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Abstract: Extracting diverse spectral features from hyperspectral images has become a hot topic
in recent years. However, these models are time consuming for training and test and suffer from
a poor discriminative ability, resulting in low classification accuracy. In this paper, we design an
effective feature extracting framework for the spectra of hyperspectral data. We construct a structured
dictionary to encode spectral information and apply learning machine to map coding coefficients. To
reduce training and testing time, the sparsity constraint is replaced by a block-diagonal constraint
to accelerate the iteration, and an efficient extreme learning machine is employed to fit the spectral
characteristics. To optimize the discriminative ability of our model, we first add spectral convolution
to extract abundant spectral information. Then, we design shared constraints for subdictionaries so
that the common features of subdictionaries can be expressed more effectively, and the discriminative
and reconstructive ability of dictionary will be improved. The experimental results on diverse
databases show that the proposed feature extraction framework can not only greatly reduce the
training and testing time, but also lead to very competitive accuracy performance compared with
deep learning models.

Keywords: hyperspectral images; efficient; feature extraction; dictionary learning

1. Introduction

Feature extraction of hyperspectral images (HSIs) is a significant topic at present and is widely
applied in different HSI applications [1,2], including hyperspectral classification [3], target detection [4],
and image fusion [5]. However, the variability and redundancy of spectra make it challenging to
extract valid features from HSIs. A large number of feature learning techniques have been developed
to describe spectral characteristics, which can be roughly categorized into two types: linear and
nonlinear algorithms. Linear models exploit the original spectral information or linearly derive various
features from such information. These kinds of features have been widely used to represent the linear
separability of certain classes [6]. The common linear models are independent component analysis [7],
principal component analysis [8], and linear discriminant analysis [9]. Although these models are
simple and compact, they suffer from poor representation ability and cannot cope with intricate
HSI data.

The nonlinear models are more effective for class discrimination due to the existence of nonlinear
class boundaries. These approaches adopt nonlinear transformations to better represent spectral
features of HSIs. The kernel-based method [10] is a common nonlinear model that maps samples into

Remote Sens. 2020, 12, 3967; doi:10.3390/rs12233967 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-2049-2108
http://www.mdpi.com/2072-4292/12/23/3967?type=check_update&version=1
http://dx.doi.org/10.3390/rs12233967
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 3967 2 of 20

higher dimensional space. Support vector machine (SVM) [11–13] is a representative kernel-based
method and has been proven to be effective for HSI classification. In [14], Bruzzone proposed
a transductive SVM that can simultaneously utilize labeled and unlabeled data. Nonetheless,
kernel-based algorithms usually lack a theoretical basis for the selection of the corresponding
parameters and are not scalable to large datasets. Another widely used nonlinear model is the
deep learning method with strong potential for feature learning. Chen et al. [15] verified the eligibility
of the stacked autoencoder (SAE) by classical spectral information-based classification. A similar
model was proposed by Chen et al. [16], who applied deep belief networks (DBNs) to extract features
in practice. In [17–20], multiple dimension convolutional neural networks (CNNs) were adopted for
HSI classification. Rasti et al. [21] provided a technical overview of the state-of-the-art techniques
for HSI classification, especially the deep learning models. However, deep learning models require
numerous labeled data points, strictly limiting their application domain. Moreover, the trained models
are inflexible, and their parameters are difficult to adjust.

Recently, dictionary-based methods have been introduced into HSI recognition. Compared with
deep learning models, dictionary-based methods can represent spectral characteristics more effectively
with less HSI data. Regarding sparse representation-based classification (SRC), References [22,23]
constructed an unsupervised dictionary that often engendered unstable sparse coding. References
[24,25] combined the kernel model with sparse coding to make samples more separable. Li et al. [26]
designed a robust sparse representation algorithm against outliers in practice. To obtain a compact
and discriminative dictionary, Zhang and Li [27] absorbed label information and constructed a
k-singular-value decomposition (K-SVD) dictionary for feature learning. Moreover, Reference [28]
optimized the discriminative dictionary and applied it to process HSIs. In [29,30], learning vector
quantization was adopted for dictionary-based models for hyperspectral classification. In general,
dictionary-based methods show great potential for HSI feature representation. However, these
dictionaries are time consuming, and their discriminative ability is poor.

To address the aforementioned drawbacks, we propose an efficient framework that trains a
discriminative structure dictionary to describe HSIs. The main novelties of the proposed model
are threefold:

(1) We design an efficient feature learning framework that calculates the structured dictionary
to encode spectral information and adopts machine learning to map the coding coefficients.
The block-diagonal constraint is applied to increase the efficiency of coding, and an effective
extreme learning machine (ELM) is employed to complete the mapping.

(2) We apply spectral convolution to extract the mean value and local variation of the spectra of
HSIs. Then, the dictionary learning is carried out to capture more local spectral characteristics of
HSI data.

