60,200 s). If the training time is relevant for the practitioners, then the SVM
should be avoided since it requires about 700 times more time than RT for its training. RT and RF could
be an efficient solution in this case. If the number of tunable hyperparameters is essential instead, then
the RF is the most efficient algorithm, considering that it requires two hyperparameters only. On the
contrary, RT requires that several hyperparameters have to be tuned, and also the pruning process
must be performed to avoid overfitting. If there are no limitations due either to the training time or to
the number of hyperparameters to be tuned, then a suitable strategy is to train all the MLAs and check
which of them has the best performance.

4.3. Goodness-of-Fit and Predictive Performance Assessment

This subsection reports the performance of the MLAs in both training and test phases. Firstly,
through the computation of the Standard Deviation, R2, RMSE, and MAE, the performance of the
algorithms, i.e., the Goodness-of-Fit (training) and the Predictive Performance (test), can be observed
by concise numerical metrics (Table 5). Subsequently, the scatterplots of each MLA, both in the training
and test phase, have been reported (Figure 7). The scatterplots provide information related to the
presence of outliers, clustering, overfitting, and potential non-linear relations between observed and
predicted values. Finally, the Taylor Diagram is reported for comparing the Predictive Performance of
the MLAs (Figure 8). Through this graph, we can compare the MLAs and check which of them are the
most reliable for making predictions.

As for the training phase, the standard deviation shown by the BRT (2.0534 mm/year) is the most
similar one to that of the reference population (2.0566 mm/year), followed by the SVM (2.0360), RT
(2.0324), and RF (1.977). Therefore, it seems that the training phase of BRT, SVM, and RT should have
been carried out correctly, while the RF may have encountered issues. The highest R2 is shown by
the BRT (0.9998), followed by the SVM (0.9879), RF (0.9828), and RT (0.9766); this means that all the
MLAs should be able to explain the entire range of variability of the target output. This fact could
be in contrast with the analysis of the previous standard deviations, where the RF showed worse
performance than the RT. Therefore, the use of a broad set of performance parameters is essential
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to be able to identify the best models, more certainly. Moving on to the RMSE and MAE, one can
appreciate that the BRT shows the highest performance (0.0302 mm/year and 0.0161 mm/year), followed
by the SVM (0.2266 and 0.0937), RF (0.2694 and 0.1572), and RT (0.3146 and 0.1664), confirming the
previous rank based on the R2. The low values of RMSE and MAE of the BRT, if compared to the
values belonging to the other MLAs, could reveal potential overfitting issues during the training phase.
The RMSE and MAE values belonging to the SVM, in addition to the findings related to the R2 and
standard deviation, suggest that such an algorithm could be the best-trained one.

Table 5. Goodness-of-Fit and Predictive Performance of the Machine Learning Algorithms (MLAs).

Single Learners

RT SVM
Training Testing Training Testing

St. Dev. [mm/year] 2.0324 2.0173 2.0360 2.0504
R2 0.9766 0.9012 0.9879 0.9500

RMSE 0.3146 0.6570 0.2266 0.4672
MAE 0.1664 0.3470 0.0937 0.2658

Ensemble Learners

BRT RF
Training Testing Training Testing

St. Dev. [mm/year] 2.0534 2.0145 1.9777 1.9555
R2 0.9998 0.9557 0.9828 0.9466

RMSE 0.0302 0.4401 0.2694 0.4829
MAE 0.0161 0.2641 0.1572 0.2823

Number of instances in the training set = 36,580 (70%). Number of instances in the test set = 15,677 (30%). St. Dev.
of the reference population in the training set = 2.0566 mm/year. St. Dev. of the reference population in the test
set = 2.0900 mm/year.

