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Abstract: Ganoderma boninense (G. boninense) is a fungus that causes one of the most destructive
diseases in oil palm plantations in Southeast Asia called basal stem rot (BSR), resulting in annual losses
of up to USD 500 million. The G. boninense infects both mature trees and seedlings. The current practice
of detection still depends on manual inspection by a human expert every two weeks. This study
aimed to detect early G. boninense infections using visible-near infrared (VIS-NIR) hyperspectral
images where there are no BSR symptoms present. Twenty-eight samples of oil palm seedlings at
five months old were used whereby 15 of them were inoculated with the G. boninense pathogen.
Five months later, spectral reflectance oil palm leaflets taken from fronds 1 (F1) and 2 (F2) were
obtained from the VIS-NIR hyperspectral images. The significant bands were identified based on the
high separation between uninoculated (U) and inoculated (I) seedlings. The results indicate that the
differences were evidently seen in the NIR spectrum. The bands were later used as input parameters
for the development of Support Vector Machine (SVM) classification models, and these bands were
optimized according to the classification accuracy achieved by the classifiers. It was observed that the
U and I seedlings were excellently classified with 100% accuracy using 35 bands and 18 bands of F1.
However, the combination of F1 and F2 (F12) gave better accuracy than F2 and almost similar to F1
for specific classifiers. This finding will provide an advantage when using aerial images where there
is no need to separate F1 and F2 during the data pre-processing stage.

Keywords: basal stem rot; hyperspectral; support vector machines; VIS-NIR

1. Introduction

The production of oil palm in Southeast Asia has been affected by a never-ending case of basal
stem rot (BSR) disease. Malaysia has reported annual losses of up to RM 1.5 billion due to this disease,
which has made it the most economically devastating disease in the agricultural field. Not only the
mature trees, but the oil palm seedlings are also susceptible to the infection whereby the symptoms
appear earlier and more severe [1]. BSR affects a plantation by reducing the number of standing trees
as well as the weight of fresh fruit bunches (FFB) [2]. According to Subagio and Foster [3], FFB yield
decreases by an average of 0.16 tons per hectare for every dead palm or equivalent to 35% when half
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of the planted trees have died. Based on the BSR incident rate, the total area affected in 2020 was
estimated to be 443,440 hectares, equivalent to 65.6 million oil palms, which is worrying if preventative
measures are not implemented [4]. BSR could cause 80% of the affected trees to die [5]. However,
the trees with an infection of less than 20% can still be treated [6].

G. boninense infection affects the xylem, which causes a major problem in water and nutrient
distribution, making the symptoms appear similar to water stress and nutrient deficiency. The earliest
visual symptom in seedlings can be seen in the presence of a fruiting body at the bole and followed by
partial yellowing of older leaves or mottling of basal fronds to form necrosis, indicating that over 50%
of the stem base has been internally damaged [7]. However, the fruiting body may present or may not
before or after the development of foliar symptoms [5,8], making visual identification hard, confusing,
and often overlooked. In a severe infection, there is no development of new leaves, no increase in
height or girth that will consequently lead to growth inhibition. These are all attributed to the inability
of the plant to perform normal photosynthesis due to low chlorophyll content and water deficiency [9].
Despite the visual symptoms, G. boninense infection can also be detected in the roots and longitudinal
sectioning of the infected bole. The longitudinal section usually shows brown discoloration with white
mycelium protruding through the root epidermis, indicating upward infection progress within the
seedling. Nevertheless, detection through the bole and roots is impractical for large-scale planting
areas as the process is labor intensive and causes injury that could lead to tree destruction.

Early detection, timely prevention, and control are indispensable to counter this disease.
Nowadays, G. boninense infection can be detected by various methods. For example, (i) a
colorimetric method using ethylenediaminetetraacetic acid (EDTA) [10], (ii) Ganoderma-selective
medium (GSM) [11], (iii) polyclonal antibodies (PAbs) [12,13], (iv) enzyme-linked immunosorbent
assay (ELISA) [14,15], (v) polymerase chain reaction (PCR) [16,17], (vi) an electronic nose (e-nose)
device [18,19], (vii) microfocus X-ray fluorescence (µXRF) [6] (viii) tomography images [20], and (ix) a
terrestrial laser scanner (TLS) device [21–23]. Nonetheless, these methods are time consuming,
impractical for large-scale plantations, and some comprise stem collection and laboratory procedures,
which are expensive, tedious, require trained specialists, and appropriate laboratory facilities.

Hyperspectral remote sensing is widely used due to its ability to capture light reflected from plants
in narrow and contiguous wavelengths. Every pixel in the image contains a complete spectral reflectance
that is well associated with varying degrees and types of stresses [24–30]. Healthy plants usually exhibit
lower visible reflectance and higher near infrared (NIR) reflectance, whereas unhealthy plants show
different spectral patterns depending on the physiology and morphology of the leaves. Advanced data
mining analyses can be used to assess vegetation stress; for example, principal component analysis
(PCA) [31,32], machine learning classification [29,30,33,34], spectral derivative analysis [35–37] and
vegetation indices [38,39]. Rumpf et al. [40] combined vegetation indices and SVM to determine
healthy and diseased sugar beet leaves caused by Cercospora beticola. The result showed up to 97%
classification accuracy. Nagasubramanian et al. [41] proved the strength of hyperspectral reflectance
over red, green and blue (RGB) data by detecting charcoal rot disease in soybean stem using SVM and
obtained 97% and 78% accuracy, respectively.