(3) We devise a new shared constraint for all of the subdictionaries. In this way, the
common and specific features of HSI samples will be learned separately to achieve a more
discriminative representation.

2. Materials and Methods

In this section, we first introduce the experimental datasets and then elaborate the proposed
feature extracting framework for HSIs.

2.1. The Study Datasets

The experimental datasets include three well-known HSI datasets, and we randomly select 10%
of each dataset for training and the rest for testing. The detailed information is presented as follows.

Center of Pavia [31]: The HSI data were collected by the airborne sensor of the reflective optics
system imaging spectrometer (ROSIS) located in the urban area of Pavia, Northern Italy. The image
consisted of 1096× 492 pixels at a ground sampling distance (GSD) of 1.3 m with 102 spectral bands in
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the range of 430 nm to 860 nm. In this dataset, nine main categories are investigated for the land cover
classification task. The number of training and testing samples is specifically listed in Table 1.

Table 1. Scene categories of the Center of Pavia dataset with the number of training and testing samples
shown for each class.

Class No. Class Name Training Test

1 Water 6527 58,751
2 Trees 650 5858
3 Asphalt 290 2615
4 Self-Blocking Bricks 214 1926
5 Bitumen 654 5895
6 Tiles 758 6827
7 Shadows 728 6559
8 Meadows 312 2810
9 Bare Soil 216 1949

Botswana [32]: This dataset was collected by the Hyperion sensors on the NASA Earth Observing
1 (EO-1) satellite over the Okavango Delta, Botswana. It has 1476× 256 pixels at a GSD of 30 m with
145 spectral channels ranging from 400 nm to 2500 nm. There are 14 challenging classes for the land
cover classification task. Table 2 lists the scene categories and the number of training and testing
samples used in the classification task.

Table 2. Scene categories of the Botswana dataset with the number of training and testing samples
shown for each class.

Class No. Class Name Training Test

1 Water 27 243
2 Hippo grass 10 91
3 Floodplain grasses 1 25 226
4 Floodplain grassed 2 21 194
5 Reeds 26 243
6 Riparian 26 243
7 Fire scar 25 234
8 Island interior 20 183
9 Acacia woodlands 31 283

10 Acacia shrublands 24 224
11 Acacia grasslands 30 275
12 Short mopane 18 163
13 Mixed mopane 26 242
14 Exposed soils 9 86

Houston University 2013 [21]: The dataset was collected by the compact airborne spectrographic
imager (CASI) sensor over the campus of the University of Houston and its surrounding areas, in
Houston, TX, USA. It contains 349× 1905 pixels at a GSD of 1 m with 144 spectral channels ranging
from 364 nm to 1046 nm. The specific training and test information for the data is detailed in Table 3.
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Table 3. Scene categories of the Houston University 2013 dataset with the number of training and
testing samples shown for each class.

Class No. Class Name Training Test

1 Healthy grass 125 1126
2 Stressed grass 125 1129
3 Synthetic grass 69 628
4 Tree 124 1120
5 Soil 124 1118
6 Water 32 293
7 Residential 126 1142
8 Commercial 124 1120
9 Road 125 1127
10 Highway 122 1105
11 Railway 123 1112
12 Parking Lot 1 123 1110
13 Parking Lot 2 46 423
14 Tennis court 42 386
15 Running track 66 594

2.2. Related Works

Recently, dictionary learning has led to promising results in HSI classification recognition.
Dictionary learning aims to learn a set of atoms, also called visual words in the computer vision
community, in which a few atoms can be linearly combined to well approximate a given signal [33].
Here, we briefly introduce several mainstream dictionary-based approaches.

2.2.1. Review of Sparse Representation-Based Classification

Wright et al. [22] proposed the sparse representation-based classification (SRC) model, which
is widely applied in HSI classification [30]. Suppose there are C classes of HSIs. Let X =

[X1, . . . , Xi, . . . , XC] be the set of original training samples, where Xi is the subset of training samples
from class i. Then, sparse coding vector a corresponding to dictionary D is obtained by the lp-norm
minimization constraint as follows:

a = arg min
a
‖X− Da‖2

2 + λ ‖a‖p, (1)

where λ is a positive scalar and p is usually zero or one. The test samples can be classified via
the following:

arg min
i
‖X− Dai‖2

2, (2)

where ai is the coefficient vector associated with class i. SRC has impressive performance in face
recognition and is robust to different noises [33]. It acts as a leading methodtoward classification with
the help of dictionary coding. Nevertheless, it is obvious that the SRC model naively employs all
the training samples as one dictionary. The dictionary of SRC suffers from redundant atoms and a
disordered structure, making is unsuitable for complex HSI classification.