As for the testing phase, the standard deviation shown by the SVM (2.0504 mm/year) is the most
similar one to that of the reference population (2.0900 mm/year), followed by the RT (2.0173), BRT
(2.0145), and RF (1.955). Therefore, these values reveal that the SVM should be the most suitable and
reliable algorithm for predicting appropriately surface motion by using new unknown data over the
entire range of variability of the target output. The highest R2 is shown by the BRT (0.9557), followed
by the SVM (0.9500), RF (0.9466), and RT (0.9012); these values are still high, but the performance lost
by the RT denotes that such algorithm may have overfitted the data and are less reliable for making
a prediction. This fact may also be revealed for the BRT by observing the RMSE and MAE values;
indeed, the BRT spans from 0.0302 mm/year (RMSE) and 0.0161 (MAE) mm/year of the training phase
to 0.4401 mm/year and 0.2641 mm/year, with a performance loss of about 93%. The RMSE and MAE of
the SVM (0.4672 mm/year and 0.2658 mm/year), RF (0.4829 mm/year and 0.2823 mm/year), and RT
(0.6570 mm/year and 0.3470 mm/year) are more similar to the values computed for the training phase.

Observing Table 5, finally, we can say:

• RF is not fully able to explain the variability of the target output, although the R2, RMSE, and
MAE are satisfactory both during the training and testing phases;

• RT and BRT may overfit the data during the training phase. Nonetheless, BRT shows adequate
performance in the testing phase, comparable to those of the other algorithms (SVM and RF);

• The R2, RMSE, and MAE reveals that RT is worse than the other MLAs for making predictions,
and it should not be used in favor of more complex algorithms;

• It appears that SVM does not overfit the data during the training phase. Moreover, during both
training and test phases, SVM is one of the most reliable MLAs (preceded only by the BRT), and it
has the most similar standard deviation compared to that of the reference population;

• Considering the potential overfitting issues of the BRT, the SVM should be the most suitable and
reliable algorithm for making predictions.
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Figure 7 reports the scatterplots of the MLAs.
Figure 7 confirms the same situation depicted in Table 5. Indeed, we can appreciate the overfitting

issues of the BRT during the training where all the points lie perfectly on the 45◦ line reported on the
cartesian plane (Figure 7c, left) and they are much more scattered during the test phase (Figure 7c, right).
The RT shows that the point cloud is highly scattered during the test phase (Figure 7a, right) between
values that range from −10 to 0 mm/year; this should reflect the loss in R2 from training (0.9766) to the test
(0.9012). The RF (Figure 7d) shows a slight non-linear association between observed and predicted values,
specifically over the values that range from −5 to 5 mm/year; this fact could reflect that the standard
deviation computed by the RF both in training and test set is worse than the other MLAs.

The scatterplots also reveal that there are no particular clustering zones or outliers. Furthermore,
they are useful for verifying if the MLAs can predict the extreme values of the variability range of the
output variable (essential in the phenomenon to be modeled in the present paper): we can observe that
SVM is probably the most efficient in this task, with the extreme points that lie next to the 45◦ line.

Figure 8 reports the Taylor Diagram for the Predictive Performance Assessment of the MLAs.
Taylor Diagram allows comparing the Predictive Performance of the MLAs. Therefore, it has been

constructed on the performance computed for the test phase. Firstly, the diagram highlights that the
RT is significantly worse than the other MLAs: despite the standard deviation is better than that of the
RF (the RT point is closest to the red “reference population” line), its point lies far from the point of the
reference population, both for the R2 and the RMSE. Secondly, the points representing the RF, SVM,
and BRT are all grouped in the same area of the diagram, and their performances are comparable.
As observed previously, it is noted that RF is the worst MLA in terms of standard deviation, while the
BRT is the best in terms of R2. The SVM is the best in terms of standard deviation, and its R2 (0.9500) is
similar to that of the BRT (0.9557).
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Concluding this part, we can affirm that in the framework of this paper, the SVM should be the
most suitable and reliable model for modeling the phenomenon of surface movements connected
to environmental aspects, such as subsidence and uplifts. Furthermore, the BRT algorithm can also
be considered a valid alternative since it has shown excellent predictive capabilities despite some
difficulties in the training phase. However, if training time is an essential factor in the modeling, then
BRT is preferred over SVM, considering that it takes significantly less time to train.

