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Abstract: Nanosatellites are being widely used in various missions, including remote sensing
applications. However, the difficulty lies in mission operation due to downlink speed limitation in
nanosatellites. Considering the global cloud fraction of 67%, retrieving clear images through the
limited downlink capacity becomes a larger issue. In order to solve this problem, we propose an image
prioritization method based on cloud coverage using CNN. The CNN is designed to be lightweight
and to be able to prioritize RGB images for nanosatellite application. As previous CNNs are too
heavy for onboard processing, new strategies are introduced to lighten the network. The input size is
reduced, and patch decomposition is implemented for reduced memory usage. Replication padding
is applied on the first block to suppress border ambiguity in the patches. The depth of the network is
reduced for small input size adaptation, and the number of kernels is reduced to decrease the total
number of parameters. Lastly, a multi-stream architecture is implemented to suppress the network
from optimizing on color features. As a result, the number of parameters was reduced down to
0.4%, and the inference time was reduced down to 4.3% of the original network while maintaining
approximately 70% precision. We expect that the proposed method will enhance the downlink
capability of clear images in nanosatellites by 112%.

Keywords: onboard; RGB; nanosatellite; cloud; prioritization; convolutional neural network;
patch decomposition

1. Introduction

Nanosatellite is a classification of small satellites ranging from 1–10 kg. Multiple nanosatellites can
be operated as a constellation due to its low cost, allowing missions to achieve high spatial resolution
by multipoint observation and high temporal resolution by short revisit time. Due to these reasons,
nanosatellites have been used in various missions [1] such as atmosphere exploration [2] or remote
sensing applications [3,4]. Especially in remote sensing, recent nanosatellites have been delivering 3.7 m
resolution images [5]. Combining such imaging performance with the advantages of nanosatellites
opens a new space era allowing near-real time global coverage Earth observation capabilities. However,
nanosatellites have limited resource (i.e., electrical power or payload mass/volume) due to its size
compared to conventional satellites, restricting nanosatellite operations related to electrical power or
data downlink capability. According to Figure 1, although many commercial application nanosatellites
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have achieved high data rates, yet many of the academic nanosatellites do not have access to
the high-end transmitter or ground station facilities, which limit typical nanosatellite systems in
downlinking only a few images daily.

Figure 1. Downlink capability of various spacecrafts. Nanosatellites are limited in downlink data,
therefore being able to downlink high priority data is more important compared to larger satellites
that have the capability of bulk downlink. The class and downlink information (band, RF power,
and downlink throughput) and corresponding references for each satellite are shown in Table 1.

Table 1. Detailed information on the downlink capacity of various spacecrafts for Figure 1. (* Maximum
achieved in laboratory tests).

Satellite Class Mass
RF Information

Reference
Band RF Power Throughput

Birds-2 Nanosatellite 1 kg (1U) UHF 0.8 W 9.6 kbps [6]

SNUSAT-1b Nanosatellite 1.9 kg (2U) UHF 0.5 W 1.2 kbps [7]

nSight-1 Nanosatellite 5 kg (2U) UHF - 9.6 kbps [8]

GeneSat-1 Nanosatellite 3.5 kg S-band - 83 kbps [9]

OPS-SAT Nanosatellite 5.4 kg (3U) S-band - 1 Mbps [10]

CanX-3/4/5 Nanosatellite 10 kg S-band - 1 Mbps [11]

Dellingr Nanosatellite 11 kg UHF 2 W 3 Mbps [12]

MarCO Nanosatellite 13.5 kg (6U) X-band 4 W 6.25 Mbps * [13,14]

Dove 1 Nanosatellite 5 kg (3U) X-band 2 W 4 Mbps [4]

Dove 3 Nanosatellite 5 kg (3U) X-band 2 W 25 Mbps [4]

Flock 1c Nanosatellite 5 kg (3U) X-band 2 W 34 Mbps [4]

Flock 2e Nanosatellite 5 kg (3U) X-band 2 W 100 Mbps [4]

Flock 2p/3p Nanosatellite 5 kg (3U) X-band 2 W 220 Mbps [4]

Nano-Jasmine Small satellite 35 kg S-band - 100 kbps [15]



Remote Sens. 2020, 12, 3941 3 of 22

Table 1. Cont.

Satellite Class Mass
RF Information

Reference
Band RF Power Throughput

TechnoSat Small satellite 20 kg S-band 0.5 W 1.39 Mbps [16]

QSat-EOS Small satellite 50 kg Ku-band - 30 Mbps [17]

exactView-1 Small satellite 100 kg C-band 5 W 20 Mbps [18]

Hodoyoshi-4 Small satellite 64 kg X-band 2 W 350 Mbps [19]

DubaiSat-2 Small satellite 300 kg X-band - 160 Mbps [20]

Sentinel-3 Large satellite 1150 kg X-band - 520 Mbps [21]

Landsat-8 Large satellite 2623 kg X-band 50 W 384 Mbps [22]

In the case of remote sensing applications over regions with high cloud fraction, the downlink
limitation of nanosatellites becomes a larger problem when it comes to retrieving clear images if only a
few images can be downloaded. According to a previous study [23], approximately 67% of the land
is covered with clouds, and local regions with high cloud fraction exceeding 80% exist. This implies
that depending on the region, there is a high possibility that downlinked images will contain cloudy
scenes, reducing the effective downlink of nanosatellites.