2.2.2. Review of Class-Specific Dictionary Learning

As discussed in [34], the pre-defined dictionary of the SRC model incorporates much redundancy,
as well as noise and trivial information. To solve this problem, Yang et al. [34] constructed a
class-specific dictionary, in which sub-dictionary Di of learned dictionary D = [D1, . . . , Di, . . . , DC]

corresponds to class i. The sub-dictionary could be learned class-by-class as follows:

Di = arg min
Di

‖Xi − Di Ai‖2
2 + λ ‖Ai‖p, (3)
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where Ai is the coding result of samples Xi on sub-dictionary Di. Equation (3) can be seen as the
basic model of the class-specific dictionary learning model since each Di is trained separately from
the samples of a specific class. We can apply reconstruction error ‖X− Di Ai‖2 to classify HSI data.
However, Equation (3) does not consider the discriminative ability between different coefficients,
resulting in low classification accuracy.

2.2.3. Review of Fisher Discriminant Dictionary Learning

Yang et al. [35] proposed a complex model named Fisher discriminant dictionary learning
(FDDL), which adopts the Fisher criterion to learn a structured dictionary. Suppose that X =

[X1, . . . , Xi, . . . , XC] ∈ R(L×N) refers to all N training HSI samples from C classes with L band number.
The coding matrix A = [A1, . . . , Ai, . . . , AC] ∈ R(NA×N) is the corresponding coefficient over dictionary
D containing NA atoms. The ith training sample can be computed as Xi = Di Ai, and the objective
function is shown as follows:

Loss (D, A) = arg min
D,A

{LR + λ1LS + λ2LD} , (4)

where λ1 and λ2 are the regularization parameters. LR, LS, and LD denote reconstructive loss, sparse
constraint loss, and discriminative loss, respectively:

LR = ‖Xi − DAi‖2
F + ‖Xi − Di Aii‖2

F +
C

∑
j=1,j 6=i

‖Dj Aij‖2
F, (5)

LS = ‖A‖1, (6)

LD = tr (SW (A))− tr (SB (A)) + η‖A‖2
F, (7)

where ‖ · ‖F is the Frobenius norm. In Equation (5), the first term ‖Xi − DAi‖2
F guarantees

reconstruction fidelity, while the rest of the terms are designed for the discriminative ability of
dictionary D. As for Equation (6), ‖A‖1 is a sparsity constraint and can be calculated by lasso [35].
Equation (7) based on the Fisher criterion [35] can be completed by minimizing the within-class scatter
of A, denoted by SW(A), and maximizing the between-class scatter of SB(A). The last elastic term of
Equation (7) is applied to solve the non-convex problem.

The atoms of the structured dictionary in FDDL are strongly correlated with specific classes,
which will improve the representation ability of D. However, the FDDL model is time consuming
and unsuitable for practical application. More importantly, the structure of the FDDL model needs
improvement to enhance the reconstructive ability.

2.3. Proposed Framework

Figure 1 shows the workflow of the proposed framework in which we construct a structured
dictionary to extract spectral features for classification application. Spectral convolution is first
introduced into our model to extract the abundant information. Following the convolution,
the corresponding coding representations are built for the test spectral data. We design the shared
constraint for all of subdictionaries to enhance the discriminative ability of the structured dictionary.
Finally, the ELM model is adopted to map the coding coefficients to the corresponding labels.
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Figure 1. Workflow of the proposed feature extraction model.

2.3.1. Spectral Convolution

The HSI data contain a massive amount of spectral characteristics, such as reflection peaks and
valleys, which play important roles in spectral classification. To extract this spectral information,
we design different convolution masks for the original samples. The masks are as follows:M1 =

0
1
0

 , M2 =

1/3
1/3
1/3

 , M3 =

−1/4
1/2
−1/4


 . (8)

To achieve stable classification performance, we apply M1 to preserve the original data. Inspired
by the wave transform, we design mask M2 to extract the main structure (mean values) of spectral
samples and mask M3 to capture the detailed information (local variation) of the spectra. As shown
in Figure 2, the results of M2 capture the main signal of spectra (M1) and the values of M3 change
with the local variation in the spectra (M1). Mask M2 can be adopted to describe the main structure
of spectral samples, while mask M3 can be applied to describe the local reflection valleys and peaks
of spectral data. However, the running time is closely related to the number of masks. In this work,
we only employ three convolutional masks to extract the spectral information, and there are other
possible masks that can be applied to extract the spectral characteristics.