4.4. Surface Motion Estimations

Once the MLAs have been trained and tested, they can be implemented for mapping surface
motion over the entire study area. It is worth mentioning that the area is composed of 14,962,725 cells
of a size of 10 m × 10 m. Indeed, in order to make predictions by the MLAs, we have collected the
same input features for each cell of the study area. Figure 9 reports the predicted surface motion maps
for all the MLAs.



Remote Sens. 2020, 12, 3976 31 of 57

Remote Sens. 2020, 12, x FOR PEER REVIEW 30 of 57 

 

Concluding this part, we can affirm that in the framework of this paper, the SVM should be the 
most suitable and reliable model for modeling the phenomenon of surface movements connected to 
environmental aspects, such as subsidence and uplifts. Furthermore, the BRT algorithm can also be 
considered a valid alternative since it has shown excellent predictive capabilities despite some 
difficulties in the training phase. However, if training time is an essential factor in the modeling, then 
BRT is preferred over SVM, considering that it takes significantly less time to train. 

4.4. Surface Motion Estimations 

Once the MLAs have been trained and tested, they can be implemented for mapping surface 
motion over the entire study area. It is worth mentioning that the area is composed of 14,962,725 cells 
of a size of 10 m × 10 m. Indeed, in order to make predictions by the MLAs, we have collected the 
same input features for each cell of the study area. Figure 9 reports the predicted surface motion maps 
for all the MLAs. 

Qualitatively speaking, we can note that all the maps are similar, both in shape and in the 
magnitude of the surface motion predictions. All the maps appropriately detect the subsidence 
occurring at the city center of Pistoia, and the uplift effect at the boundary of the city. Moreover, a 
further significant effect of subsidence is expected in the southern part of the province. In this area, 
there is a shortage of PS so that these maps can be a useful and reliable supporting tool for the 
managing bodies of the territory and infrastructures. The MLAs probably predict subsidence effects 
since this area is orographically and hydrologically similar to the area of the city of Pistoia. 

 
(a) (b) Remote Sens. 2020, 12, x FOR PEER REVIEW 31 of 57 

 

(c) 
 

(d) 

Figure 9. Surface motion mapping over the study area: (a) RT; (b) SVM; (c) BRT; (d) RF. 

Moreover, in decision tree-based algorithms, i.e., RT, BRT, and RF, we can see the effects of 
predictions made by MLAs implementing piecewise functions. Indeed, there are some areas, even 
extended ones, where the predicted value of surface motion assumes the same value. This fact is the 
obvious consequence of the construction process of such algorithms, which involves the clear 
subdivision into nodes through decision rules learned during the training phase. This effect is 
strongly visible in the RT algorithm, especially in the extreme north-west area and in some areas 
north of the city of Pistoia. In the BRT and RF algorithms, being ensemble learners, this fact is lighter, 
and the issue of prediction using piecewise functions is less marked since they can count on a large 
number of RT. The SVM algorithm, on the other hand, relying on prediction through the 
identification of a hyperplane, does not suffer from this issue and can make reliable predictions for 
the entire study area, even in areas where there was a substantial shortage of PS. 

Therefore, we can say that the implemented MLAs are efficient and suitable predictors of surface 
motion in areas where there were numerous PS. They can adequately highlight both movements due 
to subsidence effects and uplifts. In areas where there were fewer PS, decision trees-based algorithms 
are less performing, because they suffer from prediction through piecewise functions. The SVM 
algorithm appears to be able to make appropriate predictions over the whole study area. 

4.5. Predictor Importance 

As a final step of the modeling, the PI of the input factors has been computed. This step allows 
understating which features are the most important in the prediction of surface motion; therefore, it 
is also possible to identify which features may be more correlated to the phenomenon. Moreover, this 
step is useful to verify if the wrapper feature approaches performed correctly and, thus, if the most 
relevant input features have been considered. To carry out the PI computation, a 500-RT-based RF 
has been trained considering all the 29 collected input features, and the average impurity (i.e., the 

Figure 9. Surface motion mapping over the study area: (a) RT; (b) SVM; (c) BRT; (d) RF.



