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Abstract: With the increasing global population, human demands for natural resources continue
to grow. There is a critical need for the sustainable use and development of natural resources.
In this context, ecosystem services have attracted more and more attention, and ecosystem services
assessment has proven to be useful for guiding research, policy formulation, and management
implementation. In this paper, we attempted to assess ecosystem services more comprehensively from
various perspectives. We used food provisioning ecosystem services in Minnesota as a case study and
proposed two new concepts for assessing ecosystem services: efficiency and trend. We designed a
multidimensional assessment framework, analyzed the total output, efficiency, and trend temporally
based on both area and space with Exploratory Spatial Data Analysis (ESDA). We also identified
major influencing factors based on remote sensing images in Google Earth Engine and explored
the quantitative influence on each assessment dimension. We found that: (1) Food provisioning
ecosystem service in Minnesota has generally been improving from 1998 to 2018. (2) We identified food
provisioning ecosystem services in Minnesota as superior zones, mixed zones, and inferior zones with
a ‘sandwich geo-configuration’. (3) The total output tends to be stable while the efficiency is disturbed
by some natural disasters. Simultaneously, the trend index has been improving with slight fluctuations.
(4) Agricultural disaster financial support has a stronger impact on stabilizing the total output of food
provisioning than the other two dimensions. (5) Soil moisture, diurnal temperature difference, and crop
growth are the three main influencing aspects of food provisioning ecosystem services, and the order
of the influential density is: the Perpendicular Drought Index (PDI), Normalized Difference Vegetation
Index (NDVI), Rainfall (RF), Daytime Temperature (DT), and Diurnal Temperature Difference (DIF).

Keywords: ecosystem services assessment; food provisioning ecosystem service; efficiency; trend;
multidimensional assessment; remote sensing

1. Introduction

Ecosystem services are the various benefits provided to humans by the natural environment.
With the increasing global population, human demands for natural resources continue to grow. There is
a critical need for the sustainable use and development of natural resources. Various definitions of
ecosystem services have been proposed in the literature. For example, Costanza et al. [1] defined
ecosystem services as natures direct or indirect contribution to human welfare and classified them
into 17 categories. Daily et al. [2] proposed that ecosystem services are the conditions and processes
through which natural ecosystems, and the species that make them up, sustain and fulfill human life.
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The Millennium Ecosystem Assessment (MA) defined ecosystem services as all the benefits humans
obtain from the ecosystems, including provisioning services (e.g., food and water), regulating services
(e.g., flood controlling and disease controlling), cultural services (e.g., spiritual, entertainment and
cultural gains) and supporting services (e.g., the nutrient cycle that maintains the living environment
on Earth) [3,4]. In this paper, we proposed a new framework for multidimensional assessment of food
provisioning ecosystem services.

There have been three popular methods for ecosystem services assessment proposed in the
literature, namely the monetary assessment methods, energy-based methods, and material-based
methods. Ecosystem monetization attempts to assign monetary values to nature’s services [5],
which offers a framework that can be easily understood by a wide audience, making it a useful
decision-making tool for government finance. It is an attractive option for policymakers and
public officials who are facing time and budget constraints [6]. Therefore, various economic
methods have been developed to assess the economic value of ecosystem services. For example,
Ratisurakarn [7] estimated the economic value of forest ecosystem services by adopting a meta-analysis.
Davis [8] groundbreakingly applied a contingent valuation method to evaluate goods or services with
consumers’ payment willingness in a hypothetical market. Other noteworthy monetary assessment
methods include: the market value method (using the output value variations of a certain area caused
by natural environment changes as the economic effect of environmental alteration) [9], the shadow
pricing method (using the cost of artificially projects to replace the original environmental function as
the economic loss of polluted or destroyed environmental parts) [10], and the value transfer method
(grafting the ecosystem economic value per unit area in the existing research to the study area) [11-13].
These methods have made a significant contribution to the economic value assessment of ecosystem
services. The concepts, application scope, calculation methods of these methods have been further
explored based on their various characteristics and applicabilities [14-17].