Figure 2. Examples of spectral data with different convolution masks.
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2.3.2. Structured Dictionary

To encode the spectral information, most of the dictionary-based methods [34,35] are based on
the sparsity constraint under the following framework:

arg min
D,A

‖X− DA‖2
F + λ ‖A‖p + ϕ (Di, Ai), (9)

where λ ≥ 0 is a scalar constant. The first term ‖X − DA‖2
F is the fidelity constraint to ensure the

representation ability of trained dictionary. The second term ‖A‖p is the sparsity constraint, and the
remaining term ϕ (Di, Ai) is the additional constraint for some discrimination promotion function.
These models will train a structured dictionary to represent signals, which will promote discrimination
between classes. However, the sparsity constraint is time consuming on the coding coefficients,
making the model inefficient. More importantly, the role of sparse coding in classification is still
an open problem [36–38], and some experts have argued that sparse coding may not be crucial for
dictionary classification.

As described in [38], the block-diagonal constraint is an efficient way to calculate coding
coefficients. Here, we built the structured dictionary model as follows:

{A, D} = arg min
A,D

C

∑
i=1
‖Xi − Di Ai‖2

F +
C

∑
j=1,j 6=i

∥∥Aij
∥∥2

F, (10)

where the coefficient matrix A will be nearly block diagonal. The objective function in Equation (10)
is generally non-convex. We introduce a variable matrix P to calculate the coefficient matrix A.
Matrix P ∈ RNA×L is an encoder, and code A can be calculated as A = PX. With the encoder
P = [P1; . . . ; Pj; . . . ; PC], we want the encoder Pj to be able project the samples Xi (j 6= i) to a nearly
null space, i.e., PjXi ≈ 0, ∀j 6= i. Therefore, Equation (10) can be relaxed to the following problem:

{A, D, P} = arg min
A,D,P

C

∑
i=1
‖Xi − Di Ai‖2

F + τ ‖PiXi − Ai‖2
F + λ

∥∥PiXi
∥∥2

F , (11)

where τ and λ are scalar constants, PiXi = Ai, and Xi denotes the complementary data matrix of
subset Xi in the whole training set X. Equation (11) can be implemented via a two-stage iterative
algorithm: updating A with fixed D and P and updating D and P with fixed A.

(1) Suppose that D and P are fixed, and A are updated as follows:

{A} = arg min
A

C

∑
i=1
‖Xi − Di Ai‖2

F + τ ‖PiXi − Ai‖2
F . (12)

Equation (12) is a standard least squares problem, and we achieve the closed-form solution:

A(k+1)
i =

(
D(k)

i

T
D(k)

i + τ I
)−1 (

τP(k)
i Xi + D(k)

i

T
D(k)

i

)
, (13)

where I is the unit matrix.
(2) Fixing A, D and P are updated as follows:{

{P} = arg minP ∑C
i=1 τ ‖PiXi − Ai‖2

F + λ
∥∥PiXi

∥∥2
F

{D} = arg minD ∑C
i=1 ‖Xi − Di Ai‖2

F , s.t. ‖di‖2
2 ≤ 1

, (14)
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where di is the atom of the structured dictionary and ‖di‖2
2 ≤ 1 is to make the dictionary more stable.

The closed-form solution of P can be obtained as:

Pk+1
i = τA(k)

i XT
i

(
τXiXT

i + λXiXi
T
+ γI

)−1
, (15)

where γ is a small number. D can be calculated by introducing a variable S:

{D, S} = arg min
D,S

C

∑
i=1
‖Xi − Di Ai‖2

F s.t. D = S, ‖di‖2
2 ≤ 1. (16)

The optimal solution of Equation (16) can be achieved by the alternating direction method of
multipliers (ADMM) algorithm [39]:

Dk+1 = arg minD ∑C
i=1

∥∥∥Xi − D(k)
i A(k)

i

∥∥∥2

F
+ ρ

∥∥∥D(k)
i − S(k)

i + T(k)
i

∥∥∥2

F

Sk+1 = arg minS ∑C
i=1 ρ

∥∥∥D(k+1)
i − S(k)

i + T(k)
i

∥∥∥2

F
Tk+1 = Tk + D(k+1) − S(k+1),

(17)

where ρ is an ever-changing value with a fixed ratio and T is a temp matrix. All these closed-form
solutions converge rapidly, and a balance between the discrimination and representation power of the
model can be achieved.

2.3.3. Shared Constraint

To improve the representation and reconstructive ability of the subdictionaries, we design the
shared constraint for subdictionaries. As shown in Figure 3, the test samples contain the shared
features, and our shared constraint (the com subdictionary) is added to describe duplicated information
(shared features). Then, the discriminative features will be “amplified” relative to the original ones,
and constructing a new structured dictionary is easier than ever.

Figure 3. Overview of the built dictionary for different models. Shared constraints are applied for
structured dictionaries to represent the shared features between subdictionaries, and unique features
can acquire effective expressions.