Nevertheless, the application of hyperspectral imaging to detect BSR in oil palm seedlings
has not yet been explored. Instead, it has been applied in several studies of BSR detection in
mature oil palm by utilizing an Airborne Imaging Spectrometer for Applications (AISA) imaging
system [42–46]. These studies were majorly focused on the development of optimal vegetation indices
to differentiate between different levels of severity of the BSR disease. However, only a study conducted
by Shafri et al. [44] produced a satisfactorily result with 86% overall accuracy. Alternatively, for oil
palm seedlings, other researchers utilized spectroscopy devices to acquire spectral information such as
the study performed by Shafri and Anuar [47], who identified significant bands to distinguish between
different severity levels of G. boninense infection. However, there was poor discrimination between
healthy and mildly infected seedlings due to overlapping reflectance spectra between these classes.
Similarly, Shafri et al. [48] also encountered challenges to differentiate between healthy and mildly
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infected seedlings (inoculated at four months old) after six months of inoculation. Their study used
significant bands of first derivative spectra to develop a Maximum Likelihood classification model.
The accuracy produced by the model was 82% with a kappa coefficient of 0.73.

Table 1 gives a summary of methods and specific bands used to detect BSR disease in oil
palm seedlings and mature trees. As observed, previous studies have been able to present good
discrimination accuracy between healthy and infected trees/seedlings with the highest accuracy of 82%
and 97% at nursery and plantation level, respectively. Only six out of 20 research studies focused on BSR
detection at nursery level using spectroscopy devices with the best method found to be conventional
classification, i.e., Maximum Likelihood, and none of the methods used hyperspectral imaging and
machine learning techniques. Although the spectroscopy device is capable of detecting early infection
of BSR in oil palm seedlings, it has a limitation where the device can only take one reading per time for
a small sample point, thus requiring a longer duration of data collection. In contrast, a hyperspectral
camera can reduce the time taken for data collection due to its ability to cover large areas in a single
imaging session.

The use of machine learning techniques, especially Support Vector Machines (SVMs), has been
shown to be beneficial in agriculture applications [30,49–53] and is worth being explored, especially
for early detection of BSR such as in studies conducted by Santoso et al. [54], Santoso et al. [55] and
Khaled et al. [56]. SVM offers robust analysis and better prediction due to the optimal hyperplane
marginal gap between classes. It has been used for classification, regression, and clustering in
agricultural studies. The main advantage of SVM is the implementation of the kernel method,
which enables higher dimensional separation of non-linear data and improves the computational
power of linear learning machines. Kernel functions that are widely used are linear, Gaussian radial
basis function (RBF), and polynomial. In addition, this study was carried out to determine the capability
of various SVM classifiers to achieve a high degree of accuracy in classifying the different number of
bands, features, and frond number for early detection of G. boninense.
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Table 1. Summary of existing G. boninense detection methods for oil palm seedling and mature tree using hyperspectral remote sensing.

Applied Sensor Spectral Range Study Scale Age of Sample Applied Methods Specific Bands (nm) Accuracy (%) Reference

APOGEE
spectroradiometer

300 to 1000 nm Nursery

n.a.
Mann–Whitney U test and

Jeffries–Matusita (JM)
distance analysis

460, 461.5, 462, 462.5,
467.5, 468.5, 469, 480,
480.5, 483, 488, 490.5,

500.5, 501.5, 503.5, 524,
524.5, 525, 525.5, 528.5,
567, 568, 700, 717, 718,

720.5 744, 744.5

n.a. [47]

n.a.

Mann–Whitney U test and Band
ratio and Optimum index factor

(OIF) and K-means clustering and
Average silhouette width

(ASW) plot

610.5, 738 n.a. [57]

10 months old

Analysis of variance (ANOVA)
and JM distance analysis and

Maximum Likelihood
classification

495, 495.5, 496, 651.5, 652,
652.5, 653, 653.5, 654,
654.5, 655, 655.5, 656,
656.5, 657, 657.5, 658,
658.5, 659, 659.5, 660,

660.5, 661, 908

82 [48]

n.a. Modified red-edge simple ratio
and JM distance analysis 460, 705 n.a. [58]

10 months old ANOVA and Band ratio and OIF
and ASW 495.5, 477.5 n.a. [59]

GER 1500 handheld
spectrometer

350 to 1050 nm

Nursery n.a. Band ratio in relation with leaf
chlorophyll content 702, 725 n.a. [60]

Plantation
5 and 17 years old Vegetation indices and

Continuum removal 400 to 550 n.a. [61]

273 to 1100 nm 12 years old Artificial neural network 550 to 560 83.3
100 [62]

Unispec
spectroradiometer

310 to 1130 nm Plantation n.a.
Partial least squares discriminant

analysis (PLS-DA)
n.a. 92 [63]

n.a. 94 [64]
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Table 1. Cont.