However, the monetary assessment methods have some limitations: (1) it is vital to choose a
proper method to match the research targets and goals since the results of different methods vary
greatly; (2) economic methods do not fit ecosystems perfectly since ecosystem services are not actual
market behaviors and, with the circumstance updating, the changing human demand has required
different assessments; (3) the dependence derived from the complexity of the ecosystem itself caused
double counting or undercounting in the economic results [18]. The other two mainstream methods
(i.e., energy-based and material-based methods) arose from the demand for more objective assessments
evoked by the uncertainty, instability, even some errors in economic methods. Energy-based methods
measure ecosystem services with the amount of solar energy the ecosystem absorbed, the ecosystem
conversion or material output [19-24]. Material-based methods use the amount of ecosystem service
carriers exported to human beings to measure ecosystem services, for example, the weight of
food that humans obtain from an ecosystem reflects the amount of food provisioning ecosystem
services [25]. In recent years, based on these methods and theories, ecosystem services evaluation
models supported by remote sensing data, socioeconomic data, and geospatial technologies have
become one of the most focal areas, such as the Integrated Valuation of Ecosystem Services and
Trade-offs (InVEST), Carnegie-Ames-Stanford Approach (CASA), Social Values for Ecosystem Services
(SoLVES), and Artificial Intelligence for Ecosystem Services (ARIES) [26-34]. As a carrier of food
provisioning ecosystem services, the food humans obtain directly from nature has abundant weight
statistics and good accessibility. Thus, we adopted the material-based method in this paper.

Ecosystem services assessment has made great progress in data, technologies, methods, and scales.
However, there are some limitations to existing studies: (1) Economic methods, energy-based methods,
and material-based methods focus on ecosystem services output or storage [1,12,35-37]. However,
few studies explored the efficiency or trend of ecosystem services. (2) Existing studies rarely
explored the influencing factors on ecosystem services [4,13,38], let alone analyzing their quantitative
relationships. (3) Most ecosystem service assessments did not reach the full potential of remote
sensing. Traditional approaches are usually based on statistics and vector data. Since the rise
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of the model methods, remote sensing images have been mostly used for identifying land
cover [24,29,30,39-43] and have rarely been used in exploring the influencing factors of ecosystem
services. However, various remote sensing products and indices are quantitatively related to some
ecosystem services [44-52], such as biomass, crop yield, water quality, and biological habitat.

This study aimed to assess food provisioning ecosystem services comprehensively from various
perspectives, building a framework in which the output, efficiency, and trend could be reflected
simultaneously. Based on the theory of material quality evaluation, we believe that the amount
of harvested crops can reflect the food provisioning ecosystem services. Compared with previous
studies, the highlights of this paper are as follows: (1) We proposed two new concepts in ecosystem
services assessment. One is the ecosystem service efficiency, which is the output of a unit ecosystem
area, reflecting the quality of the ecosystem. The other is the ecosystem trend, reflecting the trend of
ecosystem efficiency. The trend index is a vector whose direction and magnitude represent the trend
and rate of change, respectively. (2) We designed an assessment framework to evaluate ecosystem
services from three different aspects: total output, efficiency, and trend. (3) We analyzed the temporal
changes of each dimension from the perspectives of area and geographic patterns. (4) We identified the
main influencing aspects and analyzed the quantitative relationship between remote sensing indices
and each assessment dimension using the Google Earth Engine cloud computing platform.

2. Materials and Methods

2.1. Study Area

We chose the state of Minnesota (Figure 1) as our study area. Minnesota is the 12th largest in area,
the 22nd most populous [53], and the 5th largest in agricultural production among all U.S. states [54].
Agriculture is the second largest industry in Minnesota, accounting for USD 57.5 billion in sales and
more than 147,000 jobs [54].

Legend
COUNTY NAME 11 Cass 22 Faribaull 33 Kanabec 44 Marshall 55 Olmsted 66 Rice 77 Todd
01 Aitkin 12 Chippewa 23 Fillmore 34 Kandiyohi 45 Martin 56 Otter Tail 67 Rock 78 Traverse
2 Ancka 13 Chisago 24 Freebom 35 Kittson 46 Mcleod 57 Pennington 68 Roseau 79 Wabasha
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06 BigStone 17 Colonwood 28 Houston 39 Lakeofthe Woods 50 Mower 61 Pope 72 Sllouis 83 Walonwan
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Figure 1. Map of counties in the state of Minnesota.
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Minnesota consists of 87 counties, covering 225,163 square kilometers. Given that the data of
agricultural statistics are county-based, we performed the analysis at the county level.

2.2. Data Sources

We used statistical data from the U.S. Department of Agriculture (USDA) [55] to calculate
multidimensional assessment indicators at the county level. Remote sensing images from the Google
Earth Engine data catalog [56-58] were used to extract influencing factors. We selected corn, wheat, oat,
and soybean as the main crops in Minnesota according to the Minnesota State Agriculture Overview [59].

2.3. Methods

We designed a multidimensional assessment framework and applied it to the 87 counties.
Exploratory Spatial Data Analysis (ESDA) was adopted to explore the geospatial pattern of the
results. We extracted remote sensing indices via Google Earth Engine and analyzed their quantitative
relationships with the multidimensional assessment results. There were some statistical analysis
methods used in this paper. The following sections describe the main methods we used.