Here, we design a subdictionary Dcom to calculate the class-shared characteristics as follows:

D = {D1, D2, . . . , DC, Dcom}, (18)
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where Dcom denotes the shared subdictionary. The corresponding objective function is modified
as follows:

{A, D} = arg min
A,D

C

∑
i=1
‖Xi − Di Ai‖2

F + ‖Xi − Dcom Acom‖2
F +

C

∑
j=1,j 6=i

∥∥Aij
∥∥2

F ,

= arg min
A,D

C

∑
i=1
‖Xi − Dicom Aicom‖2

F +
C

∑
j=1,j 6=i

∥∥Aij
∥∥2

F ,

(19)

where Dicom = [Di, Dcom] and Aicom = [Ai, Acom]. The introduction of Dcom will not affect the solution
procedure. With the calculation of term ‖Xi − Dcom Acom‖2

F, the results of term ∑C
i=1 ∑C

j=1,j 6=i
∥∥Aij

∥∥2
F

tend to be closer to zero, and the corresponding reconstructive ability of the structured dictionary will
be improved.

2.3.4. Feature Extraction Framework

We construct the structured dictionary and encode the spectral information of HSIs. The coding
coefficients A will be fed into the learning classifier to achieve better performance than directly using
the minimum reconstruction error for classification. Different learning classifiers, such as SVM [12]
and neural networks (NNs), can be employed to map the coding coefficients. However, these tools are
often time consuming. Therefore, we employ an efficient machine technique, i.e., the extreme learning
machine, to classify the HSIs.

In [40], Huang et al. proposed an ELM for generalized single-hidden-layer feed-forward neural
networks (SLFNs), which has been widely applied in various application [41,42]. The ELM tries to
learn an approximation function based on the training data. Suppose that SLFNs with K hidden nodes
can be represented as follows:

fL(xi) =
K

∑
j=1

g(xi, aij, bij)β j, (20)

where aij is the input weight connecting the input xi to the j-th hidden node, bij is the bias connecting
the input xi with the j-th hidden node, g(·) is the activation function, and β j is the output weight of
the j-th hidden node. The activation function g(·) can be any nonlinear piecewise continuous function
as follows:

g(x; θ) =
1

1 + exp(−(aTX + b))
, (21)

g(x; θ) = exp(−b‖X− a‖2), (22)

where Equations (21) and (22) are the sigmoid and radial basis function (RBF), θ = (a, b) are the
parameters of the mapping function, and ‖ · ‖2 denotes the Euclidean norm.

Huang et al. [43] proved that SLFNs can approximate any continuous target function over any
compact subset X with the above sigmoid and RBF functions. Training ELMs is equivalent to settling
a regularized least-squares problem, which is considerately more efficient than training an SVM or
learning with back-propagation. Therefore, in our model, an ELM is adopted for mapping the coding
coefficients into different classes of HSIs.

3. Experimental Results and Discussion

In this section, we compare the performance of our proposed method with other feature extracting
models, including SVM [12], FDDL [35], DPL [38], ResNet [44], RNN [21], and CNN [21] for HSI
classification. We report the overall accuracy (OA), average accuracy (AA), and kappa coefficient of
the different datasets and present the corresponding classification maps. The proposed method is
evaluated, and relevant results are summarized and discussed in detail as follows.
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3.1. Compared Methods and Evaluation Indexes

The SVM model (the codes for SVM were otained from https://www.csie.ntu.edu.tw/~cjlin/
libsvm/) is a representative kernel-based method and has shown effective performance in HSI
classification [12,13,45]. Yang et al. [35] proposed a complicated model named FDDL (the codes
of FDDL were from http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm), which was applied in
HSI classification in [46]. The DPL [38] method (http://www4.comp.polyu.edu.hk/~cslzhang/papers.
htm) is constructed to reduce the running time of learning the dictionary model. Convolutional
neural networks (CNNs) [21] (all the CNNs models were downloaded from https://github.
com/BehnoodRasti/HyFTech-Hyperspectral-Shallow-Deep-Feature-Extraction-Toolbox) are the most
popularly adopted deep model for hyperspectral classification. Compared to traditional deep fully
connected networks, CNNs possess weight-sharing and local-connection characteristics, making their
training processes more efficient and effective. ResNet [44] adopts a residual networks to address the
degradation problem and enhances the convergence rate of the CNN model, which is employed in
HSI classification [47]. Recurrent neural networks (RNNs) [48,49] process all the spectral bands as
a sequence and adopt a flexible network structure to classify HSIs. All experiments were repeated
10 times with the average classification results reported for comparison.

We used the following criteria to evaluate the performance of the different methods for HSI
classification used in this paper, which include:

Overall accuracy (OA): the number of correctly classified HSI pixels divided by the total number
of tests [50];

Average accuracy (AA): the average value of the classification accuracies of all classes [50];
Kappa coefficient: A statistical measurement of agreement between the final classification and the

ground-truth map [50].