Remote Sens. 2020, 12, 3976 32 of 57

Qualitatively speaking, we can note that all the maps are similar, both in shape and in the
magnitude of the surface motion predictions. All the maps appropriately detect the subsidence
occurring at the city center of Pistoia, and the uplift effect at the boundary of the city. Moreover,
a further significant effect of subsidence is expected in the southern part of the province. In this
area, there is a shortage of PS so that these maps can be a useful and reliable supporting tool for the
managing bodies of the territory and infrastructures. The MLAs probably predict subsidence effects
since this area is orographically and hydrologically similar to the area of the city of Pistoia.

Moreover, in decision tree-based algorithms, i.e., RT, BRT, and RF, we can see the effects of
predictions made by MLAs implementing piecewise functions. Indeed, there are some areas, even
extended ones, where the predicted value of surface motion assumes the same value. This fact is
the obvious consequence of the construction process of such algorithms, which involves the clear
subdivision into nodes through decision rules learned during the training phase. This effect is strongly
visible in the RT algorithm, especially in the extreme north-west area and in some areas north of the
city of Pistoia. In the BRT and RF algorithms, being ensemble learners, this fact is lighter, and the
issue of prediction using piecewise functions is less marked since they can count on a large number
of RT. The SVM algorithm, on the other hand, relying on prediction through the identification of a
hyperplane, does not suffer from this issue and can make reliable predictions for the entire study area,
even in areas where there was a substantial shortage of PS.

Therefore, we can say that the implemented MLAs are efficient and suitable predictors of surface
motion in areas where there were numerous PS. They can adequately highlight both movements due to
subsidence effects and uplifts. In areas where there were fewer PS, decision trees-based algorithms are
less performing, because they suffer from prediction through piecewise functions. The SVM algorithm
appears to be able to make appropriate predictions over the whole study area.

4.5. Predictor Importance

As a final step of the modeling, the PI of the input factors has been computed. This step allows
understating which features are the most important in the prediction of surface motion; therefore, it is
also possible to identify which features may be more correlated to the phenomenon. Moreover, this
step is useful to verify if the wrapper feature approaches performed correctly and, thus, if the most
relevant input features have been considered. To carry out the PI computation, a 500-RT-based RF
has been trained considering all the 29 collected input features, and the average impurity (i.e., the
MSE) decrease has been considered as parameter of importance. Table 6 shows the PI of the MLAs.
Moreover, the features elected by wrappers have been highlighted.

The target output is strongly related to the composition of the subsoil, in terms of organic, clay,
and silt content. This is consistent with Reference [17], where the authors stated that subsidence
effects of the city of Pistoia could be related to the combination of overexploitation of water and
soft compaction layers. The composition of subsoil influences the drainage capacity; indeed, such
a feature is positioned in the top zone of the ranking as well. Flood susceptibility, distance from
landslides, landslide susceptibility, and erosion susceptibility are still in the higher part of the rank.
This fact is likely related to the orography of the study area. Indeed, subsidence and uplift are
occurring on the plains of the south-west part of the study area, far from the mountainous areas, where
the most landslides and erosion phenomena may occur. Moreover, these plain areas are certainly
more susceptible to floods than mountainous areas. Therefore, MLAs have probably learned that
most of the surface motions occurred over the plain areas, where there is a similar degree of flood
susceptibility, distance from landslides, landslide susceptibility, and erosion susceptibility. Accordingly,
the algorithms identify such features as more important than others. The earthquake susceptibility
(i.e., the probable magnitude of an occurring earthquake) has been found as an important feature.
This information is interesting and should deserve further investigations that relate current surface
motions and previously occurring earthquakes. It is interesting to observe that also rainfall seems to be
an important feature; this could be related to the combination of orography and composition of the
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subsoil (i.e., for the city of Pistoia, it means plain areas and a high percentage of silt), which leads to
strong surface motions. The last mention is linked to the exploitation of water in the area surrounding
the city of Pistoia, which resulted in subsidence. This fact can be taken into consideration through the
features related to land use or the type of area. Indeed, these two variables have a non-negligible PI.