Applied Sensor Spectral Range Study Scale Age of Sample Applied Methods Specific Bands (nm) Accuracy (%) Reference

FT-IR spectrometer

255 to 2505 nm

Plantation

15 years old
Principle component analysis

(PCA) and Multivariate pattern
recognition classification

n.a. 92 [65]

2500 to 15,384 nm n.a.
Spectral pattern analysis

2857 to 3125, 6060 to 7194,
8000 to 10,000 n.a. [28]

7692 to 10,000 n.a. [66]

ASD field
spectroradiometer 325 to1075 nm Plantation 15 years old

PCA and Multivariate pattern
recognition classification

and ANOVA
n.a. 97 [67]

Spectroradiometer 273.13 to
1099.57 nm Plantation 2, 5 and 17 years old

Spectral pattern analysis using oil
palm spectral analyzer system

(OPSAS) software
662 80.8 [68]

Airborne AISA sensor
400 to 900 nm

Plantation

n.a. Vegetation indices 705, 750 82.86 [42]

n.a. Red-edge indices 715, 734, 791 84 [43]

n.a.
Vegetation indices and Minimum

distance classification and
Spectral angle mapper

616, 734 86 [44]

5 years old Vegetation indices and
Continuum removal 400 to 500 44.4 [45]

401 to 997 nm 17 years old Vegetation indices and Red-edge
position and Continuum removal 400 to 500 44.4 [46]
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2. Materials and Methods

2.1. Study Area

The study was conducted at the Transgenic Greenhouse, Universiti Putra Malaysia (UPM), Serdang,
Malaysia (2◦59′33.10” N, 101◦43′19.16” E), from 24 January 2019 to 24 June 2019. The greenhouse has
dimensions of 12 m length x 6 m width x 4 m height and is made up of polycarbonate panels to protect
against harmful UV light and is equipped with air conditioners, humidifiers, thermal screens, and a
humidity/temperature sensor. The temperature inside the greenhouse was set at 27 ◦C following the
work of Kamil and Omar [69].

2.2. Artificial Inoculation of Samples

A total of 28 oil palm seedlings (commercial standard crosses of Dura × Pisifera, D × P) were
obtained from Sime Darby Plantation, Banting, Malaysia, at the age of four months old. The seedlings
were permitted to acclimatize under greenhouse conditions for one month before transplanting.

At five months old, 15 of the seedlings were transplanted into 24 cm × 21 cm × 33 cm
polybags comprising 30% of a mixture of 90% topsoil and 10% sand. A rubberwood block (RWB,
6 cm × 6 cm × 6 cm) colonized with G. boninense pathogen was placed at the center of a polybag.
The roots of the seedlings were positioned on top to have direct contact with the RWB and covered
with soil until the bole level. This method is called a sitting technique as described in Naidu et al. [70].
Thirteen seedlings were planted with uninoculated RWB acting as the control treatment (U). All the
seedlings were arranged according to the standard triangular arrangement of an oil palm nursery with
equal and sufficient water and fertilizer application. Two months after artificial inoculation, two of
the inoculated (I) seedlings were sent to the Bacteriology Laboratory, Faculty of Agriculture, UPM,
Serdang, Malaysia, for a polymerase chain reaction (PCR) test to confirm the G. boninense infection.

2.3. Data Collection

The process of image acquisition was conducted five months after transplanting. The camera used
in this study was a FireflEYE S185 (Cubert GmbH, Ulm, Germany) snapshot camera with wavelengths
ranging from 450 to 950 nm (125 bands) that covers the visible (blue, green, and red) and NIR regions
with a sampling interval of 4 nm. The camera was mounted horizontally on a custom tripod and was
positioned 2.6 m from the ground level (Figure 1).
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The camera was calibrated with white and dark references before each image acquisition to reduce
the effect of illumination and detector sensitivity. Therefore, the time for integration was approximately
the same. The dark calibration was performed by closing the lens of the camera, while the white
calibration was performed by placing the provided white rectangular board (99% light reflection) flat
and close to the lens. Each collected spectrum was calibrated as:

Re f lectance =
(Image−Dark)
(White−Dark)

(1)

The white and dark calibrations were checked before the actual image acquisition to ensure good
quality of the output images. One seedling was imaged at one time against a black background board.
The images were taken on a sunny, clear day from 11:00 a.m. to 2:00 p.m. local time to obtain a natural
illumination. The system was controlled by Cube-Pilot software provided by the manufacturer.