3.2. Discussions of Different Datasets

(1) Center of Pavia: Table 4 lists the classification results of the compared algorithms, and Figure 4
shows the confusion matrix of our model (only to one decimal place). In Table 4, one can observe
that all the CNN-based models have a good performance. The best performance is achieved by
the proposed framework whose OA, AA, and kappa coefficients are 98.39%, 95.83%, and 97.23%,
respectively. Compared with the dictionary learning- and deep learning-based models, our model
gains significant classification accuracy for this dataset, especially for Class No. 2; see Figure 4. The
confusion matrix for our model is shown in Figure 4, indicating that our algorithm distinguishes
surface regions quite effectively.

For illustrative purposes, Figure 5 shows the obtained classification maps of the compared
methods on the Center of Pavia dataset. Figure 5a,b is the RGB image and ground truth map, and
Figure 5c–h is the corresponding classification results of SVM, FDDL, DPL, ResNet, RNN, CNN, and
the proposed model. We employ yellow and red rectangles to highlight the interesting regions. We
can observe from Figure 5 that the classification maps obtained by the proposed feature extractor
are smoother in the regions sharing the same materials and sharper on the edges between different
materials. The classification map produced from our model is the closest one compared with the
results from other approaches. Our method is capable of extracting the intrinsic invariant feature
representation from the HSI, achieving a more effective feature extraction.

(2) Botswana: The class-specific classification accuracies for the Botswana dataset and
corresponding confusion matrix of our model are provided in Table 5 and Figure 6, respectively.
From the results, one can see that the proposed algorithm outperforms the other algorithms in terms of
OA, AA, and kappa, especially for Class Nos. 10 and 13. The proposed method significantly improves
the results with a very high accuracy when tested with the Botswana dataset. From the illustrative
results in the confusion matrix map, our model shows more discriminative ability between different
classes. The confusion matrix can also confirm the class-specific classification accuracies presented in
Table 5.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
https://github.com/BehnoodRasti/HyFTech-Hyperspectral-Shallow-Deep-Feature-Extraction-Toolbox
https://github.com/BehnoodRasti/HyFTech-Hyperspectral-Shallow-Deep-Feature-Extraction-Toolbox
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Figure 7 shows the classification maps for the Botswana dataset where Figure 7a,b is the RGB
image and ground truth map and Figure 7c–h is the corresponding classification results of SVM, FDDL,
DPL, ResNet, RNN, CNN, and the proposed model. We employ yellow and red rectangles to highlight
the interesting regions. From the illustrative presentation in the classification maps, the compared
algorithms show more noisy scattered point in the maps. The proposed method can remove them and
lead to smoother classification results without blurring the boundaries. The result of our model is
the closest one compared with the state-of-the-art methods. It demonstrates the effectiveness of the
proposed structured dictionary learning model.

(3) Houston University 2013: Table 6 lists the classification result of the compared methods on
the Houston University 2013 dataset, and Figure 8 shows the corresponding confusion matrix of our
model. In Table 6, it is obvious that our model achieves slightly better performance than CNN-based
models. The OA, AA, and kappa coefficients of our framework are 86.82%, 86.44%, and 85.74%,
respectively. Compared with the dictionary learning- and deep learning-based models, our model
gains significant classification accuracy over this dataset, especially for Class Nos. 8, 9, and 12. The
confusion matrix for our model is shown in Figure 8, indicating that our algorithm distinguishes
surface regions quite effectively.

Table 4. Classification accuracy for the Center of Pavia dataset. FDDL, Fisher discriminant
dictionary learning.

Class No. SVM FDDL DPL ResNet RNN CNN Ours

1 0.9866 0.9882 0.9856 0.9845 0.9836 0.9966 0.9998
2 0.6302 0.2319 0.3743 0.6641 0.4118 0.7496 0.9507
3 0.9708 0.9851 0.9682 0.9644 0.9902 0.9669 0.9667
4 0.5055 0.3760 0.2568 0.4877 0.4646 0.5256 0.8728
5 0.9969 0.9848 0.9729 0.9835 0.9924 0.9905 0.9732
6 0.6659 0.6944 0.8576 0.7035 0.8335 0.9331 0.9534
7 0.9163 0.8811 0.9143 0.9363 0.9465 0.9503 0.9547
8 0.9416 0.9595 0.9711 0.9504 0.9794 0.9904 0.9922
9 0.9965 0.9643 0.9825 0.9895 0.9930 0.9874 0.9616

OA 0.9234 0.9057 0.9244 0.9289 0.9331 0.9663 0.9839
AA 0.8456 0.7850 0.8093 0.8515 0.8439 0.8989 0.9583

kappa 0.8927 0.8677 0.8937 0.9004 0.9060 0.9524 0.9723

Figure 4. The confusion matrix of our model on the Pavia of Center dataset.
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Figure 5. Classification maps of the Center of Pavia dataset with the compared methods: (a) RGB
image; (b) ground truth; (c) FDDL; (d) DPL; (e) ResNet; (f) RNN; (g) CNN; (h) ours. The yellow and
red rectangles correspond to building and water areas.
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Table 5. Classification accuracy for the Botswana dataset.