2.3.1. A Multidimensional Assessment Framework

We proposed a multidimensional assessment framework (Figure 2) that uses the total output (P),
efficiency (Q), and trend (D) to uniquely characterize ecosystem services. It defines eight assessment
spaces as shown in Table 1.

D D

w1

Vi I

a) Assessment spaces b) Dimensional assessment illustration

Figure 2. Framework of multidimensional ecosystem services assessment.

Table 1. Multidimensional assessment spaces and their properties.

Space P Q D Properties Description
I +  The total output, efficiency, and trend index are above average. Progression
I B The tojcal output and efficiency are above average, but the trend Degradation

index is below average.
i + Although the efficiency is below average, it has been raised. Progression
The above-average output depends on the larger ecosystem area. &
v _ The efficiency is below average and it has degraded. Degradation
The above-average output depends on ecosystem scales.
The output is below average, indicating that the ecosystem scale .
\V + Progression
should be expanded.
Both the output and the trend index are below average, .
Vi but it has high efficiency. Degradation
VII + The output and efﬁcgncy are below average, but it has an Progression
above-average trend index.
VIIT _ All three indices are below average. It has a lower output and Degradation

efficiency. Simultaneously and unfortunately, it has degraded.
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In Figure 2b, objects ‘a’ and ‘d” are located in Space V, ‘b’ is located in Space III, and ‘¢’ is located
in Space II. That is to say, ‘a’ and ‘d” share the properties of Space V, and ‘b’ and ‘c’ share the properties
of Space III and Space 11, respectively. However, ‘a’” has stronger properties compared to ‘d’ because it
has a larger assessment cuboid.

The food humans obtain from nature mainly depends on the agriculture sector. Crop production
is a branch of agriculture dealing with growing crops for use as food and fiber [60]. It is an effective
indicator reflecting the total amount of food provisioning ecosystem services. Thus, the P-score in
our research was derived from the main crop production. We defined ecosystem service efficiency as
the ecosystem service output of a unit area, so the crop yield reflects the food provisioning ecosystem
service efficiency. D-score is the trend index of food provisioning ecosystem service, calculated by the
annual change in efficiency.

Due to the different value ranges of multi-source datasets used in this study, we standardized the
data, i.e., rescaling the data to have a mean of 0 and a standard deviation of 1. This standardization is
called a z-score, which can reflect the gap between data points and the overall average. A z-score can
be calculated with the following formula:

X' = (€))]

where x* is the z-score, X is the mean of the original data, o is the standard deviation of the original
data. Above-average data points will get a positive z-score, while subaverage data will get a negative
z-score. The absolute value of the score indicates the number of standard deviations between the data
points and the average. We used this z-score standardization method to calculate the P, D, and Q scores,
which reflect the total output, efficiency, and trend of the food provisioning ecosystem services relative
to the average level, respectively (Table 2).

Table 2. Formulas of assessment indices.

Index Formulation Introduction

Pij is P-score of county i in the year j, P’ ij is the crop production of county i

P Pij = ! in the year j, IT; is the average crop production of the state in year j, ap is
the crop production standard variance of all counties in year .

Qjj is the Q-score of ecosystem service efficiency of county 7 in the year j,
=1 E Q’;j is the yield of county i in the year j, 6} is the average crop yield of the
state in year j, og is the yield standard variance of all counties in year j.

AD DY D;; is the D-score of the county i in the year j, AD’, is the annual efficiency
Djj = # change in county i in year j, is the average of annual efficiency change in the

D { . . . . .. .
AD. = O:ii— O/ entire state in year j, oppr is the annual efficiency change standard variance
ij = Ql] Qi(]—l) j

of all counties in year j.

The multidimensional assessment framework has the following characteristics:

1. It is a relative assessment framework based on the average level. P-score, Q-score, and D-score are
normalized to (=3,3). A positive index means an above-average dimension; the larger the index,
the better the circumstance. Conversely, a negative index indicates a subaverage dimension;
the lower the index is, the worse the circumstance is.

2. P-score, Q-score, and D-score uniquely determine the characteristics of each county. The volume
of the assessment cuboid reflects the strength of the characteristics it shows.