2.4. Data Pre-Processing

Figure 2 shows the top view image of frond 1 (F1) and frond 2 (F2). In order to minimize variations
in spectral reflectance due to the effects of frond inclination [71], only the spectral reflectance of the first
four leaflets of F1 and F2 were extracted manually and randomly. The usage of F1 and F2 followed the
work of Shafri et al. [48] and Izzuddin et al. [59] due to the morphological arrangement of the fronds.
Therefore, an average of 20 sample points were obtained from each frond, resulting in a total number
of 558 and 564 sample points for F1 and F2, respectively. The outliers of the data were identified using
the box plot method. Box plot analyzed the data statistically in a graphical manner with five measured
parameters representing the distribution, i.e., lower quartile, upper quartile, lower fence, upper fence,
and interquartile range. These quartile ranges were advantageous due to their reduced sensitivity
towards outliers [72,73].
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2.5. Data Analysis

In this study, the detection of G. boninense infection was determined by analyzing specific spectral
signatures at different treatments (U and I) as well as at different frond numbers. Bands were selected
based on the first 35 bands (30% of the total bands) that gave high separation values between U and I.
These bands were also subject to a t-test statistical analysis using SPSS statistical software (IBM SPSS
Statistics 25, IBM, New York, NY, USA) with a value of p ≤ 0.05. Then, the coefficient of variation
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(CV) of the sample points for all significant bands was calculated to identify the dispersion of the data.
The CV was calculated as:

CV =

√
s
x
× 100% (2)

where s is the standard deviation of the samples, and x is the mean of the samples.
Later, the identified significant bands were used as input parameters to develop SVM classification

models using the machine learning toolbox of MATLAB (2019b, The MathWorks Inc., Natick, MA, USA).
In order to evaluate the performance of the developed model, a five-fold cross-validation technique
was applied where the data was randomly divided into five equal-sized subsamples. Each subsample
was used to test the constructed model using the remaining four trained subsamples. This process was
repeated five times, with each subsample becomes a testing set once to improve the effectiveness of the
model. The completed models were subsequently exported and assessed using the prediction dataset.

In this study SVM classification models with different kernel functions, i.e., linear, Gaussian RBF,
and polynomial, were trained. The linear kernel was fit for linearly separable data, which may be
expressed as:

k
(
xi, x j

)
= xT

i x j (3)

where k is the kernel function,
(
xi, x j

)
are a-dimensional input and xT

i x j is a map from the a-dimension
to the b-dimension.

Where the data are not linearly separable, an appropriate kernel function may be used to enhance
SVM classification. The kernel method allows SVM to identify a hyperplane in the kernel space,
hence making non-linear separation feasible within the feature space. An example of non-linear kernels
is the Gaussian Radial Basis Function (RBF), which can be represented as:

k
(
xi, x j

)
= exp

(
−
‖xi−x j‖

2

2σ2

)
= exp

(
−γ‖xi − x j‖

2
)
,

(4)

where ‖xi − x j‖
2 is known as the squared Euclidean distance between two feature vectors, and σ is

defined as the kernel width. A small kernel width tends to reflect dissimilar patterns and causes
overfitting, whereas large kernel width results in very similar patterns and causes underfitting.
The optimal kernel width is chosen based on a tradeoff between underfitting and overfitting loss.
Furthermore, the σ also has a similar definition as the with kernel scale (γ) where = 1

2σ2 . In this study,
the value of γ was adjusted to different values according to the following assumptions:

γ f G =
√

n/4, for fine Gaussian,
γmG =

√
n, for medium Gaussian,

γcG = 4
√

n, for coarse Gaussian,
(5)

where n is the number of features.
Another kernel function that was used was the polynomial that can be expressed as:

k
(
xi, x j

)
=

(
1 + xT

i x j
)p

, (6)

where p is the order of the polynomial kernel. The degree of the polynomial kernel is able to influence
the tolerance of the classifier resulting in a flexible decision boundary of a higher degree polynomial
than the lower value.

After the classification models were constructed, an optimization process was carried out to
find the optimal number of bands that could give suitable classification accuracy. Exploration runs
were applied where the initial number of significant bands was optimized, as shown in Figure 3.
Thirty-five significant bands that were confirmed to be statistically significant were used as inputs
of the SVM classifiers. If the classification accuracy obtained by all SVM classifiers was greater than
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85%, the current number of significant bands was reduced by 50%. Otherwise, if the condition was not
satisfied, the current number of significant bands was increased by 50%. The classification models of
the reflectance spectra were developed separately for F1, F2, and the combination of F1 and F2 (F12)
using the respective significant bands.
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3. Results

3.1. Status of the Inoculated Sample

Figure 4 shows the condition of the oil palm seedlings that were sent to the Bacteriology Laboratory,
Faculty of Agriculture, UPM for PCR test to confirm G. boninense infection. Both samples tested positive
for G. boninense infection, although the seedlings displayed no apparent symptoms associated with BSR
disease such as fungal mass and yellowing of older leaves. However, longitudinal sectioning of the
bole showed brown discoloration indicating the presence of the G. boninense infection. Furthermore,
Figure 5 shows the condition of I seedling after 20 weeks of artificial inoculation. The seedling also
did not show any visible symptoms related to G. boninense infection, as stated in Izzati et al. [74];
Kok et al. [75]; Naidu et al. [70] despite being inoculated with the G. boninense pathogen.
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3.2. Reflectance Analysis