Table 6. Predictor Importance of the MLAs and comparison with wrapper approaches.

Input Features Predictor
Importance

Forward
Wrapper

Backward
Wrapper

Bi-Directional
Wrapper

Organic Content 70.23 4

Clay content 43.86 4

Flood Susceptibility 41.4

Silt Content 41.29 4 4 4

Distance from Landslides 37.32 4 4 4

Earthquake Susceptibility 35.12 4 4 4

Drainage Capacity 34.34

Landslide Susceptibility 27.8

Erosion Susceptibility 26.24

Rainfall 22.48 4 4 4

Sand Content 20.37 4 4

Diffusive Solar Radiation 19.01

Land Use 18.83

River Density 12.01 4 4 4

Elevation 11.08 4 4 4

Type of Area 9.63 4 4 4

Distance from Rivers 8.17 4 4 4

WE 7.77

TRI 4.89

Direct Solar Radiation 3.7

Slope 3.37

VTR 3.31

Aspect 2.81

SPI 2.27

TWI 1.88

TPI 1.81

Slope Length 1.72

Curvature 1.28

CI 1.19

As for the wrapper approaches, we can note that most of the important features have been
considered and that the process should have been carried out correctly. MLAs describe the subsoil
composition by Clay and Silt content (in Backward wrapper), while the orography is considered by
distance from landslide and elevation. Furthermore, earthquake susceptibility has been considered.
Hydrologically, the MLAs can account for rainfall, river density, and distance from rivers. Finally,
for what concerns the social system, MLAs consider the type of area. The wrappers did not consider
the last twelve variables with the lowest PI. Therefore, it seems that the wrappers have simplified
the phenomenon by excluding all the less important features, and also considering the important
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ones as a non-redundant subset of them (i.e., two features for describing the subsoil composition, two
features for describing the topography, three features for describing the hydrology, and one feature for
describing the social system).

To confirm what has just been described, Table 7 highlights the performance of MLAs trained
with the complete set of input features.

Table 7. Performance of MLAs trained with all the input features.

Single Learners

RT SVM
Training Testing Training Testing

St. Dev. [mm/year] 2.0326 1.9794 0.6273 0.61107
R2 0.9162 0.8335 0.2835 0.2625

RMSE 0.5956 0.8448 1.7531 1.7733
MAE 0.3747 0.5165 0.9532 0.9652

Ensemble Learners

BRT RF
Training Testing Training Testing

St. Dev. [mm/year] 1.9972 1.889 1.8945 1.8078
R2 0.9850 0.8987 0.9724 0.8709

RMSE 0.2524 0.6583 0.3351 0.7499
MAE 0.1868 0.3940 0.1937 0.4037

The metrics in Table 7 demonstrate the decrease in performance overlooking the use of feature
selection approaches.

Observing, for example, the RF performances, and comparing them with those shown in Table 5,
we can recognize a meaningful reduction of all of them. Indeed, the coefficient R2 diminishes both in
the training phase (from 0.9828 to 0.9724) and significantly in the test phase (from 0.9466 to 0.8709).
The difference in R2 between training and test is higher than that shown by the wrapper-based RF
(0.1015 versus 0.0362); this could denote that the RF trained by all the input features is more likely prone
to overfit the data. Training an algorithm with more input features (29 versus 9) likely leads to a deeper
and more complex model and, accordingly, making predictions on new data is more complicated.
Moreover, complex models affect the interpretability. The RMSE and MAE are significantly higher,
both in the training and test phase. The prediction accuracy is, therefore, lower.

The same consideration can also be extended to the RT and BRT. Indeed, all the RMSE and MAE
values are higher than those shown in Table 5, while R2 values are lower. The SVM trained with
all the input features is an inefficient and unreliable model. Its performances shown in Table 7 are
dramatically lower than those shown in Table 5. In the framework of this research, SVM could not be
used for practical purposes if a feature selection step is neglected.