In order to solve this problem, we aim to accomplish cloudy image rejection by implementing clear
image prioritization and discarding lower priority images based on cloud coverage. Cloud coverage
estimation in remote sensing has been an active research area, however many research uses additional
bands [24–26], or the methods are computationally too heavy for onboard processing [27–30].
As previously introduced, nanosatellites are miniaturized platforms; therefore it is difficult to board
additional payload. Thus an optimal nanosatellite system would be a system capable of estimating
cloud coverage using what is onboard, which is typically an imager with RGB channels. Furthermore,
to prioritize the images, all images should be processed onboard, which requires the cloud coverage
estimator to run in nanosatellites.

Considering a nanosatellite with an onboard imager with a FOV (Field of View) of 50 km and
further assuming that the images are captured every 50 km during daylight, approximately 6400 images
would be generated daily. Such operation requires each image to be processed within 13.5 s using the
embedded computer onboard the nanosatellite. Therefore in this study, our requirements are specified
to use only RGB images and to be able to run in microcontrollers. Accordingly, the main contribution
of the paper is the development of lightweight CNN for onboard image prioritization only using RGB
images. We propose a novel method with multiple strategies to meet the requirements: (1) Using
thumbnail input images, (2) using patch decomposition, and (3) miniaturizing the CNN (Convolutional
Neural Network) architecture. A multi-stream CNN is developed to suppress overfitting of the
model to color features, with reflection padding implemented on the first block of the convolutional
layers to minimize noise from the border of the images. In Section 2, related work is introduced,
and the problems in applying conventional methods are identified. The methods used in the study
is introduced in Section 3. The formulation of the proposed method, image evaluation and accuracy
metric, and dataset generation method are described in detail. Sensitivity analysis of the proposed
strategies, and the computational cost are analyzed in Section 4. Examples of image prioritization
results are also presented in the section. The limitations of the proposed method and potential future
work are described in Section 5. Lastly, the proposed study is summarized in Section 6.

2. Related Work

Cloud coverage estimations have been among many tasks within post processing in the
remote sensing community for automated data analysis. Automated data analysis required masking
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techniques, in which conventional cloud coverage estimation methods used algorithms involving
multiple spectral band inputs.

As part of the LDCM (Landsat Data Continuity Mission) CCA (Cloud-Cover Assessment),
ACCA (Automated Cloud-Cover Assessment) was developed [31,32] to build Landsat archive for
data management. ACCA incorporates two steps in pixel-wise cloud assessment. The first step
consists of a decision tree using five bands and the second step consists of refinement using thermal
analysis. However, weakness over cloud shadow, reflectance, or temperature inversion were found
in the ACCA algorithm. LDCM (Landsat Data Continuity Mission) followed the LTAP, and new
algorithms including Expanded AT-ACCA (Artificial Thermal Automated Cloud-Cover Assessment)
and C5 CCA were developed to overcome the disadvantages of the ACCA algorithm. The Expanded
AT-ACCA algorithm was developed to evaluate the CCA without the thermal band by modeling the
AT (Artificial Thermal) band using the reflective bands [33]. The use of AT removed the dependency
of the thermal band from ACCA, allowing CCA even when TIRS (Thermal Infrared Sensors) data
were unavailable. However, due to a large number of pixel ambiguity, an additional routine of a
simple McCulloch-Pitts neural network was involved to classify the ambiguous pixels in AT-ACCA.
Whereas the Expanded AT-ACCA is based on ACCA involving multiple passes for CCA, C5 CCA was
developed using a statistical classifier C5.0 to create a stand-alone decision tree [33]. Despite the limited
training data size due to memory errors, C5 CCA outperformed ACCA even without the thermal
band present. However, the high sensitivity depending on differences in the spectral bandwidth,
and maintenance problem due to the algorithm’s complexity remained as potential problems for
C5 CCA.

Fmask (Function of mask) [24,25] was introduced to improve the performance of cirrus and cloud
shadow detection over conventional methods used on Landsat images. Fmask uses six TOA (Top of
Atmosphere) reflectance bands (Bands 1, 2, 3, 4, 5, 7) and a BT (Brightness Temperature) band (Band 6)
as the input from the Landsat images. The potential cloud/shadow/snow layers are first identified
using a combination of spectral tests, and geometric information is used for matching the overlap
of potential cloud/shadow layers with cloud shadow objects to generate the final cloud/shadow
masks. The additional matching algorithm by augmenting geometric information showed significant
improvement in cloud mask accuracy. However, Fmask showed limitations in very bright or very cold
land features due to the high sensitivity of the algorithm on the BT.

A time-series method was introduced to improve the cloud and cloud shadow screening
in Landsat images by further using temporal information in addition to spectral and contextual
information [34]. The method incorporates four passes: the first and second passes detect cloud
affected pixels using minimal and median difference in band 1 over the temporal data, third pass
detects shadow affected pixels using the median difference in bands 4 and 5, and the fourth pass
classifies the shadow affected pixels by examining shadow objects. Although the time series method
shows better cloud and cloud shadow screening accuracy over Fmask, the method was not evaluated
under the same scene optimization between the time series method and the Fmask. A clear limitation
of the time series method remains due to temporal data requirement, which is typically unavailable on
online cloud and cloud shadow screening applications.