Class No. SVM FDDL DPL ResNet RNN CNN Ours

1 0.9465 0.9712 0.9794 0.9835 0.9346 0.9492 0.9342
2 1.0000 0.8571 0.9341 0.9890 0.9189 0.8333 0.8132
3 0.8451 0.7920 0.8496 0.8274 0.8366 0.9264 0.9735
4 0.8918 0.7887 0.9175 0.8918 0.7846 0.9323 0.9433
5 0.7037 0.6831 0.7284 0.7572 0.7704 0.8219 0.8724
6 0.6831 0.6461 0.6379 0.6214 0.6250 0.7861 0.8025
7 0.9615 0.7479 0.9316 0.9017 0.9234 0.9607 0.9573
8 0.8852 0.9126 0.9836 0.9781 0.8214 0.9005 0.9781
9 0.7279 0.7032 0.6784 0.7739 0.7651 0.7651 0.9435

10 0.7321 0.4777 0.8348 0.8527 0.7704 0.8071 0.9688
11 0.7418 0.7564 0.8945 0.8836 0.8404 0.8517 0.8691
12 0.9080 0.8037 0.8834 0.9816 0.7746 0.8580 0.8221
13 0.5785 0.7810 0.8554 0.7397 0.7371 0.8966 0.9256
14 0.9070 0.6628 0.7907 0.7907 0.7404 0.8901 0.9302

OA 0.8017 0.7515 0.8420 0.8444 0.8017 0.8676 0.9130
AA 0.8223 0.7560 0.8500 0.8552 0.8031 0.8699 0.9095

kappa 0.7854 0.7311 0.8289 0.8316 0.7850 0.8566 0.9057

Figure 6. The confusion matrix of our model on the Botswana dataset.

For illustrative purposes, Figure 9 shows the obtained classification maps of the compared
methods on the Houston University 2013 dataset. Figure 9a,b is the RGB image and ground truth map,
and Figure 9c–h is the corresponding classification results of SVM, FDDL, DPL, ResNet, RNN, CNN,
and the proposed model. We employ yellow and red rectangles to highlight the interesting regions. As
shown in Figure 9, our model removes the effects of salt-and-pepper noise from the classification maps
effectively and simultaneously preserves the meaningful structure or objects. Owing to the robustness
in local changes of the spectra, our model obtains more accurate classification maps in the area in and
around the parking lot. Generally speaking, our model clearly shows superior performance in effective
classification of HSIs.
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Figure 7. Classification maps of the Botswana dataset with the compared methods: (a) RGB image;
(b) ground truth; (c) FDDL; (d) DPL; (e) ResNet; (f) RNN; (g) CNN; (h) O = ours. The yellow and red
rectangles correspond to grassland and mountain areas.
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Table 6. Classification accuracy for the Houston University 2013 dataset.

Class No. SVM FDDL DPL ResNet RNN CNN Our

1 0.889 0.9076 0.9831 0.9387 0.9538 0.9224 0.9645
2 0.9353 0.9477 0.9814 0.9752 0.9628 0.9824 0.9779
3 0.9586 0.9984 0.9825 0.9904 0.9857 0.9888 0.9809
4 0.8875 0.9446 0.8634 0.9598 0.9714 0.9435 0.9652
5 0.9284 0.9776 0.9902 0.9723 0.9785 0.9663 0.9821
6 0.8703 0.9829 0.9693 0.9590 0.9249 0.9691 0.8635
7 0.6261 0.7881 0.6996 0.7977 0.7820 0.8567 0.8862
8 0.725 0.5188 0.6571 0.5634 0.4223 0.7945 0.8429
9 0.551 0.6557 0.7329 0.7063 0.7045 0.7269 0.7995

10 0.6389 0.4244 0.8462 0.7747 0.7738 0.7808 0.7086
11 0.5117 0.4317 0.5926 0.7752 0.8354 0.7889 0.7707
12 0.5396 0.5315 0.6595 0.6036 0.7450 0.7348 0.7550
13 0.2766 0.5414 0.2884 0.6430 0.5745 0.4879 0.5012
14 0.9689 0.9948 0.9896 0.9896 0.9793 0.9908 0.9870
15 0.9545 0.9882 0.9848 0.9562 0.9781 0.9351 0.9815