The use of wrapper approaches for discovering and using as input the most relevant features
has been proved crucial to obtain the best models from every perspective (e.g., better interpretability,
higher goodness-of-fit, higher predictive performance, and lower risk of overfitting).

4.6. Validation on Stretches of Two-lane Rural Roads

In this part, three significant case studies are reported to verify the reliability of the procedure
for road monitoring and inspection activities. Therefore, we would like to judge whether the surface
motion mapping allows for the precise identification of any structural deficiencies and damage to road
pavements. In order to identify the condition of road pavement structures, the two-lane rural road
network graph has been overlayed on the map of surface motions predicted by SVM, assuming that
it is the most reliable, suitable, and accurate model among the calibrated MLAs. Figure 10 reports
the location of three potentially critical road sites detected by the models, while in Appendix B are
reported some images by Google map (https://www.google.com/maps) that depict the past and present
condition of road pavements belonging to such sites.

https://www.google.com/maps
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A roundabout represents the first case study (Figure 10a) at the north-west boundary of the city
center of Pistoia on the SR435. The same case study has been identified as the most critical road site on
SR435 in our previous research [2]. Figure A9 highlights a pavement structure in good condition in
2012, while a notable collapse of the roundabout side has occurred recently (2019).
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The second case study (Figure 10b) is located on a road stretch at the south-east boundary of the
city center of Pistoia on the SR66 (southern part). From Figure A10, we can appreciate two images of
the same road section, about 100 m away from each other. The stretch considered is a straight line, and
in 2008 it had a road pavement in good condition. After 11 years, in 2019, it shows severe damage to
the pavement. In Figure A10a, we can see how the whole area on the extreme left of the roadway is
cracking. Furthermore, in Figure A10b, the same area of the carriageway is undergoing a significant
sinking, highlighted by the stagnation of water.

The third case study (Figure 10c) is located in the mountainous northern part of the study area, on
a circular curve of the SR66 (northern part). The images proposed in Figure A11 describe the curve in
the two directions of travel. Images relating to the acceptable conditions of the pavement in the past
(the year 2011) and recent unsatisfactory conditions (the year 2019) are compared. In fact, after about
eight years, the pavement shows significant deterioration and depressions in both directions of travel.
It appears that a large part of the structure is moving downstream.

4.7. Use of the Procedure by Road Authorities

Road authorities can exploit the proposed procedure in different ways:

1. It allows quantifying the surface motion of road pavements in every point of the infrastructures,
even in those areas where there is no presence of PS detected by InSAR techniques; road authorities
could use the calibrated MLAs in other areas than where they were trained;

2. The most influential and relevant factors on the deterioration of pavements connected to
environmental and social parameters can be quantified. Consequently, road authorities can
arrange appropriate and specific maintenance interventions that also consider exogenous factors;

3. Monitoring and inspection activities of complex and extensive networks can be carried out
with a sufficient degree of accuracy, a high level of detail, and low cost (once the procedure
has been calibrated). Nonetheless, the methodology cannot replace modern Non-Destructive
High-Performance Techniques, such as Falling Weight Deflectometer, Ground Penetrating Radar,
or Profilometric measurements. However, thanks to the findings suggested by the procedure,
road authorities may have a tool for identifying a reduced set of road sites to be inspected.
Once specific admissibility thresholds of displacement (both negative and positive) have been set,
those road sites that require more attention will be automatically extracted;

4. By this procedure, road authorities may have more objective criteria for the planning of new
infrastructures. Indeed, thanks to the surface motion maps, it is possible to identify the areas in
which building a new infrastructure may be inappropriate. If admissibility thresholds are set
for this activity, different categories of areas could be discovered, such as good, acceptable, not
recommended, or prohibited areas for the development of a new infrastructural corridor;

Furthermore, thanks to the Sentinel-1 satellites, every six days, it is possible to have new PS and
new measurements of the PS already present in the area. Consequently, it is possible to update the
MLAs with the latest measures, having predictive models that are accurate over time.