More recent methods introduced extensive use of machine learning to achieve a more efficient and
reliable cloud and cloud shadow masking. SPARCS (Spatial Procedures for the Automated Removal of
Clouds and Shadows) used a neural network with Landsat ETM+ bands 1 through 7 [35] as the input.
Further spatial post-processing on the network output with a set of rules on ambiguous pixels was
performed to reduce classification error. SPARCS outperformed Fmask on classifying cloud shadow,
snow/ice, and clear pixels, showing the potential of machine learning techniques. Wei [36] developed
a two-stage method named RFmask, which uses RFC (Random Forest Classification) and SEEDS
(Super-pixels Extracted via Energy-Driven Sampling). RFmask uses RFC first to perform pixel level
classification, and then the SEEDS to perform spatial analysis. The RFC used multispectral band
data from Landsat 7 and Landsat 8 as basic input features, and spectral indices and brightness index
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were additionally derived from the basic input features. RGB image combined using the red, green,
and blue channel of Landsat image is input to SEEDS for spatial segmentation of potential objects.
Then RFC and SEEDS results are laid together, generating the final cloud mask. RFmask outperformed
conventional methods and also showed comparable results with deep learning methods. However,
RFmask omitted small cloud with less pixels due to SEEDS, and the accuracy of snow/ice was low.

Deep learning methods were introduced as the computational power increased over time. Most of
the teams used CNN [37] to learn the spatial characteristics, as the convolution layers in CNN are best
suited in extracting spatial features. The spatial features allow the CNN to distinguish deeper features
such as shape or texture, which grant CNN the outstanding ability in performance over conventional
methods based on pixel-wise classification. Shi and Liu [38,39] used CNN as a classifier on superpixels.
The superpixels help reduce computation time and noise by taking advantage of group-level statistics.
Both Shi and Liu used SLIC (simple linear iterative clustering) [40] for clustering the superpixels
and further implemented refinement techniques to solve ambiguous superpixel problems. Shi [38]
implemented a gradient method for the superpixels on the classification results to improve the accuracy
near the cloud boundaries. The gradient method compares the cloud probability of a superpixel to
neighboring superpixels, and the superpixel is refined for large gradient values. Liu [39] combined
HFCNN (Hierarchical Fusion CNN) and deep forest to classify superpixels, and further implemented
ambiguous superpixel refinement by introducing a distance matrix. The distance matrix calculates
the distance metric of cirrus against cloud and other classes, which then the cirrus is refined as cloud
depending on the relative distance against neighboring superpixels. Although both methods showed
high accuracy above 0.9, using superpixels has large error resolution at superpixel levels, which show
high sensitivity for large superpixels.

On the other hand, pixel-wise image segmentation methods using CNN were also
investigated [26,29,41]. The U-Net architecture [42] or its variants were used as the baseline CNN
model. Drönner [26] developed a CS-CNN (Cloud Segmentation CNN), varying U-Net by reducing
the number of kernels, implementing pooling layers using convolution layers with strides, and adding
dropout layers. The variations were made to reduce computational time, learn layer-specific
downsampling operations, and prevent overfitting respectively. The CS-CNN was evaluated against
various input bands of SEVIRI, which showed that IR channels were sufficient in generating robust
cloud masks with accuracies as high as 0.948. The addition of VNIR channels showed significant
improvement only in snow/ice masks. Jeppesen [29] developed RS-Net, a variant of U-Net, with batch
normalization after each convolutional layer in the encoder and cropping layer after the final layer.
Batch normalization was added to speed up the training of the CNN and the cropping layer was
added to discard the borders where spatial information is lacking during the convolutional layers.
Jeppesen also evaluated various combinations of Landsat 8 bands, including combinations consisting
only of visual bands (RGB). The results showed that RS-Net outperformed Fmask, and furthermore,
RGB band classification showed promising results. Zhang [41] developed a lightweight CNN named
L-Unet based on U-Net. Four bands from Landsat 8 including three visual bands and an additional
infrared band (bands 2, 3, 4, 5) were used. Zhang implemented LeGall-5/3 wavelet transform for input
image compression in order to reduce the computational cost. L-Unet was tested on Raspberry Pi,
showing the feasibility of lightweight CNN on systems with low computational power.

Although there was much progress in cloud coverage estimation methods, previous methods use
multiple bands, and the methods are too heavy to be implemented onboard a nanosatellite. Therefore,
a new method for extremely low computational power and limited band must be developed to
achieve onboard cloud coverage estimation on a nanosatellite. Accordingly, we develop a lightweight
CNN-based cloud coverage ranking method using only RGB bands as the input.

3. Methods

In this section, we introduce the methods used throughout the study. The overview of the
flowchart of the proposed method is shown in Figure 2. Preprocessing is performed to reduce the
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computational cost and resource requirement of the CNN. A lightweight CNN is then used to predict
the cloud coverage of each patch. Lastly, the input image is prioritized based on cloud coverage
fraction evaluation of all the patches. The following subsections introduce the formulation of the
proposed method, image evaluation method, accuracy metric, and dataset generation method in detail.

Figure 2. Overview of the flowchart of the proposed method. Each part in (a) image resize, (b) patch
decomposition, (c) cloud coverage prediction, and (d) cloud coverage fraction evaluation are designed
to reduce inference time.

3.1. Proposed Method

As previously introduced, the proposed work focuses on image prioritization onboard a
nanosatellite, therefore processing speed and accuracy are both important criteria. In our method,
three strategies are adopted to meet the criteria: (1) Reduction of input size, (2) Input decomposition
into patches, and (3) miniaturization of the CNN architecture. This section describes each of the
strategies in detail.

3.1.1. Input Size Reduction

One of the most direct methods of reducing computational cost is to reduce the size of the input.
Considering a single simple convolution layer, the number of operations required is proportional
to the input size. As the same applies to consecutive layers, the overall operation is approximately
proportional to the size of the input. Comparing a 5 MP image (2592 × 1944) and a VGA image
(640 × 480), the 5 MP image would require approximately 16 times longer computational time. In this
study, VGA images are resized to 64 × 48 images, which reduces the base computational cost down to
a hundredth. An additional aspect is that, along with computational advantages, reduced input size
allows the network to train on small images. Such a feature makes the fine tuning process after the
nanosatellite is placed into orbit easier, as more thumbnail images can be downloaded for training
compared to original images. Despite the computational and training advantages, it should be noted
that input reduction degrades the image resolution, resulting in cloud coverage estimation accuracy of
CNN to decrease as the CNN will not be able to learn from small features.