Figures 6 and 7 show the average spectral reflectance of F1 and F2 for the U and I seedlings taken
at five months after inoculation with its standard deviation to the mean. As shown in these figures,
F1 and F2 yielded almost similar reflectance patterns for both the U and I seedlings. However, the U
seedling demonstrated higher reflectance in the green (520 to 570 nm) and NIR (750 to 950 nm) ranges,
with maximum differences around 1.4% and 15.4% for F1, and 1.6% and 17.3% for F2, respectively.
Although NIR shows higher standard deviation compared to the green, it can totally separate the U
and I seedlings without any overlapping wavelength.
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Figure 6. Reflectance spectra of frond 1 (F1) at U and I treatments. Each value represents a mean of 202
and 248 sample points of U and I treatments, respectively. Vertical bars represent standard deviation.
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Figure 7. Spectral reflectance of frond 2 (F2) at U and I treatments. Each value represents a mean of 197
and 264 sample points of U and I treatments, respectively. Vertical bars represent standard deviation.

Table 2 tabulates 35 significant bands for F1 and F2. Although the significant bands from both
fronds were located in the NIR region, two of the specifically selected bands were different. For example,
862 nm was not significant for F1 but was significant for F2, and 810 nm was not significant for F2
but was significant for F1. These significant bands comprised 30% of the total 125 bands and were
verified as statistically significant. Considering only 35 significant bands instead of 125 bands could
avoid analytical issues due to unnecessary bands, which thus would make it less complex and more
economical to design future hardware.
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Table 2. Highest 30% significant bands of F1 and F2 as determined using spectral analysis and t-test
statistical analysis.

Frond Number Total Significant Bands Significant Bands (nm)

F1 35
810 814 818 822 826 830 834 838 842 846 850 854 858 866 870
874 878 882 886 890 894 898 902 906 910 914 918 922 926 930
934 938 942 946 950

F2 35
814 818 822 826 830 834 838 842 846 850 854 858 862 866 870
874 878 882 886 890 894 898 902 906 910 914 918 922 926 930
934 938 942 946 950

The CV of all sample points of the significant bands for F1 and F2 are shown in Figure 8. The CV
values were in the range of 5 to 14% and were considered to be good and reliable [76]. Based on the
figure, the sample points of F2 demonstrated more variation than F1 at the significant bands (800
to 950 nm).
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3.3. SVM Classification

All 35 significant bands tabulated in Table 2 were utilized as input parameters for the development
of SVM classification models. Apart from F1 and F2, the combination of F1 and F2 (F12) was also
included in the classification for comparative purposes. The number of significant bands was reduced
based on the classification accuracy achieved by the SVM classifiers so that the ability of small data to
achieve high classification accuracy could be determined.

3.3.1. Frond 1 (F1)

Firstly, the 35 most significant bands tabulated in Table 2 were used as inputs for the SVM
classifiers. The output of classification in Table 3 shows that all classifiers successfully classified the
U and I seedlings with an accuracy of above 85%. Therefore, this set of bands were then reduced
by 50% to 18 and used as new inputs for the classification. Table 4 shows lists of significant bands
after band optimization. These 18 significant bands demonstrated a classification accuracy of over
85% for all classifiers. Therefore, the 18 bands were then reduced by 50%. The result shows that these
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nine significant bands achieved classification accuracies of more than 85% for all classifiers. Thus,
the number of bands was reduced by 50%. For five bands, the results showed that all classifiers gave a
classification accuracy greater than 85%. The optimization was terminated at five bands due to the
decreasing trend of classification accuracy from 35 to 5 bands. Thus, it was predicted that any further
reduction of bands would only decrease the accuracy.

Table 3. Classification accuracies obtained using a different numbers of significant bands of F1.

Classification Accuracy (%)

Number of Significant Bands

Classifier 35 18 9 5

Linear SVM 100 100 99 99
Quadratic SVM 100 100 97 97
Cubic SVM 100 100 98 98
Fine Gaussian SVM 100 100 99 99
Medium Gaussian SVM 100 100 99 99
Coarse Gaussian SVM 100 100 97 97

Table 4. Significant band optimization of F1 as identified by classification accuracies of Support Vector
Machine (SVM) classifiers.

Total Significant Bands Significant Bands (nm)

18 826 830 890 894 898 902 906 910 914 918 922 926 930 934 938 942 946 950
9 918 922 926 930 934 938 942 946 950
5 930 934 938 942 946

The results also indicated that 100% accuracy could be achieved using 35 bands and 18 bands for
all classifiers. Overall, Fine Gaussian SVM was the best classifier for F1 with 100% accuracy for 35 and
18, while achieving 99% for nine bands and five bands with a kappa coefficient of 0.97. This indicated
that the Fine Gaussian SVM was not sensitive to band reduction since it still gave 99% accuracy when
using nine and five bands as a finely detailed distinction between classes compared to other types of
classifiers. In contrast, the Quadratic SVM and Coarse Gaussian SVM were very sensitive to the band
reduction, whereby the use of nine bands reduced the accuracy by 3%.

