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Implementation of the novel inpainting approaches

Both, the Telea and the Navier-Stokes inpainting approach, are implemented in the Open
Source Computer Vision (OpenCV) library (https://github.com/opencv/opencv). It is a collection of
programming functions for digital image processing, written in C++, with existing bindings and
wrappers for other programming languages.

The processing of the DEMs and elevation change maps, like coregistration, artificial void
generation, as well as the analysis of the inpainting results is implemented in R (https://www.r-
project.org/) using related libraries. Thus, we included the Navier-Stokes and Telea inpainting in the
R processing pipeline, allowing a semi-automatic multiparameter analysis.

For  the  compiling  and  installation  of  OpenCV in  R,  the  utility  package  ROpenCVLite
(https://github.com/swarm-lab/ROpenCVLite)  was  used.  The  Rvision  library
(https://github.com/swarm-lab/Rvision)  is  needed  to  use  the  OpenCV library  in  R.  It  provides
functions to import and edit images using the power of the OpenCV library.

A voided  elevation  change  data  set  and  a  mask,  indicating  the  areas  that  need  to  be
inpainted, have to be provided to carry out the inpainting using OpenCV. Further, it is necessary to
specify the  radius  of  the  neighborhood surrounding the  voids  that  is  used  to  supply the  initial
information to the inpainting algorithms. We applied search radii of 2, 5, 8, 10, 15 and 20 pixels to
evaluate the dependency of the inpainting results on the considered area around the voids.

Since the void filling is only carried out on the glaciated areas, voids touching the glacier
margins  need to  be  handled  with  care.  When converting  the  on-glacier  elevation  change maps
(GeoTIFF format) into the OpenCV image format, “no-data” pixels outside the glaciers are treated
as zero values, since the OpcenCV image format does not support “no-data” or “NaN” values. Pixel
information surrounding the data voids are used to constrain the void filling. Glaciers can show
considerable surface elevation changes next to their margins. Thus a boundary condition of zero
elevation changes at the glacier margins can bias the filling of data voids at the glacier margins
towards  zero,  which  is  not  desired.  In  a  similar  way,  the  consideration  of  measured  elevation
changes  in  the  ice-free  areas,  which  should  be theoretically  close  to  zero,  would  cause  a  bias
towards zero. Therefore, we added a 1 km wide buffer zone around the glacier outlines, which was
inpainted as well. By doing this, the influence of the zero values in the ice free areas on data voids
situated at the glacier margins is sufficiently minimized and the void filling is dominated by on-ice
pixel information.

The whole study area extends over 6033x9883 pixels and the void pixels on glacier areas
amounts to 1,287,899 pixels for the Correlation setup. Additionally 6,287,250 pixels needed to be
inpainted by adding the 1km buffer zone around the glacier areas. The Navier-Stokes and Telea
inpainting was run on Intel(R) Xeon(R) E5-2650 v4 CPU and lasted between 70 and 140 min,
depending on the algorithm (in general longer for Telea) and search radius.

The  Shearlet  inpainting  was  implemented  in  Python.  For  the  Shearlet  transform  the
pyshearlab  library  (https://github.com/stefanloock/pyshearlab)  was  used  and  the  iterative
thresholding was translated from the Matlab code from www.shearlab.org [1] to Python.

The Shearlet transform is parameterized and allows to adjust the number and the shape of
the  basis  functions.  To inpaint  the  large  void  areas  of  the  data  set,  a  system with  large  basis
functions is required. For all experiments, we set the nscales parameter, which specifies the number
of scale levels and therefore the size of the largest basis functions to the maximum value that the
software framework allows. For the remaining parameters, the default values were used.
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Due to the large image size for the Correlation and SAR setups, a block wise processing
scheme with overlapping patches was applied. The overlapping regions have been smoothly joined
using trigonometric window functions to reduce border artifacts.

In total  3  experiments  with different  parameter  settings  were  performed.  For  the  first  2
experiments, the patch size, the stride (i.e., the amount the window is moved to extract a patch) and
the nscales parameter were chosen as follows: (i): patch size: 512, stride: 384, nscales: 5; (ii): patch
size: 1024, stride: 768, nscales: 6. In the third experiment (iii) we used a patch size of 2048 and a
stride of 1536. This time the patches were first subsampled to a size of 1024, then inpainted with a
nscales parameter of 6 and finally upsampled to a size of 2048 and merged. The third approach has
a similar effect as a direct inpainting with a patch size of 2048 and a nscales parameter of 7 (thus,
called  nscales  7  in  the  following)  and  was  performed  since  the  direct  processing  with  these
parameters was not possible due to memory limitations. All experiments were executed with 400
iterations and an α=0.001 .

All experiments were performed on an Intel(R) Xeon(R) Silver 4114 CPU. The patches were
processed in parallel by 8 processes and execution took 3 to 5 days, depending on the parameter
setting. We would like to stress that the optimization of the computing time of the Shearlet approach
was beyond the scope of the project; it is likely that using precompiled code and/or GPUs it is
possible  to  speedup  the  Shearlet-based  inpainting  significantly. Due  to  the  high  computational
expenses Shearlet inpainting was not directly included in the R processing pipeline.
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Figure S1: Void filling results dh IP  (left column), difference dh  between void filling output 
and original data (center column) and relative offset dhr  for different void filling approaches at 
Center setup. Black polygons: glacier outlines; purple polygons: artificial voids.
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Figure S2: Void filling results dh IP  (left column), difference dh  between void filling output 
and original data (center column) and relative offset dhr  for different void filling approaches at 
Juneau setup. Black polygons: glacier outlines; purple polygons: artificial voids.



Figure S3: Hypsometric distribution of glacier area and surface elevation changes of Center setup,
grouped in 50 m altitude bins.



Figure S4: Hypsometric distribution of glacier area and surface elevation changes of Juneau 
setup, grouped in 50 m altitude bins.
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Figure S5. Scatter plot of ( ¯dhgl−d̄h) versus σ dh /√N for the Shearlet (nscales=5) 
approach. Table 2. Gray dashed lines indicate the bounds from Equation (16) and (18) 
approximated by 2dcor σ dh/√ N for N>dcor

2  and by 2σdh for N<dcor
2 . f int: fraction of points 

within bounds.