2.3.2. Exploratory Spatial Data Analysis

Initially, Tukey [61] proposed a new method of exploratory data analysis (EDA) to solve
the problems in traditional statistics: (1) The practical data cannot meet the normal assumption.
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(2) The models based on mean and variance tend to have low stability. EDA was able to analyze
massive data, made no assumption of the population, and often excluded hypothesis testing. It tried
to ‘let the data speak’ via statistical charts, graphs, and statistical overview methods. Exploratory
Spatial Data Analysis (ESDA) is the expansion of EDA in the field of spatial data analysis. ESDA is
supported by spatial analysis, emphasizes the spatial correlations of events, and focuses on the nature
of spatial data. It is a powerful tool for geospatial data analysis, such as exploring spatial patterns,
extracting main characteristics, identifying spatial clusters, evaluating aggregated and discrete patterns,
grouping objects, and modeling spatial relationships. We adopted ESDA to explore the geographic
spatial distribution and clustering patterns of food provisioning ecosystem services in Minnesota.

Hot-Spot Analysis, one of the main methods of ESDA, is based on the Getis-OrdGi* algorithm
Equation (2) proposed by J. Keith Ord and Arthur Getis [62]. It focuses on identifying geospatial
clusters of statistically high values (hot spots) and low values (cold spots). In a ‘hot spots’ zone,
the high value is surrounded by high value. Similarly, a low value is located at the low-value gathering
area in ‘cold spots’ zone.

Y wijxj =X L wij

2
Py |l ]
Tn T2 n—1

n

@

where Gi* is positive for a ‘hot spot” and negative for a ‘cold spot’. The statistical significance is assessed
by Z test in which the z-score and p-value are statistical significance measures and the accordances of
whether to reject the null hypothesis or not (Table 3). In fact, they determine whether the observed
spatial clusters are more obvious than we expected in a random distribution.

Table 3. Critical p and critical z values with different confidence levels.

Z Score (Standard Deviation) p Value (Probability) Confidence Level

z<-1650rz>+1.65 p<01 90%
z<-1950rz>+1.95 p<0.05 95%
z<-2580rz>+2.58 p<0.01 99%

2.3.3. Remote Sensing Image Analysis

The modeling results, based on remote sensing data, could be very different from current conditions.
Given that 2018 is the closest time period to the present, we believe that 2018 is more meaningful for
recent policy-making and ecosystem management than other time periods (i.e., 1998, 2003, 2008, 2013).
Therefore, we selected 2018 as a case in modeling the influencing factors of food provisioning ecosystem
services. We used remote sensing images acquired in 2018 to extract the influencing factors of the
multidimensional assessment results. The typical crop growing season in Minnesota ranges from May
to September [63-65]. To supplement some unusable satellite images acquired in May due to high cloud
coverage, we extended the time range from April to September. Vegetation conditions and climatic
conditions are the key factors affecting crop yield [45,47,66]. We chose the Perpendicular Drought Index
(PDI) [47], Normalized Difference Vegetation Index (NDVI), Rainfall (RF), Daytime Temperature (DT),
and Diurnal Temperature Difference (DIF) as the main influencing factor indicators (Figure 3).
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DT

RF

NDVI
Sample county

NDVI

PDI

Statistics

PDI
County Otter Tail
DIF Mean DIF value
DT Mean DT value
RF Mean RF value
NDVI Mean NDVIvalue
PDI Mean PDI value

April
Figure 3. Flowchart of image processing.

We derived the five influencing factors from remote sensing images at the pixel scale and then
aggregated them to the county level. We used various remote sensing images in this paper and
combined remote sensing data with vector data, resampling the pixels of remote sensing images from
a micro perspective to a wider range of county boundaries to avoid the problems of different temporal
and spatial resolutions of various remote sensing images.

We used the USGS Landsat 8 Surface Reflectance Tier 1 (30-m resolution) data, which have been
atmospherically corrected, to calculate the PDI and NDVI. The formulas are as follows:

PDI = (Ryq + M X Ryir) / /(M2 +1) 3

NDVI = (Rm'r - Rred) / (Rm'r + Rred) (4)
where R,y and Ry;, are the red band and near-infrared band of Landsat images, respectively. M is the
slope of the soil line (Formula (5)), § is a constant.

Rnir =MX Rred + ﬁ (5)

DT and DIF data are from the dataset MOD11A2 Terra Land Surface Temperature and Emissivity
8-Day Global, which provides an average 8-day land surface temperature (LST). Daily Surface Weather
and Climatological Summaries provide the RF data. These datasets are readily available in the Earth
Engine public data catalog.

2.3.4. Statistical Analysis
(1) Principal Component Analysis

Principal component analysis (PCA) is one of the most widely used statistical methods for
dimensionality reduction. It was first introduced by K. Pearson [67]. It is the process of computing the
principal components and using them to perform a change of basis on the data, sometimes using only
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the first few principal components and ignoring the rest [68]. We used the five influencing factors as
the original dataset and extracted their principal components.