3.3.2. Frond 2 (F2)

SVM classification models were first developed using 35 significant bands as tabulated in Table 2.
The results in Table 5 show that the 35 bands produced more than 85% accuracy for all classifiers.
Therefore, the 35 bands were reduced by 50%. These 18 bands were then used as new inputs to the
SVM classifiers and yielded over 85% accuracy for all classifiers. Therefore, the 18 bands were reduced
by 50%. The result indicates that nine significant bands could not provide above 85% accuracy for all
classifiers. Consequently, the number of bands was increased by 50%, i.e., from nine bands to 14 bands.
For 14 bands, the results have shown that all classifiers were able to exceed 85% accuracy. However,
the optimization was ended at 14 bands because further reduction would cause a substantial reduction
of classification accuracy as occurred in Cubic SVM with nine bands. A list of all significant bands in
the optimization process is tabulated in Table 6.
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Table 5. Classification accuracies obtained using a different number of significant bands of F2.

Classification Accuracy (%)

Number of Significant Bands

Classifier 35 18 9 14

Linear SVM 92 91 91 91
Quadratic SVM 90 89 88 90
Cubic SVM 89 89 47 86
Fine Gaussian SVM 93 91 91 92
Medium Gaussian SVM 92 91 90 91
Coarse Gaussian SVM 91 90 90 90

Table 6. Significant band optimization of F2 as identified by classification accuracies of SVM classifiers.

Total Significant Bands Significant Bands (nm)

18 882 886 890 894 898 902 906 910 914 918 922 926 930 934 938 942 946 950
9 914 918 922 926 930 934 938 942 946

14 898 902 906 910 914 918 922 926 930 934 938 942 946 950

In general, the number of bands affects the classification accuracy of the SVM classifiers as a
high number of bands tend to establish classification models with a high accuracy, which ensures
better prediction. Fine Gaussian SVM obtained the highest accuracy of all bands with 93% accuracy
when using 35 bands. By using the same 35 bands, all SVM classifiers secured classification accuracies
above 90%, except for the Cubic SVM, which gained a slightly lower accuracy of 89%. For 18 bands,
the classification accuracy attained was slightly lower than for 35 bands. Although Fine Gaussian SVM
was among the classifiers with the highest accuracy for 18 bands, the accuracy was reduced by 2%
compared to 35 bands, making it the classifier with the highest percentage of loss. Further, the only
classifier that was able to maintain the same accuracy as 35 bands was Cubic SVM with 89% accuracy.
However, this kernel provided worse accuracy compared to others.

Interestingly, the reduction of bands from 18 to 9 reduced the accuracy of Cubic SVM sharply from
89% to 47%. Meanwhile, Quadratic SVM, Medium Gaussian SVM and Coarse Gaussian SVM gave a
decrease of 1%. Almost all of the classifiers at nine bands scored lower classification accuracies than
for 18 and 14 bands except for the Linear SVM and Coarse Gaussian SVM that maintained the same
accuracy. In conclusion, the best classifier for this analysis was Fine Gaussian SVM that consistently
scored the highest accuracy in all bands with kappa coefficients of 0.89, 0.84, 0.85, and 0.77 for 35, 18,
14, and 9 bands, respectively.

3.3.3. Combination of Frond 1 and Frond 2 (F12)

Thereafter, the reflectance dataset of F1 and F2 were combined to assess the performance of SVM
classifiers on the combination dataset. Firstly, the 35 statistically significant bands tabulated in Table 7
were used as inputs to the SVM classifiers. The output of classification in Table 8 shows that all the
classifiers gained over 85% accuracy when using 35 bands. Therefore, the 35 bands were reduced by
50%. The 18 bands were used as a new input for the classifiers. The 18 bands also obtained classification
accuracy above 85% for all the classifiers, which resulted in a reduction of bands by 50%. For nine
bands, one classifier obtained an accuracy lower than 85% by which the bands were then subsequently
increased by 50% to 14 bands. The 14 bands successfully recovered the accuracy achieved by nine
bands with all classifiers earning classification accuracies greater than 85%. However, there was no
further optimization of 14 bands since nine bands already experienced an evident decrease in the
classification accuracy of the Cubic SVM.
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Table 7. Significant band optimization of F12 as identified by classification accuracies of SVM classifiers.

Total Significant Bands Significant Bands (nm)

35 814 818 822 826 830 834 838 842 846 850 854 858 862 866 870 874 878 882 886 890
894 898 902 906 910 914 918 922 926 930 934 938 942 946 950

18 826 886 890 894 898 902 906 910 914 918 922 926 930 934 938 942 946 950
9 914 922 926 930 934 938 942 946 950
14 898 902 906 910 914 918 922 926 930 934 938 942 946 950

Table 8. Classification accuracies obtained using a different number of significant bands of F12.