4.8. Future Works

This paper constitutes an extended, updated, and improved version of our previous work [2].
Nonetheless, the research can be further enhanced and refined through:

• Extend the study area to different Provinces, up to the mapping of the entire Tuscany Region
(23,000 km2), relying on over 830,000 PS;

• It would be advisable to integrate information relating to the ascending and descending orbit to estimate
the surface motion ratio in the vertical direction and not in the Line-Of-Sight direction of the sensor;

• Consider the entire road network present in the study area (including the urban sections of the
two-lane rural roads and other roads not managed by the TRRA);
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• Consider also the railway network, extending the field of use to all the so-called
linear infrastructures;

• Test different feature selection approaches, such as the PCA, and compare the results obtained
with the wrapper approaches implemented in this study;

• Calibration of more complex MLAs, such as Neural Networks (both Multilayer Perceptron
and Convolutional Neural Networks), and comparison with the already implemented MLAs.
Furthermore, algorithms related to the stacking technique could be developed (i.e., parallel and
independent training of various learners and the aggregation of their predictions by another MLA,
whose inputs are learners’ predictions).

5. Conclusions

In the present paper, we defined a step-by-step procedure potentially useful for supporting infrastructure
monitoring, inspection, and planning activities. Specifically, we discussed the use of PS-InSAR measurements
and GIS analyses in combination with Machine Learning Algorithms for modeling and predicting the
surface motion ratio caused by environmental factors in terms of mm/year of an area of interest.

In order to achieve this purpose, four different algorithms have been trained, validated, evaluated,
and compared for the Province of Pistoia, Tuscany Region, central Italy. We calibrated two single
learners, i.e., Regression Tree and Support Vector Machine, and two ensemble learners, i.e., Random
Forest and Boosted Regression Trees; such algorithms have been defined for the prediction of the
surface motion ratio of each point of a road pavement structure, with a resolution of 10 m. The surface
motion ratio is the numerical target output of the models; we accounted for more than 52,000 Persistent
Scatterers. The input features of the models are represented by a set of 29 topographical-, hydrological-,
environmental-, and social system-based information collected by GIS platforms. Considering the
complexity of the phenomenon and the strongly non-linear relations between inputs and output, we
tried to implement a modeling strategy that was as automatic as possible, regarding the choice of the
most relevant features and the definition of the hyperparameters of the MLAs. Indeed, a backward
wrapper feature selection approach identified the subset of most relevant features, reducing the number
of predictors from 29 to 9, including Elevation, Rainfall, Distance from rivers, Distance from landslides,
Earthquake susceptibility, Type of area, River Density, and Silt and Clay content of the subsoil.

Once the dataset has been randomly split into training (70%) and test (30%) sets, the Machine
Learning Algorithms have been trained and validated by a Bayesian Optimization Algorithm and
a 10-Fold Cross-Validation. Therefore, we evaluated the performance of such models by R2, RMSE,
MAE, Scatterplots, and the Taylor Diagram. The numerical performance parameters highlight that
SVM and BRT are the most suitable algorithms, while the use of scatterplots reveals that despite
BRT shows satisfactory predictive performance during the test phase, it may suffer from overfitting
issues during training. Finally, the Taylor Diagram allows comparing the models by a graph-based
visualization. Through this diagram we verified that SVM and BRT are the best algorithms, considering
that BRT shows the highest Correlation Coefficient (0.96) and the lowest Root Mean Square Error (0.44
mm/year), while the SVM has the lowest difference between the standard deviation of its predictions
(2.05 mm/year) and that of the reference population (2.09 mm/year). In the conclusion of the workflow,
we mapped the surface motion over the entire study area and overlayed the road network graph with
the SVM predictions. Once the critical road sites have been detected, we proposed three case studies to
show the reliability of the suggested procedure.

We would like to advise road authorities to implement a similar approach for supporting efficiently
their decision-making processes involving road maintenance interventions, monitoring, inspection
activities, and planning of new infrastructural works.
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