(2) Multiple Linear Regression

Multiple linear regression attempts to model the relationship between two or more explanatory
variables x; and a response variable y; by fitting a linear equation to observed data. The model for
multiple linear regression, given N observations, is:

vi= Po+pixit+e,i=123,...,N ©)

In the least-squares model, the best-fitting line for the observed data is calculated by minimizing
the sum of the squares of the vertical deviations from each data point to the line (if a point lies on the
fitted line exactly, then its vertical deviation is 0). The restriction formula is:

N N
QBo, B1. B2, - By) = Z(yi - 9)" = Z(]/i —Bo— Prxin —Poxip — ... — ,Bpxip)z - MIN (7
i1 i1

In this paper, x; indicates the five influencing factors; y; represents the multidimensional assessment
indicators; the values fitted by Equation (6) are donated ;.

3. Results

3.1. Multidimensional Assessment Area Results

Asshown in Figure 4, there are four dominant spaces in Minnesota (see Figure 2 for the eight spaces),
including: progression zones with above-average output and efficiency (Space 1), degradation zones
with above-average output and efficiency (Space II), progression zones with below-average output and
efficiency (Space VII), and degradation zones with below-average output and efficiency (Space VIII).
These four dominant spaces accounted for more than 77% of the total area. Thus, our subsequent
analysis focused on these four spaces (i.e., I, II, VII, and VIII).

(%)
o Legend
1963
Legend | .. g
@ Space [ Progression|  32% (= Space 1 Progression
S et g 30% {labove-average output
1652 ADoOve-average efficiency| g 28% labove-average efficiency|
5 26%
o 5
@ Space IDegradation| § 24% Q [@-Space IDegradation
above-average output | 2 22% above-average output
above-average efficiency| £ 209 labove-average efficiency
2w S 18% 4
@ SpaceVII Progression| & 16% “—4-©-5paceVII Progression
below-average output | & 14% lbelow-average output
o 12% \ lbelow-average efficiency|
below- 5
oy pelow-average efficiency & 150>
M8 SpaceVilDegradation 8% paceVIIID
o 6% lbelow-average output
[——— 4% lbelow-average efficiency|
1081 2%
Others| 0% Others
1998 2003 2008 2013 2018
100%

Figure 4. Distribution and change of multidimensional assessment results.

Their developments are as follows: (1) Degradation zones with subaverage output and efficiency
(Space VIII) dropped significantly, from 34.78% in 1998 to 10.81% in 2018. (2) The trend of progression
zones with below-average output and efficiency (Space VII) turned over from 2003 to 2013. It rose
before 2003, then began to decline, resumed an upward trend after 2013 (Figure 4). (3) Progression
zones with above-average output and efficiency (Space I) decreased to 14.82% from 28.07% in the first
period (1998-2003), but it has risen steadily since 2003 and reached 22.13% in 2018. (4) Degradation
zones with above-average output and efficiency (Space II).
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The value of score indicates the level of research target compared to the average. A positive score
means an above-average level and a negative score indicates a below-average level. We divided the
results into six categories with an equal interval: (1) Scores greater than 2, indicating they are more
than twice the standard deviation above the average level. (2) Scores in [1, 2) are one to two times
of standard deviation above the average level. (3) Scores in [0, 1) are within one standard deviation
above the average level. (4) Scores in [—1, 0) are within one standard deviation below the average level.
(5) Scores in [-2, —1) are one to two standard deviations below the average level. (6) Scores less than
—2 are more than twice the standard deviation below the average level.

P-score in Minnesota is mainly in (-2, 1), accounting for more than 80% of the total area, in which
the negative P-score zones account for around 60%. It shows in 80% of the area in Minnesota that the
output ranges from two standard deviations below average to one standard deviation above average,
and the below-average part is dominating. Figure 5 shows that the area pattern of the P-score has
been stable from 1998 to 2018. The negative P-score area has always been larger than the positive,
indicating that the below-average output area has been larger than the above-average output area.

@ scores > 2 @B 1 < SCORES <2 @B 0 < SCORES <1 —1 < SCORES <0 -2 < SCORES <1 @9 sCcoRres <-2

2013 2003 2013 2003 2013 2003

2008 2008 2008
2008

Proportion of P score in different sections Proportion of Q score in different sections Proportion of D score in different sections

Figure 5. Changes in P-score, Q-score, and D-score.

