
Supplement to:

Novel techniques for void filling in glacier elevation change data sets

Thorsten Seehaus(1), Veniamin I. Morgenshtern(2), Fabian Hübner(2), Eberhard
Bänsch(3), Matthias H. Braun(1)
(1) Institute of Geography, Friedrich-Alexander University Erlangen-Nürnberg, Germany
(2) Chair of Multimedia Communications and Signal Processing, Friedrich-Alexander University Erlangen-
Nürnberg, Germany
(3) Department of Mathematics, Friedrich-Alexander University Erlangen-Nürnberg, Germany

Implementation of the novel inpainting approaches

Both, the Telea and the Navier-Stokes inpainting approach, are implemented in the Open
Source Computer Vision (OpenCV) library (https://github.com/opencv/opencv). It is a collection of
programming functions for digital image processing, written in C++, with existing bindings and
wrappers for other programming languages.

The processing of the DEMs and elevation change maps, like coregistration, artificial void
generation, as well as the analysis of the inpainting results is implemented in R (https://www.r-
project.org/) using related libraries. Thus, we included the Navier-Stokes and Telea inpainting in the
R processing pipeline, allowing a semi-automatic multiparameter analysis.

For the compiling and installation of OpenCV in R, the utility package ROpenCVLite
(https://github.com/swarm-lab/ROpenCVLite) was used. The Rvision library
(https://github.com/swarm-lab/Rvision) is needed to use the OpenCV library in R. It provides
functions to import and edit images using the power of the OpenCV library.

A voided elevation change data set and a mask, indicating the areas that need to be
inpainted, have to be provided to carry out the inpainting using OpenCV. Further, it is necessary to
specify the radius of the neighborhood surrounding the voids that is used to supply the initial
information to the inpainting algorithms. We applied search radii of 2, 5, 8, 10, 15 and 20 pixels to
evaluate the dependency of the inpainting results on the considered area around the voids.

Since the void filling is only carried out on the glaciated areas, voids touching the glacier
margins need to be handled with care. When converting the on-glacier elevation change maps
(GeoTIFF format) into the OpenCV image format, “no-data” pixels outside the glaciers are treated
as zero values, since the OpcenCV image format does not support “no-data” or “NaN” values. Pixel
information surrounding the data voids are used to constrain the void filling. Glaciers can show
considerable surface elevation changes next to their margins. Thus a boundary condition of zero
elevation changes at the glacier margins can bias the filling of data voids at the glacier margins
towards zero, which is not desired. In a similar way, the consideration of measured elevation
changes in the ice-free areas, which should be theoretically close to zero, would cause a bias
towards zero. Therefore, we added a 1 km wide buffer zone around the glacier outlines, which was
inpainted as well. By doing this, the influence of the zero values in the ice free areas on data voids
situated at the glacier margins is sufficiently minimized and the void filling is dominated by on-ice
pixel information.

The whole study area extends over 6033x9883 pixels and the void pixels on glacier areas
amounts to 1,287,899 pixels for the Correlation setup. Additionally 6,287,250 pixels needed to be
inpainted by adding the 1km buffer zone around the glacier areas. The Navier-Stokes and Telea
inpainting was run on Intel(R) Xeon(R) E5-2650 v4 CPU and lasted between 70 and 140 min,
depending on the algorithm (in general longer for Telea) and search radius.

The Shearlet inpainting was implemented in Python. For the Shearlet transform the
pyshearlab library (https://github.com/stefanloock/pyshearlab) was used and the iterative
thresholding was translated from the Matlab code from www.shearlab.org [1] to Python.

The Shearlet transform is parameterized and allows to adjust the number and the shape of
the basis functions. To inpaint the large void areas of the data set, a system with large basis
functions is required. For all experiments, we set the nscales parameter, which specifies the number
of scale levels and therefore the size of the largest basis functions to the maximum value that the
software framework allows. For the remaining parameters, the default values were used.

https://github.com/opencv/opencv
https://github.com/stefanloock/pyshearlab
https://github.com/swarm-lab/Rvision
https://github.com/swarm-lab/ROpenCVLite
https://www.r-project.org/
https://www.r-project.org/

Due to the large image size for the Correlation and SAR setups, a block wise processing
scheme with overlapping patches was applied. The overlapping regions have been smoothly joined
using trigonometric window functions to reduce border artifacts.

In total 3 experiments with different parameter settings were performed. For the first 2
experiments, the patch size, the stride (i.e., the amount the window is moved to extract a patch) and
the nscales parameter were chosen as follows: (i): patch size: 512, stride: 384, nscales: 5; (ii): patch
size: 1024, stride: 768, nscales: 6. In the third experiment (iii) we used a patch size of 2048 and a
stride of 1536. This time the patches were first subsampled to a size of 1024, then inpainted with a
nscales parameter of 6 and finally upsampled to a size of 2048 and merged. The third approach has
a similar effect as a direct inpainting with a patch size of 2048 and a nscales parameter of 7 (thus,
called nscales 7 in the following) and was performed since the direct processing with these
parameters was not possible due to memory limitations. All experiments were executed with 400
iterations and an α=0.001 .

All experiments were performed on an Intel(R) Xeon(R) Silver 4114 CPU. The patches were
processed in parallel by 8 processes and execution took 3 to 5 days, depending on the parameter
setting. We would like to stress that the optimization of the computing time of the Shearlet approach
was beyond the scope of the project; it is likely that using precompiled code and/or GPUs it is
possible to speedup the Shearlet-based inpainting significantly. Due to the high computational
expenses Shearlet inpainting was not directly included in the R processing pipeline.

Continues on next page

Figure S1: Void filling results dh IP (left column), difference dh between void filling output
and original data (center column) and relative offset dhr for different void filling approaches at
Center setup. Black polygons: glacier outlines; purple polygons: artificial voids.

Continues on next page

Figure S2: Void filling results dh IP (left column), difference dh between void filling output
and original data (center column) and relative offset dhr for different void filling approaches at
Juneau setup. Black polygons: glacier outlines; purple polygons: artificial voids.

Figure S3: Hypsometric distribution of glacier area and surface elevation changes of Center setup,
grouped in 50 m altitude bins.

Figure S4: Hypsometric distribution of glacier area and surface elevation changes of Juneau
setup, grouped in 50 m altitude bins.

References

1. Kutyniok, G.; Lim, W.-Q.; Reisenhofer, R. ShearLab 3D: Faithful Digital Shearlet
Transforms Based on Compactly Supported Shearlets. ACM Trans. Math. Softw. 2016, 42,
doi:10.1145/2740960.

Figure S5. Scatter plot of (¯dhgl−d̄h) versus σ dh /√N for the Shearlet (nscales=5)
approach. Table 2. Gray dashed lines indicate the bounds from Equation (16) and (18)
approximated by 2dcor σ dh/√ N for N>dcor

2 and by 2σdh for N<dcor
2 . f int: fraction of points

within bounds.