3.1.2. Patch Decomposition

In this study, patch decomposition is implemented for further slicing the input into smaller size
patches. Calling small patches at a time requires less memory and reduces the runtime of each task
onboard. Such characteristics have advantages in space environment, as memory is subject to possible
bit flips due to single events, and tasks with short runtime increase the flexibility in task scheduling in
embedded systems. Furthermore, by using patch decomposition, a single image can be handled in
parallel by multicore microprocessors.
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x(m) =

(
w − wp

sw
+ 1

)
×

(
h − hp

sh
+ 1

)
(1)

The number of patches of an image with a size of w × h × c is shown in Equation (1) for patch
size of wp × hp × c with width-wise stride sw and height-wise stride sh, where x(m) is the number of
patches. Note that the division in Equation (1) is an integer division. As an example, a 640 × 480 × 3
image with 32 × 32 × 3 patch and a 32 × 32 stride would extract 300 patches, whereas the target input
and patch size of this study are a 64 × 48 × 3 image with 16 × 16 × 3 patch and a 16 × 16 stride,
which extract 12 patches as shown in Figure 3.

Figure 3. An example of patch decomposition with 16 × 16 × 3 patch and a 16 × 16 stride on a
64 × 48 × 3 image. The patch decomposition results in 12 patches as shown on the right-hand side of
the figure.

However, as discussed by Jeppesen [29], loss in the outermost boundary of the input due to lack
of information outside of the boundary becomes a larger problem when using patch decomposition.
Jeppesen proposes cropping out the boundaries where the most uncertainty lies. Considering the
cropped pixels against the total pixels of the image with a size of a × b, the ratio η is given
as Equation (2).

η =
2(a + b − 2)

ab
(2)

For a fixed pixel size patch, the border ratio is the smallest when a and b are equal, i.e., a perfect
square. Therefore in this study, we choose patch candidates with perfect squares. In the case of a patch
input with a size of 16 × 16, the uncertainty due to the cropped boundary is approximately 23.5%.
Thus, the tradeoff between computational cost and accuracy must be considered carefully when using
patch decomposition.

3.1.3. CNN Architecture Miniaturization

In this study, CNN (Convolution Neural Network) [37] is used for cloud coverage estimation.
Jeppesen [29] showed that RS-Net works well with remote sensing images, as introduced in Section 2.
However, the strategies used in this study involves input size reduction and further decomposing the
resized input into smaller patches. Due to the reduced input size, the maximum possible number of
pooling operations is limited to twice. Furthermore, the number of kernels in each convolution layer
in RS-Net makes the network heavy for microcontrollers. Therefore the number of Kernels in each of
the convolutional layers are reduced.

As a result of modifying the base structure of CNN matching the input, the CNN also becomes
shallower, and the decreased number of kernels limits the number of features in the hidden layers.
In the proposed method, we develop a multi-stream architecture to assure the network to learn spatial
features and suppress the network from optimizing against color features. The multi-stream forwards
the input to a single-band stream and a multi-band stream. A deeper and larger network is constructed
for the single-band stream to mimic panchromatic images and extract spatial features. The single-band
stream consists of a (1 × 1) convolutional layer to transform the input into a single-band image.
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A custom kernel constraint is defined, such that the sum of the weights does not exceed a unit value
with bias set to zero. The multi-band stream feeds the input directly into a pooling layer to match the
output size of the single-band stream. The single-band and multi-band stream outputs are concatenated
at the end of the CNN.

The padding for the first block in each of the streams is further modified to improve the
performance near the border of the input patches. The proposed method is subject to errors at
the borders of the patches, as described in Section 3.1.2. The typical zero-padding in the convolutional
layer would underestimate the cloud coverage, as zeros are interpreted as non-cloudy features in
the convolutional layers. Underestimation in cloud rejection applications is unwanted, as it will
degrade the precision of the network. As a solution, the zero-padding in the convolutional layers
are replaced by replication padding, with an assumption that natural clouds are spatially continuous.
Replication padding is only applied in the first convolutional blocks of each of the streams, as deeper
layers have higher-order derivation error due to propagation. The different types of paddings are
depicted in Figure 4.

Figure 4. Variations of the paddings around the border used in the convolutional layer of the CNN:
(a) zero padding, (b) reflection padding, and (c) replication padding. The red box shows the boundary
at the top left-hand corner of an image, and the numbers in each pixel represent the pixel value.

The rest of the CNN architecture resembles RS-Net, except for the aforementioned modifications.
Batch normalization is applied after each activation in the downsampling convolutions, and sigmoid
with zero bias is used as the activation function of the last convolutional layer. The proposed network
is called NU-Net (Nano U-Net). The architecture of NU-Net is shown in Figure 5. NU-Net shrinks
RS-Net from 7,854,592 parameters down to 29,907 parameters, reducing the number of parameters
down to merely 0.4% of the original network.

3.2. Image Evaluation

The segmentation result of NU-Net is converted to cloud coverage by evaluating the confidence
value of each pixel. The cloud coverage of a single patch is given in Equation (3), where y, a, b,
p represents the cloud coverage of a single patch, width of the patch, height of the patch, and the
pixel value.

y =
Σa−1

i=2 Σb−1
j=2 pi,j

(a − 1)(b − 1)
(3)

The image cloud coverage is evaluated by taking the average of all the subset patches of the image
as given Equation (4), where Y, m, y represents the cloud coverage of an image, number of patches
in an image, and the cloud coverage of a single patch respectively. The images are finally prioritized
based on the cloud coverage of each image. Merge sort algorithm is used in this study for the ranking
of the images for prioritization.