Similar to the P-score, more than 70% of the area in Minnesota has a Q-score within (-2, 1). That is
to say, in 70% of the area, the food provisioning ecosystem service efficiency is from two standard
deviations below average to one standard deviation above average, and this section increased to
91% in 2018. The above-average efficiency area (positive Q-score) is similar to the below-average
efficiency area (negative Q-score) and the largest section is one standard deviation above-average area
(0 < Q-score < 1), accounting for around 40% of the total (Figure 5).

More than 70% of the area had a D-score between (-1, 1), indicating that the trend index was very
close to the average level. Figure 5 shows that the above-average trend index area (positive D-score),
the progression area, gradually overtook the below-average part (negative D-score), the degradation
area. Thus, it is reasonable to believe that the food provisioning trend in Minnesota has improved.
The areas of (1, 2) and (-2, —1) were gradually shrinking, which means more and more areas have
been approaching the average trend level. In other words, the regional gap in the trend index has
been decreasing.

3.2. Multidimensional Assessment Geography Spatial Results

The multidimensional assessment results were analyzed based on the nine agricultural districts
as defined by the United States Department of Agriculture (USDA) (Table 4):
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Table 4. Agricultural districts in Minnesota.

Agricultural District

Counties

Scott, Wadena, Sherburne, Morrison, Renville, Todd, Meeker, McLeod, Wright,

Central Benton, Sibley, Carver, Stearns, Kandiyohi
East Central Aitkin, Hennepin, Ramsey, Crow Wing, Carlton, Washington, Pine, Isanti,
Anoka, Mille Lacs, Chisago, Kanabec
North Central Koochiching, Cass, Lake of the Woods, Hubbard, Itasca, Beltrami
Northeast Cook, Lake, St. Louis
Becker, Clay, Marshall, Red Lake, Norman, Roseau, Mahnomen, Polk,
Northwest . .
Pennington, Kittson, Clearwater
Faribault, Martin, Rice, Blue Earth, Waseca, Watonwan, Brown, Le Sueur,
South Central .
Freeborn, Nicollet, Steele
Dodge, Winona, Mower, Wabasha, Goodhue, Houston, Dakota, Fillmore,
Southeast
Olmsted
Cottonwood, Redwood, Murray, Rock, Lyon, Jackson, Nobles, Lincoln,
Southwest .
Pipestone
West Central Wilkin, Traverse, Yellow Medicine, Grant, Chippewa, Swift, Otter Tail,

Stevens, Lac qui Parle, Big Stone, Douglas, Pope

3.2.1. Multidimensional Assessment of Spatial Analysis

We identified Minnesota in the inferior zones, mixed zones, and inferior zones according to the
distribution of assessment spaces and found that they located as a ‘sandwich geo-configuration” pattern.
The superior zones were covered by progression zones with below-average output and efficiency
(Space VII) and degradation zones with below-average output and efficiency (Space VIII),
including North Central, Northeast, and East Central. The superior zones were dominated by
progression zones with above-average output and efficiency (Space I) and degradation zones with
above-average output and efficiency (Space II), spreading over West Central, Southwest, and South
Central. The others were identified as mixed zones since they were mixed by the inferior zones and
the superior ones.

Figure 6 shows that the inferior zones and superior zones have stable temporal and spatial
distribution but the mixed zones have changed a lot.

1

2018

Figure 6. Multidimensional assessment geospatial results.
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3.2.2. Total Output Geospatial Analysis

A ‘sandwich geo-configuration’ located in P-score distribution and in the geospatial cluster
(Figure 7): The inferior zones covered by the much below average P-score, [-3, —1), with the cold spots.
The hot spots are located in the superior zones with the much above average P-score, [1, 3]. The mixed
zones did not have significant clusters and they were dominated by the around average P-score, [-1, 1).

1998 2003 2008 2013 2018 Legend
- <
P -
-1-0
0-1
-2
s s A —e
-
H
o
T I Cold Spot - 99% Confidence
S I cold Spot - 95% Confidence
Cold Spot - 90% Confidence
P Not Significant
Hot Spot - 90% Confidence
(o] I Hot Spot - 95% Confidence
T I Hot Spot - 99% Confidence
5

Figure 7. Spatial distribution of P-score (total output of food provisioning ecosystem services).

3.2.3. Efficiency Geospatial Analysis

The distributions of Q-score did not follow the ‘sandwich geo-configuration” (Figure 8). The much
below average Q-score was located in the inferior zones, while others were randomly spread over the
superior zones and the mixed zones. However, the geospatial cluster in Q-score was similar to the
P-score; cold spots were in the inferior zones, and hot spots were located in the superior zones. The hot
spots were transferred to the southeast from the southwest.