Classification Accuracy (%)

Number of Significant Bands

Classifier 35 18 9 14

Linear SVM 95 95 93 95
Quadratic SVM 94 93 93 93
Cubic SVM 94 92 78 89
Fine Gaussian SVM 95 95 94 95
Medium Gaussian SVM 95 95 94 95
Coarse Gaussian SVM 95 95 94 94

Based on Table 8, the highest classification accuracy acquired was 95%, and at least three classifiers
earned that accuracy for 35, 18, and 14 bands each. Linear SVM, Fine Gaussian SVM, and Medium
Gaussian SVM scored the same accuracy of 95% with a kappa coefficient of 0.90 across the number
of bands, except for nine bands where the accuracies were slightly lower. Furthermore, Quadratic
SVM and Coarse Gaussian SVM experienced a one-time reduction in classification accuracy either
at 18 or nine bands. After that, the accuracy became fixed until 14 bands. As for the Cubic SVM,
the classification accuracy achieved gradually decreased as the number of bands decreased, initially 94%
for 35 bands, then reduced to 78% for 9 bands and increased to 89% for 14 bands.

In general, the accuracy of the models of F12 was not affected by the band optimization except
for the Cubic SVM. The 35 and 18 bands were capable of establishing more SVM models with the
highest classification accuracy compared to nine and 14 bands. The 14 bands only earned the highest
classification accuracy when using Linear SVM (kappa coefficient 0.89), Fine Gaussian SVM (kappa
coefficient 0.90), and Medium Gaussian SVM (kappa coefficient 0.90). In this case, apart from the
different number of bands, the type of classifiers also played a major role. For instance, the Quadratic
SVM scored the same accuracy of 93% despite the decreasing number of bands from 18, 14 to 9 bands.
It was also shown that the localized and finite response type of kernel function RBF is needed to classify
the data as the accuracy produced was almost consistent despite the band reduction. For example,
Fine Gaussian SVM and Medium Gaussian SVM gained the same kappa coefficient of 0.9 for 35, 18,
and 14 bands, while, at nine bands, the kappa coefficients obtained were 0.88 and 0.87, respectively.

4. Discussion

The reflectance pattern generated by I seedlings was typical for diseased plants, with lower
reflectance in the NIR spectrum due to the destruction of xylem, which thus reduced the chlorophyll
pigments and also caused water deficiency. According to Liaghat et al. [67], changes of reflectance
in the NIR spectrum during a stress period were more evident than changes in the visible spectrum,
since NIR could penetrate deeper through the leaf pigments compared to the visible wavelengths.
The changes in NIR were due to the rupture of the mesophyll cell wall [62,77–79] which caused higher
absorbance and lower reflectance of NIR. This result agreed with the findings by Ausmus and Hilty [80],
where healthy maize dwarf mosaic virus-infected leaves showed significant differences in the NIR
range even before the development of the physical symptoms, where the NIR reflectance of healthy
leaves was higher than infected leaves.
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In this study, the U seedlings reflected a slightly higher light level compared to the I seedlings in
the visible range. This pattern was contrary to the spectral signature of healthy plants studied by other
researchers that agreed healthy plants normally have lower reflectance than a diseased plant in the
visible range, especially for green (520 to 560 nm) due to the higher chlorophyll content of the leaves.
Nevertheless, the pattern shown in this study was similar to the study conducted by Shafri et al. [48]
where the healthy seedlings yielded higher reflectance than G. boninense-infected seedlings in the green
wavelengths. Therefore, this reflectance pattern might be a unique spectral signature for oil palm
seedlings, since each plant has a specific spectral signature. Furthermore, according to Schmidt and
Skidmore [81], different types of vegetation have spectral reflectance that is statistically significant in
various spectral regions.

Although the reflectance patterns of the U and I seedlings of F1 and F2 were almost similar, the U
of F2 produced a slightly higher reflectance than the U of F1 throughout the spectrum. This may
indicate that the older leaves generated higher reflectance than the younger leaves. This idea was
supported by Rapaport et al. [82] who found increases of NIR reflectance of Cabernet Sauvignon in the
second week when the fourth leaf (young) of the control treatment moved to the eighth nodal position
(old leaf position) and concluded that age variability mainly influenced the differences in reflectance
spectra. Contrarily, Ahmadi et al. [62] presented average reflectance curves of healthy oil palms where
frond 17 (old) produced lower NIR reflectance than frond 9 (young) during the first data collection.
However, for the second data collection (8 months later), the NIR reflectance of frond 17 and 9 were
almost similar. These reflectance spectra were not consistent with the first data collection.