Y =
1
m

Σm
i=0yi (4)
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Figure 5. Schematic of NU-Net architecture proposed in this study. NU-Net is a modified lightweight
version of RS-Net with multi-stream architecture in order to suppress the network from optimizing in
color features.

3.3. Accuracy Metric

Prior to presenting the results, as it is difficult to quantify and assess the performance over
prioritization, the accuracy metric must be defined. The precision at n [43] for both cloud coverage
and priority is evaluated to quantify the results. The precision at n of cloud coverage shows the
network characteristics against the cloud coverage spectrum, and the precision at n of priority shows
the prioritization performance of the test dataset when n images are downlinked.

Figure 6 shows an example of precision at 0.4 for cloud coverage. The first quadrant is defined as
true negative (TP), as the true cloud coverage of the images is higher than 0.4. The second quadrant
is defined as false positive (FP), as these images were predicted to have cloud coverage lower than
0.4, whereas the true cloud coverage is higher than 0.4. The third quadrant is defined as true positive
(TP) as the true cloud coverage is less than 0.4. Lastly, the fourth quadrant is defined as false negative
(FN), as the images were predicted to have cloud coverage higher than 0.4, whereas the true cloud
coverage is less than 0.4. The top accuracies are evaluated at small steps to cover the whole spectrum,
which finally gives the precision at n curve. In this study, the accuracy is measured against precision,
as it is more important not to download any cloudy images rather than missing clear images. In the
case of a one-to-one correspondence ranking problem, precision and recall are the same as the number
of false negative and false positive cases is the same.

Figure 6. Precision at n used as an accuracy metric in the study. Precision is chosen as the specific
accuracy metric as the main objective is to prevent downlink of cloudy images. The figure shows an
evaluation example of precision at 0.4.
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Besides the accuracy metric, the Spearman’s rank correlation coefficient is calculated for evaluating
the predicted priority rank against the true priority rank. The Spearman’s rank correlation coefficient
quantifies the correlation between the two ranks. The equation for the Spearman’s rank correlation
coefficient is given in Equation (5), where ρ, di, n represents the spearman’s rank correlation coefficient,
the difference in paired ranks, and the number of paired ranks, respectively.

ρ = 1 −
6Σd2

i
n(n2 − 1)

(5)

As precision at n is affected by the distribution of the testing dataset, the proposed method is
evaluated against testing dataset generated by images with various cloud coverage distributions.

3.4. Dataset Generation

3.4.1. Automatic Dataset Generation

Manual labeling increases the overall cost during training, validation, and testing of a neural
network, and the cost increases when the application becomes related to semantic segmentation. In this
study, an automatic data labeling method is developed using scene classification satellite products
from Sentinel-2 [44] to reduce the cost. TCI (True Color Image) and SCL (Scene Classification map)
products are used as a set [45] for automatic dataset generation. Sentinel-2 TCI provides the RGB
data, which resembles RGB images acquired by nanosatellite imagers. In this study, low resolution
images corresponding 60 m resolution images were used to mimic the performance of nanosatellite
imagers. Sentinel-2 SCL provides the ground truth for the corresponding TCI with information on
scene features, including cloud.

The input raw images, consisting of a set of TCI and SCL products from Sentinel-2, are converted
and cropped to generate a baseline image set, as shown in Figure 7a,b. Once the baseline image sets
are generated, patches are extracted depending on the patch decomposition parameters described in
Section 3.1.2. During the extraction of patches, the same sector is extracted from the baseline image set,
as shown in Figure 7c. Finally, a grayscale mask is generated based on features of interest, and the
final cloud mask is generated as shown in Figure 7d.

Figure 7. Overview of automatic dataset generation using Sentinel-2 products. RGB and SCL data are
paired to ensure the extracted mask from SCL corresponds to the same area over RGB. (a) RGB and
SCL data are prepared and (b) cropped to an arbitrary input image size. (c) Patches are extracted over
the same area, and (d) the target feature masks are generated based on the SCL data.
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In this study, 600 images were used with 300 images allocated for the training dataset and
300 images allocated for the test dataset. Within the training dataset, 70% were allocated for training,
and 30% were allocated for validation. The training and test dataset are provided as supplementary
material Data D1.

3.4.2. Label Resize

In the proposed method, the input images are resized to reduce the total arithmetic operations.
However, a problem with the input size reduction is the dataset preparation for the CNN. When using
the dataset generation method introduced in Section 3.4, resizing the SCL will mix the features nearby
each other, resulting in inaccurate feature mapping during the masking process in Figure 7d.

To overcome the resize problem, the SCL patch is reconfigured such that features of interest are
distributed to each of the channels of the image. If multiple features share a channel, it would be
difficult to decompose the features after the resize. In this study, as we are only interested in thin cirrus,
high probability cloud, and medium probability cloud, the three labels are remapped to the red, green,
and blue channels. The resize process is shown in Figure 8.

Figure 8. Label resize for scaling down the size of the label. Thin cirrus, high probability cloud,
and medium probability cloud features are remapped to red, green, and blue channels. Channel-wise
feature decomposition gives a higher degree of freedom in averaging methods upon downsampling.

4. Results and Discussion

Unless mentioned separately, this section presents results from NU-Net with an input image size
of 64 × 48 × 3 with patch size of 16 × 16 × 3. The network was trained with a learning rate of 1× 10−4,
L2 regularization of 1 × 10−3, and without any dropout.