1998 2003 2008 2013 2018 Legend

wdd
T r -
~1-0
0-1
all & g
-

&~
[ ]

I Cold Spot - 99% Confidence
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Figure 8. Spatial distribution of Q-score (efficiency of food provisioning ecosystem services).
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3.2.4. Trend Geospatial Analysis

The D score does not have a stable spatial distribution pattern, and it changes frequently from
1998 to 2018 (Figure 9). The hot spot analysis results showed that the geospatial cluster in Minnesota
disappeared gradually, indicating that the trend index was geospatially randomized.
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Not Significant
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Figure 9. Spatial distribution of D-score (trend of food provisioning ecosystem services).
3.3. Influencing Factors Analysis

3.3.1. Principal Component Analysis of Influencing Factors

Based on existing studies [45-47] and the data availability, five indicators were selected in this
paper, including the Perpendicular Drought Index (PDI), Normalized Difference Vegetation Index
(NDVI), Rainfall (RF), Daytime Temperature (DT), and Diurnal Temperature Difference (DIF). We used
the average value of remote sensing images during the crop growing season (from May to September).
The principal component analysis divided these variables into three comprehensive indices and the
principal component loads are shown in Table 5.

Table 5. Principal component loads.

Principal Component

Variables

Z; Z; Z3
PDI 0.5644 0.1860 —0.0430
NDVI 0.1870 0.5365 0.7947
RF 0.5970 —0.0340 —0.2448
DT 0.5375 —0.3896 0.0750
DIF 0.0337 0.7243 —0.5487

The five factors influencing the food provisioning ecosystem service are classified into three types,
i.e., soil moisture, diurnal temperature difference, and crop growth. It can be seen from Table 5 that the
first principal component Z; has a large positive correlation with the variables related to soil moisture,
the PDI, RF, and DT. Thus, the first principal component is regarded as a representative of soil moisture.
The second principal component Z; has a large positive correlation with DNT, which is related to the
temperature difference between day and night, so the second principal component is regarded as a
representative of the day and night temperature difference. The third principal component Z3 has a
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large positive correlation with NDVI, which is related to crop growth, so the third principal component
is regarded as a representative of crop growth.

3.3.2. Multiple Linear Regression Analysis of Influencing Factors and Assessment Results

To explore the influence of each factor on different assessment dimensions, a multiple linear
regression analysis based on assessment results was adopted:

P = —-4.71+10.45PDI - 4.90NDVI + 0.14RF + 0.03DT + 0.19DNT (8)
Q = -5.82411.55PDI - 1.70NDVI 4 0.12RF + 0.02DT + 0.16DNT )
DT = —0.68 + 6.77PDI — 2.82NDVI + 0.04RF — 0.01DT + 0.03DNT (10)

D™ = 2.72-541PDI - 0.59NDVI - 0.06RF — 0.10DT (11)

Compared with the F-test critical value table, all the F-test scores (Table 6) we got are greater than
the standard values at their corresponding confidence levels. Therefore, we believe that the linear
regression calculation results are credible.

Table 6. F-test results.

Objects a F Score Critical Value Results
P 0.005 23.46 3.76 credible

Q 0.005 14.19 3.76 credible
D+ 0.1 291 1.92 credible
D~ 0.1 3.25 1.92 credible

The positive and negative D-scores have different regression equations, indicating that there are
different ways the influencing factors affect the degrading food provisioning ecosystem service and the
evolving one.

4. Discussion

4.1. Multidimensional Assessment Results Discussion

Our results indicate that the food provisioning ecosystem service in Minnesota is significantly
polarized, which is dominated by superior zones (Space I, Space II) and inferior zones (Space VII
and Space VIII). The results also show that it has come a long way since the area of extra inferior
zones (Space VIII) has shrunk considerably. While there is an exigent circumstance with degrading
zones in Minnesota, which reached a portion of 50.21% in 2018. However, some improvements have
been witnessed by the shrinking area of bad ecosystem service zones and the geospatially steady
distributions of total output and efficiency, as well as the spatial homogenization of trend index.