OA 0.7409 0.7476 0.8103 0.8255 0.8280 0.8549 0.8682
AA 0.7508 0.7756 0.8147 0.8404 0.8381 0.8579 0.8644

kappa 0.7199 0.7271 0.7949 0.8114 0.8142 0.8431 0.8574

Figure 8. The confusion matrix of our model on the Houston University 2013 dataset.
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Figure 9. Classification maps of the Houston University 2013 dataset with the compared methods:
(a) RGB image; (b) ground truth; (c) FDDL; (d) DPL; (e) ResNet; (f) RNN; (g) CNN; (h) ours. The
yellow and red rectangles correspond to building areas and the parking lot.
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3.3. Small Training Samples

The impact of the sample size for HSI classification has been reported in many research
studies [23,24,28]. To confirm the effectiveness of our framework on small training samples, we
randomly selected 5% of the Botswana dataset for training and the rest for testing. As shown in
Table 7, the classification performance is extremely susceptible to the number of training data. The
reduction to 5% of the training samples leads to a decrease of about 2%∼4% in classification accuracy.
The OA, AA, and kappa of our model are 88.42%, 88.95%, and 87.46%, beating all other compared
methods. This result suggests that our model has the potential to achieve higher level accuracy with a
limited sample size.

Table 7. The classification results with 5% of the Botswana dataset for training the models.

Class No. SVM FDDL DPL ResNet RNN CNN Ours

1 0.9689 0.9805 0.8755 1.0000 0.6314 0.9312 1.0000
2 0.9896 0.7917 0.9896 0.9896 0.2370 0.7934 0.9063
3 0.6527 0.6862 0.8745 0.8452 0.7762 0.8779 0.9791
4 0.9122 0.6195 0.9220 0.8439 0.0714 0.8846 0.9073
5 0.5078 0.6094 0.7070 0.7891 0.7619 0.8333 0.8242
6 0.5391 0.5234 0.7070 0.6641 0.4356 0.7194 0.7500
7 0.8178 0.9474 0.7814 0.8866 0.8291 0.9551 0.9393
8 0.9016 0.7824 0.9585 0.9793 0.3591 0.8396 0.9482
9 0.5017 0.5786 0.7893 0.7525 0.6681 0.7523 0.8528
10 0.6017 0.7203 0.9110 0.7712 0.8125 0.7079 0.7839
11 0.8172 0.6276 0.7276 0.8793 0.8671 0.7595 0.9483
12 0.7209 0.5523 0.6047 0.9360 0.4409 0.7661 0.9419
13 0.5647 0.7333 0.9490 0.5765 0.7788 0.8718 0.7490
14 0.8242 0.9231 0.8132 0.8132 0.2222 0.7938 0.9231

OA 0.7125 0.7067 0.8215 0.8250 0.6122 0.8192 0.8842
AA 0.7355 0.7188 0.8293 0.8368 0.5637 0.8204 0.8895

kappa 0.6889 0.6827 0.8067 0.8107 0.5815 0.8042 0.8746

3.4. Time Cost

All the experiments in this paper were implemented with MATLAB 2018b and Python on a
Windows 10 operation system and conducted on an Intel Core i7-8700 CPU 3.20 GHz desktop with
16GB memory. The training and testing time of different models are listed in Table 8. Overall, the
training and testing time of our model are far less than the SVM- and CNN-based models, which
clearly shows the superior efficiency of our approach in classification application.

Table 8. Training and testing time of the HSI classification algorithms on the three datasets.

Dataset Time (s) SVM CNN RNN
Ours

Coding ELM

Pavia of Training 286.14 404.16 800.68 0.43 1.48
Center Testing 6.78 8.21 9.33 4.50×10−4 0.63

Botswana Training 51.44 70.03 296.24 0.03 0.05
Testing 1.77 1.9 3.64 2.90× 10−4 0.13

Houston Training 62.50 106.04 256.01 0.15 0.25
University 2013 Testing 2.11 2.66 3.12 3.20× 10−5 0.17

4. Conclusions

In this work, we propose an efficient spectral feature extraction framework for HSI data.
This algorithm is more suitable for low spatial resolution HSIs with a lack of spatial features.
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To improve the efficiency of our framework, we replace the sparsity constraint with the block-diagonal
constraint to reduce the coding computation and employ an ELM model to map the coding coefficients.
More importantly, we design spectral convolution and perform the dictionary learning on these features
to capture more local spectral characteristics of the data. We also design a new shared constraint
to construct a discriminative dictionary in the learning. Extensive experiments are conducted on
three HSI datasets, and both qualitative and quantitative results demonstrate the effectiveness of the
proposed feature learning model. Furthermore, the proposed approach consistently achieves higher
classification accuracy even under a small number of training samples. In comparison to the SVM-
and CNN-based models, our framework requires much less computation time, which demonstrates its
potential and superiority in the HSI classification task. In the future, we will continue to incorporate
the spatial information into the model to further strengthen the feature representation ability.
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