4.1. Effect of Image Resize on Accuracy

Although a label resize method was proposed in Section 3.4.2, residual error due to pixel averaging
must be examined. To examine the effect of image resize on accuracy, the priority prediction and
cloud coverage prediction results are compared against the original label and the resized label.
The comparison results are shown in Figure 9. It can be seen that the overall error is insignificant in
achieving the objective. Therefore hereby, resized labels are used as the reference in evaluating the
performance throughout the remaining study.
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Figure 9. (a) Priority and (b) cloud coverage prediction results compared against labels before and
after resize. The results show a similar trend between before and after resize, which indicates the resize
method can be considered valid.

4.2. Effect of Dataset Distribution

As described in Section 3.3, the precision at n will be affected by the distribution of the dataset to
be examined. To investigate the effect of the distribution of the dataset, two datasets each with a high
and low ratio of clear images were prepared. The results for each of the two datasets are shown in
Figures 10 and 11.

The histogram on the left of each figure shows the cloud coverage distribution of the dataset with
an interval of 10%. Examining both figures, although it may seem that the performance of the proposed
method is low at higher priority images, considering the frequency of the clear images, the practical
performance is satisfying. In Figure 10, the number of the top 10% clear images in the dataset is
108, and the precision at 108 is higher than 90%. Considering a downlink capability of 10 images
daily, despite the low precision of approximately 10% at 10, all data are clear images. In Figure 11,
although the dataset has less clear images in the top 10%, the precision at 10 is approximately 70%.
From the results, we can expect the proposed method to be satisfactory also in environments with
frequent cloud images [23]. Despite the expectations, the dataset in Figure 10 is used throughout the
study to evaluate the proposed method with higher sensitivity.

Figure 10. Prioritization result for clear image rich dataset. Spearman’s rank correlation coefficient
ρ = 0.946.
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Figure 11. Prioritization result for balanced dataset. Spearman’s rank correlation coefficient ρ = 0.977.

4.3. Performance Analysis

The performance of the proposed method is compared against RS-Net [29], L-Unet [41],
and classical machine learning techniques using RFC (Random Forest Classifier),
GBC (Gradient Boosting Classifier), and SVM (Support Vector Machine). RS-Net is selected
to compare the performance in terms of precision as it is one of the few methods that consider RGB
input while showing high precision results. However, as RS-Net is a heavy network, L-Unet is further
selected to compare the performance in inference time as L-Unet is an extremely lightweight network.

4.3.1. Accuracy and Error Analysis

The prioritization result of the networks is shown in Figure 12. It can be seen that NU-Net
without patch decomposition performs almost the same as RS-Net. In the case of NU-Net with patch
decomposition, a clear difference in performance can be seen, which comes from the larger border
uncertainty described in Section 3.1.2.

Figure 12. Precision at n for NU-Net (proposed), RS-Net (Jeppesen, 2019), without patch decomposition,
and NU-Net (proposed) and L-Unet (Zhang, 2019) with patch decomposition. CNN methods are also
compared with classical methods using RF, GBC, and SVM. Spearman’s rank correlation coefficient
is ρNU4864 = 0.962, ρRS4864 = 0.961, ρRS1616 = 0.946, ρLU1616 = 0.837, ρRF4864 = 0.903, ρGBC4864 = 0.890,
and ρSVM4864 = 0.795 respectively.
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Figure 13 shows the segmentation results corresponding to heavily cloudy, lightly cloudy, bright,
and city scenes. The green, red, and yellow represent correctly classified cloud (true positive),
missed cloud (false negative), and incorrectly classified clear pixels as cloud (true negative), respectively.
Only the RFC results are shown out of the classical methods, as random forest had the best results.
All methods show reasonably good results in heavily cloudy scenes. The artifacts of border cropping
can be seen in the proposed methods (NU1616 and NU4864) and in Jeppesen’s method (RS4864).
It can clearly be seen that smaller patches increase the uncertainty, as described in Equation (2) in
Section 3.1.2. In the case of lightly cloudy scenes, Zhang’s method shows the best results, particularly
over thin clouds. However, Zhang’s method tends to overpredict scenes, including bright features
such as a desert or a city. In the bright and city scenes, the proposed method without the patch
decomposition (NU4864) shows the best results, followed by Jeppesen’s method (RS4864) and the
proposed method with patch decomposition (NU1616).

The characteristics shown in Figure 13 are well represented in Figure 14, in which shows the
comparison results of predicted cloud coverage against true cloud coverage. The red dots in Figure 14
represent anomalous data, in which the distance between predicted cloud coverage and true cloud
coverage is larger than 1σ. It can be clearly seen that NU-Net without patch decomposition (Figure 14a)
and RS-Net (Figure 14b) have good performance throughout clear images. In contrast, the majority
of anomalies are populated in overestimation of clear images in the case of L-Unet (Figure 14d).
The NU-Net with patch decomposition (Figure 14c) method slightly overestimates cloud coverage due
to the padding effect related to the increase in the border ratio.

Figure 13. Selected segmentation results for heavily cloudy, lightly cloudy, bright, and city scenes
(RF: Random Forest, LU1616: Zhang’s method, NU1616: Proposed method with patch decomposition,
RS4864: Jeppesen’s method, NU4864: Proposed method without patch decomposition). Green, red,
and yellow represent true positive, false negative, and true negative, respectively.