By using the selected wavelengths of 800 to 950 nm, it was possible to obtain 100% classification
accuracy in discriminating healthy and asymptomatic G. boninense-infected seedlings. The results also
confirm that the prediction models developed using F1 generally had the most excellent accuracy of
100% when using 35 and 18 bands as input parameters. In addition, the accuracies attained by the
SVM models showed that F12 was able to improve the accuracies of F2, which verified that both fronds
could be used to detect the G. boninense infection in oil palm. This outcome agreed with Shafri et al. [48]
who conducted a Maximum Likelihood classification using a combination of F1 and F2 to determine
the health status of oil palm seedlings and achieved a net accuracy of 82% with a kappa coefficient
of 0.73. Focusing on the similar type of input data used by Shafri et al. [48], i.e., F1 and F2, our
method gave better accuracy with more than 90% at a different number of bands. Shafri et al. [48] used
24 significant bands (three green bands, 20 red bands and one NIR band) of first derivative spectra as
input parameters. Our method that used the NIR spectrum performed well even at the small number
of bands, i.e., nine bands with 94% accuracy. Reducing the number of bands has the advantages of
being less complex and more economical. This promising result gave useful information in aerial-view
applications such as when applying an unmanned aerial vehicle (UAV) for image acquisition since
both fronds can be clearly seen from the top-view image and hence could expedite the detection of the
G. boninense disease.

The F1 and F12 classification models produced robust results in contrast to the F2 classification
models. For example, several SVM classifiers scored high classification accuracy when using the 35 and
18 (for F1 and F12), 9 and 5 (for F1), and 14 (for F12) bands which suggested that even a small number
of input parameters could attain classification accuracies similar to a large number of input parameters.
However, it depended on the type of classifiers used. Unlike the F2, the highest classification accuracy
was only accomplished by Fine Gaussian SVM using 35 bands. The differences in the number of bands
have no significant impact on the accuracy generated by the SVM classifiers. For example, nine bands
were able to gain classification accuracies above 90% similar to 35, 18, and 14 bands when processed
with F2. The distinct differences between the accuracy of F1 and F2 occurred due to the higher CV of F2,
which indicate a higher dispersion of data in F2. In addition, Ahmadi et al. [62] claimed that younger
fronds were more suitable to be used for the early detection of G. boninense infection since it has a better
effect on classification accuracy than the older fronds due to its location on the top part of the crown.
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Moreover, the results also present the importance of the kernel method, where Fine Gaussian
SVM outperformed Linear SVM with higher classification accuracy in 14 bands of F2, and nine bands
of F12, while Medium Gaussian SVM could attain similar accuracies as Linear SVM except when using
nine bands of F2. In contrast, Coarse Gaussian SVM obtained less accuracy than the Linear SVM in all
bands of F2 but higher in nine bands of F12. Therefore, it showed that the Gaussian RBF classifiers
could provide a much better classification than the linear kernel SVM by using the appropriate kernel
scale. However, for the polynomial kernel, Quadratic SVM yielded higher classification accuracy than
Cubic SVM in F2 and F12, whereas Cubic SVM scored higher classification accuracy than Quadratic
SVM in F1. Therefore, this indicated that the performance of SVM-based classification models was
highly affected by the different types of data and kernel function, as the kernel effect depended on the
data used. For example, F1 data could be optimized to five bands with classification accuracies scoring
still above 85% for all SVM classifiers. In comparison, F2 and F12 could only be optimized to 14 bands
since the Cubic SVM gave lower accuracy than 85% for both data sets.

5. Conclusions

NIR reflectance showed significant differences between the U and I seedlings. G. boninense
infection can be detected at an early stage even though there are no physical symptoms of the disease
by using SVM classifiers with a varying number of NIR bands. The reflectance spectra of the F1
frond yielded 100% classification accuracy for all SVM kernel functions using 35 and 18 NIR bands.
In contrast, the F2 and F12 fronds achieved the highest classification accuracy of 93% when using
Fine Gaussian SVM at 35 NIR bands and 95% when using Gaussian RBF and linear kernel at 35, 18,
and 14 NIR bands, respectively. Since F12 produced higher classification accuracy than F2, it could be
concluded that F12 would be better used for early detection of G. boninense infection in oil palm when
using aerial images because there is no need to separate between F1 and F2 during the pre-processing
data stage. Next, it was observed that a high number of bands achieved high classification accuracy
while a small number of bands obtained slightly less accuracy. In addition, the optimized Gaussian
RBF kernel, i.e., Fine Gaussian SVM could perform excellently compared to the Linear SVM and other
classifiers in terms of the classification accuracy produced. However, it depended on the number of
bands and fronds used.

For future work, the developed method in this research could be tested in an open environment
to confirm its reliability for field application. Even the camera could be calibrated before every image
acquisition to avoid error due to illumination. However, careful consideration needs to be taken when
dealing with sun angle, shadow and weather conditions. In addition, the inoculation period of oil
palm seedlings could be shortened to less 10 months to check the ability to detect the earliest infection
of G. boninense. Next, research could also be implemented for different types of oil palm varieties to
test their tolerance towards G. boninense infection and its effects on spectral reflectance.
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29. Susič, N.; Žibrat, U.; Širca, S.; Strajnar, P.; Razinger, J.; Knapič, M.; Stare, B.G. Discrimination between
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