4.2. Spatiotemporal Patterns of Multidimensional Assessment Results

The various dimensions have different development patterns. The P-score has developed steadily
with a pretty good overall condition. It is witnessed by its range, (-2, 3), without extra-low value.
However, the Q-score fluctuated sharply, especially in the last two five-year periods. The D-score
has been always located in (—1,1), which means the trend index is relatively evenly distributed in
the studied region. It is known that government agricultural disaster payments have irreplaceable
positions in fighting weather extremes and ensuring food provisioning [69,70], whose distributions are
affected by disastrous weather events. Thus, government agricultural disaster payments reflect the
strength of agricultural disasters in the year. We noticed that the most agricultural disaster payments
in Minnesota happened in the second period (2003-2008, 2008 is excluded), 303.48 million dollars,
followed by the next five years, 199.60 million dollars [71]. Interestingly, the two sharp fluctuations
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in assessment results followed these two disaster periods, respectively. Thus, we believed that the
disaster financial support stabilized the total output of food provisioning ecosystem service, but seemed
unable to eliminate the impact on the efficiency and trend. This is consistent with the argument that
agricultural disaster payments always subsidized market failure and focused on market returns [69].
At the same time, our findings bear a resemblance to the reasoning that subsidized disaster assistance
and insurance may not prevent negative environmental effects from arising [72].

As the spatial patterns of multidimensional assessment results might be the consequences of
ecological land distribution [73-76], it is reasonable that there is a significant boundary that separates
Northeast, East Central, and North Central from the others in our results. This coordinates the
reality that forests in Minnesota are mainly distributed in the northeast of the state, while cropland
is mainly distributed in the southwest. The total output of food provisioning ecosystem service in
Minnesota has steady temporally geospatial distribution and clustering patterns. However, there is
a big difference between the amelioration in the northeast side of the state and the deterioration on
the other side in ecosystem service efficiency. Its geospatial hotspot located in the south of the state
has been moving toward the east, which is in line with the eastward population shifting in south
Minnesota [77]. An obvious randomization in D-score reflects the spatially homogeneous development
of food provisioning in the state of Minnesota.

4.3. Relationship between Multidimensional Assessment Results and Impacting Factors

Remote sensing vegetation indices (e.g., surface water indices, soil moisture, temperature condition,
rainfall) have been proved to affect the crop yield [47,78,79]. In our research, we found that soil
moisture, diurnal temperature difference, and crop growth are the three main influencing aspects of
food provisioning ecosystem service. The influencing factors are ranked according to their strength as
follows: PDI, NDVI, RF, DT, and DNT. It is worth noting that the negative coefficients of NDVI in the
linear equations are the reflections of the extremely high NDVI of the forest zones with the weaker food
provisioning ecosystem service, which is consistent with the results of Prasad’s study of lowa [47].

4.4. Limitations and Future Research Direction

Our analysis constituted the first step in multiperspective assessment in ecosystem services
evaluation. Nevertheless, there are some limitations in our research: (1) We took food provisioning
as the case study, and subsequent research could address other ecosystem services. (2) Referring to
the existing studies [45-47], we only chose five remote sensing indicators as the influencing factors.
More remote sensing products and indicators that may have an impact on food provisioning ecosystem
services need to be further explored. (3) We adopted linear models to explore the relationship
between impact factors and assessment results. With the rise of machine learning and artificial
intelligence application in the field of ecosystem service evaluation [80-84], we may explore smarter
multidimensional assessment models with higher precision in subsequent research. (4) We only selected
remote sensing images acquired in the growing season in 2018 as a case to explore the ecosystem
services influencing factors. Future research can further explore how the quantitative relationship
varies according to the dates and seasons of remote sensing images.

5. Conclusions

Our multidimensional ecosystem services assessment framework evaluates the total output,
efficiency, and trend of the ecosystem service simultaneously. It could identify the hidden and
degrading ecosystems which are disguised by their good status quo as well as the low-quality
ecosystems whose outputs are highly dependent on the area scales, thereby helping the environment
management and sustainable development of the region. The serious polarization of food provisioning
ecosystem service in Minnesota should be paid more attention, and relevant departments should take
some targeted measures to reduce the area of Space VII and Space VIII. The degradation of some zones
cannot be ignored either, some superior zones (Space II) are degrading, and a considerable area of
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inferior zones (Space VII) is getting worse. To ensure the sustainable development of food provisioning
ecosystem services, these degradations must be slowed down. We analyzed the temporal development
of every assessment dimension and found that the agricultural financial support only stabilized the
total output of food provisioning and it worked a little on the efficiency and trend when facing natural
disasters such as tornadoes and extreme weather. However, the determination of the quantitative
influence relationships of the main influencing factors on each assessment dimension may help us
think about how to fix the weak sides of ecosystem services.

To understand and assess the ecosystem services more comprehensively and explore their hidden
aspects that are largely ignored, we tried to build a quantitative assessment framework for evaluating
ecosystem services from multiple perspectives. We only selected food provisioning ecosystem service
as a case in this paper. There is no doubt that more multidimensional assessment methods of other
ecosystem services can be explored in future work.
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