Figure 15 shows the anomaly of RS-Net with patch decomposition with and without replication
padding applied on the first convolutional block of the network respectively. It can be seen that the
overall characteristics share a similar result as RS-Net and NU-Net without patch decomposition
when replication padding is not applied. Furthermore, replication padding has a larger effect on
small patches, and the padding changes the network characteristics to overestimate cloud coverage.
The reason the network characteristics shift to overestimation from underestimation can be explained
by comparing zero-padding against unit-padding. In the case of zero-padding the border areas are set
to have a non-cloudy boundary, whereas in the case of unit-padding the border areas are set to have a
cloudy boundary. As replication padding has been implemented instead of unit-padding, we can expect
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the boundary condition to be less strict than unit-padding, which keeps the anomalies from departing
further away. The reason the padding has a larger effect on the patch decomposition method can be
explained by Equation (2), as the padding has a larger impact on the pixels near the border. In this
study, since overestimated cloud coverage is preferred as it assures high precision, the replication
padding effect can be considered significant. A more complex padding method considering the
gradient at the borders of the neighboring patches could further improve the information loss problem
near the borders.

Figure 14. Cloud coverage prediction error depending on CNN models with anomaly points for error
distances larger than 1σ. (a) NU-Net (proposed) without patch decomposition, (b) RS-Net (Jeppesen,
2019) without patch decomposition, (c) NU-Net (proposed) with 16×16 patch decomposition, and (d)
L-Unet (Zhang, 2019) with 16×16 patch decomposition.

Figure 15. Effect of reflection padding in the first convolutional block on cloud coverage, (a) with
reflection padding and (b) without reflection padding applied on the first block. Reflection padding
changes the network characteristics to overestimate cloud coverage, which has a positive effect in
performance regarding precision.
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4.3.2. Computational Cost Analysis

The computational cost is measured by running the networks on an STMicroelectronics ARM
Cortex-M4 based STM32F469BI6NIH6 microcontroller implemented using the X-CUBE-AI package
in STM32Cube. HDF5 file is exported from the Keras model [46] of each of the architectures.
The X-CUBE-AI package generates a temporary project containing the test code is flashed to the
microcontroller. The test code runs the model ten times in batches with random input, and the average
runtime of the model is evaluated. In this study, the microcontroller runs at 168 MHz with 2 MB
embedded Flash memory and 324 KB embedded RAM when using internal memory and 16 MB NOR
Flash and 16 MB SDRAM. The computational cost results are shown in Table 2.

Table 2. Computational cost results for selected models. Inference time is only for CNN excluding
image pre-processing time. (1 External memory used, 2 Inference time for 12 patches).

Network Resource Usage Inference Time
(ms)

Precision
at 60Model Image Patch Parameters ROM (KB) RAM (KB)

Jeppesen, 2019 48 × 64 48 × 64 7,854,592 30,666.50 1 2304.00 1 58,723.438 0.867

Proposed 48 × 64 48 × 64 29,907 115.83 1 864.00 1 4886.674 0.900

Zhang, 2019 48 × 64 16 × 16 9828 37.38 96.00 987.12 2 0.583

Proposed 48 × 64 16 × 16 29,907 127.33 72.00 2499.84 2 0.767

NU-Net without using the patch decomposition, L-Unet, and the proposed method satisfy the
design requirement of 13.5 s for inference time to process 6400 images daily. However, NU-Net
without patch decomposition requires external memory, whereas the proposed method runs only
using embedded memory in the microprocessor, which is a clear advantage for embedded systems if
an external component is not required. Although L-Unet has the shortest inference time, performance
trade-off exists as shown in Figures 12 and 13. Note that the weights used in the network are floating
point. Therefore, the inference time can be further reduced by using quantization [47] methods or
using a BNN (Binary Neural Network).

4.4. Visualization of Prioritized Images

Finally, the visualization of the prioritized images using the proposed method is shown in
Figure 16. All 300 images from the test dataset were evaluated using NU-Net with the patch
decomposition method with a patch size of 16 × 16. High priority scenes are placed on the top
left corner with descending order in priority to low priority scenes on the bottom right corner. It can
be confirmed from the visualization result that the clear images are prioritized as intended.
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Figure 16. Visualization of image prioritization using NU-Net with patch decomposition of 16 × 16
patch. The images with the highest priority have been aligned from the top left corner down to the
bottom right corner.

5. Limitations of the Proposed Method

In this section, the limitations of the proposed method and corresponding future work related to
the limitations of onboard RGB imagers and the effect of input image resizing are discussed in detail.

5.1. Limitation of Onboard RGB Imagers

This study considered only RGB images as the input of the algorithm. Some limitations exist in
performing cloud coverage evaluation using such RGB images, especially considering onboard RGB
imagers. First, multiple bands have been used in conventional cloud detection methods as previously
introduced in Section 2. Various bands play an important role in cloud detection due to the nature
of clouds. As the clouds are formed in the atmosphere, the clouds have a similar temperature profile
as the well-known atmospheric temperature. Therefore, thermal data can be used to assist cloud
detection and further estimate the height of the cloud for evaluating nearby shadows by observing
thermal infrared bands. Shortwave infrared bands provide further information in distinguishing cloud
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with snow/ice, due to the difference in the reflectance of shortwave infrared for cloud from snow/ice.
Only using RGB images limit the input information and rely on the CNN to learn deep features such
as patterns or texture to classify the clouds. However, deeper features require the CNN architecture
to either accompany deeper layers or larger receptive fields, leading to increased computational cost.
Other methods, such as augmenting geographical or seasonal information, could provide a mask for
non-snow/ice regions.

Secondly, the onboard imagers differ from the visual band data from Landsat or Sentinel, as the
pixels in typical CMOS imagers used in nanosatellites are wideband [48]. The wideband channels will
inject noise in the proposed method, and therefore will result in performance degradation. A possible
solution to these limitations is using a filter wheel with the onboard RGB imagers. Considering that
the CMOS imagers have adequate sensitivity in the near-infrared bands, a filter wheel consisting of
narrowband green, red, and near-infrared (corresponding to bands 2, 3, and 4) with additional IR cut
filter would yield the best results.

Lastly, the inconsistency in the visibility of the cirrus is a source of error when only using RGB
images. In this study, cirrus was not masked as cloud due to the inconsistency in the dataset as shown
in Figure 17. Cirrus is visible in Figure 17a, whereas cirrus is invisible in Figure 17b. Manual labeling
is required to reduce this error, which takes the cost problem in dataset preparation back to the origin.

Figure 17. When only the RGB image is used, (a) cirrus in Sentinel-2 SCL data may sometimes be
visible as shown on the left and (b) sometimes invisible as shown on the right. In this study, cirrus is
neglected and is considered as a noise source.

5.2. Input Image Resize

The input images in the proposed method are scaled down for two main reasons: (1) Reduction
in computational time, and (2) to take advantage of dataset generation for post-operational CNN
tuning. However, the resizing process averages pixel values with neighboring pixels, resulting in thin
or small clouds to blend into clear pixels. Such an effect is larger when the neighboring pixels have
dark features, such as cloud shadows. Figure 18 shows an example of the input image resize, resulting
in the pixel resolution to degrade from 160 m down to 1600 m. The loss of cloud mask for thin or small
clouds can be seen in the resized cloud mask in Figure 18c. These losses result in underestimation
of cloud coverage in scenes populated with thin or small clouds. Similarly, cloud shadows are also
blended into bright pixels. As cloud shadow is an important feature in validating cloud mask [24,34],
resizing results in feature truncation. An ensemble method [49] could be implemented with a dedicated
network for detecting small features to improve the proposed method regarding small feature loss.
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Figure 18. The effect of input image resize. Thin or small features are blended into neighboring pixels,
resulting in underestimating cloud coverage in scenes with high populations of thin or small clouds.
The figure shows an example of (a) original input image, (b) SCL, (c) resized image, (d) resized cloud
mask, and (e) cloud coverage estimation result, respectively. The losses in small clouds can be seen in
the resized image and mask.

6. Conclusions

In this research, we have proposed an onboard cloudy image rejection method using machine
learning for improving the downlink efficiency of nanosatellites. The main advantage of the proposed
method over conventional methods is onboard cloud detection without requiring additional bands.
The main strategy was to reduce the input size to reduce the number of arithmetic operations in the
CNN. Furthermore, patch decomposition on the input image is introduced to reduce the memory
usage when running the CNN. Due to the reduced input size and further patch decomposition,
the number of pooling operations was limited to twice. To further cut down the inference time,
the number of kernels in the convolution layer was reduced. Finally, a multi-stream architecture
was developed to restrain the network from optimizing on simple features such as color. As a result,
the proposed method reduced the number of parameters down to 0.4% of RS-Net, while the inference
time was reduced down to 4.3% of RS-Net. Considering approximately 67% global cloud fraction [23],
we expect the proposed method will enhance the downlink capability of clear images by 112%,
assuming 70% precision. Furthermore, the reduced input size helps acquire training images from
space for fine tuning, and patch decomposition has potential in parallel cloud coverage estimation in
platforms with multicore microprocessors. The in-orbit performance of the proposed method will be
evaluated onboard NUcube1, which is scheduled for launch in 2022.

Supplementary Materials: The following are available at http://www.mdpi.com/2072-4292/12/23/3941/s1 ,
Data D1: Training dataset containing 64 × 48 and 16 × 16 patches, and test dataset containing 640 × 480 images.

Author Contributions: Conceptualization, J.H.P., T.I., R.H., K.O., J.E.K. and K.Y.; methodology, J.H.P., R.H., K.O.
and J.E.K.; software, J.H.P.; validation, J.H.P., T.I., R.H., K.O. and J.E.K.; formal analysis, J.H.P., T.I., R.H. and K.O.;
investigation, J.H.P., T.I., R.H. and K.O.; resources, T.I. and K.Y.; data curation, J.H.P.; writing—original draft
preparation, J.H.P.; writing—review and editing, J.H.P., T.I., R.H., K.O., K.Y. and J.E.K.; visualization, J.H.P.;
supervision, T.I., R.H., K.O. and J.E.K.; project administration, T.I.; funding acquisition, K.Y. and T.I. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank Earth Observing System (EOS) for allowing publication using remote
sensing images provided through Land Viewer, and the anonymous reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

http://www.mdpi.com/2072-4292/12/23/3941/s1


Remote Sens. 2020, 12, 3941 20 of 22

ACCA Automated Cloud-Cover Assessment
AT-ACCA Artificial Thermal Automated Cloud-Cover Assessment
BNN Binary Neural Network
BT Brightness Temperature
CCA Cloud-Cover Assessment
CNN Convolutional Neural Network
CS-CNN Cloud Segmentation CNN
DLAS Deep Learning Attitude Sensor
EM Engineering Model
Fmask Function of mask
FN False negative
FOV Field of View
FP False Positive
GBC Gradient Boosting Classifier
HFCNN Hierarchical Fusion CNN
IPEX Intelligent Payload Experiment
LDCM Landsat Data Continuity Mission
RFC Random Forest Classifier
SCL Scene Classification map
SLIC Simple Linear Iterative Clustering
SPARCS Spatial Procedures for the Automated Removal of Clouds and Shadows
SVM Support Vector Machine
TCI True Color Image
TIRS Thermal Infrared Sensors
TN True negative
TOA Top of Atmosphere
TP True positive
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